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1. Introduction, In [1] certain closed operators in L\G) were de-
fined in terms of the Laplacian operator, and a class of generalized
boundary conditions. There G was a bounded domain in En with C 1 1

boundary and the boundary conditions were of the form dujdn — Lu =
0, where L was an arbitrary bounded operator on L\dG). The operator
so defined was denoted by TL and it was shown that TL was a closed
linear operator with compact resolvent. Its adjoint (TL)* was shown to
be TL* and its spectrum was shown to lie inside a parabola of the form

y2 = ax + b where α, b > 0 .

It is the purpose of this paper to extend the results of [1] by re-
moving the restriction that G be bounded. The previous history of the
problem is adequately covered in [1], It is worth noting here that the
underlying idea of [1] derives from a theorem of Calkin [4] and relies
on the compactness of the resolvent of an operator S on L\G) © L\dG).
For certain of the results of [1] it is only necessary to assume the
closedness of the range of S but many of the results explicitly used
the compactness of the resolvent. If G is unbounded, the resolvent of
S is no longer compact and the methods of [1] can no longer be used.

The approach taken here is to use localization methods to reduce
the problem for unbounded regions to one for bounded regions. We
observe that the Laplacian is an operator of local type in the sense of
Hδrmander [7], However in applying these methods we must distinguish
between two cases. If dG is bounded we can separate the behavior of
functions near the boundary from their behavior near infinity by multi-
plying them by functions which vanish in a neighborhood of infinity
and are identically one near the boundary. When dG is unbounded this
can no longer be done and any such attempt at localization must affect
the behavior of the function on portions of the boundary. It turns out
to be necessary to require that any localization function, regarded as
an operator on L2(dG), must commute with the boundary operator L.
For this reason when dG is unbounded we restrict our attention to
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multiplication operators on the boundary.
It is our hope for the future to extend these results to uniformly

elliptic, second-order operators on LP(G) where 1 < p < oo.
In § 1 we list some geometric preliminaries. In § 2 we list results

centering about the Lax-Milgram theorem [8] and preliminary localization
results. The main results are contained in §§ 3 and 4. In § 3 we treat
operators for unbounded regions with bounded boundaries and in §4 we
treat the situation where the boundary is unbounded.

1, Preliminaries. In what follows G will be a possibly unbounded
open connected set in En. Its boundary will be denoted by dG. Points
in G will be denoted by x, y, and points in dG will be denoted by
θ, φ, . We will denote by dx, dy, and by dθ, dψ, n-dimensional
and n — 1 dimensional Lebesgue measures on G and dG, respectively.
The exterior unit normal to dG at θ will be denoted by nθ. As in [i]
we will always assume that ΘG is an n — 1 dimensional Cι>1 manifold.
A detailed treatment of such manifolds may be found in Lucas [9].
For convenience we will state the fundamental

1.1. THEOREM. Let Γ be a C1A manifold, then there exists a
positive number, r0, called the minimal radius of Γ such that:

( i ) All segments of length r0 centered at points of Γ and normal
to Γ are mutually disjoint and exhaust a neighborhood of Γ, called an
r0 neighborhood of Γ.

(ii) At each point θ in Γ, spheres interior and exterior to Γ of
radius r0 may be drawn tangent to Γ at θ and containing no other
points of Γ.

(iii) The normals to Γ satisfy a uniform Lipschitz condition
with Lipschitz constant rό1, i.e.,

nθ — nφ I ^ To"11 θ — φ I

for φ,θedG.
(iv) The set Γp = {θ — pnθ: θe Γ} is a C 1 1 manifold for p < r0

with minimal radius rp satisfying r0 — | p \ ̂  rp ^ r0 + | p |. Such sur-
faces will be called parallel surfaces to Γ and are denoted by Γp.

(v) The surface measures on Γ and Γp are mutually absolutely
continuous with uniformly bounded Radon-Nikodym derivatives for
\P\ <r o/2.

We impose further restrictions on dG. We require that there exists
a covering of every r neighborhood of dG, for r < r0, by a possibly
finite sequence of open sets {Vk} such that

(a) For each k there exists a homeomorphism, Tk of Vk into En

such that Tk{ Vk Π G) = Γ x {0 < xn < r} where Γ is an n — 1 dimensional
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sphere with center at the origin and diameter r.
(b) Tk, TV1 and their derivatives up to order j satisfy a uniform

Lipschitz condition.
(c) There exists an integer N such that at most N of the sets {Vk}

have a nonempty intersection.
(d) UkT^il&ΓxiO <xn< r/2]} covers an r/2 neighborhood of dG.

1.2. DEFINITION. If dG satisfies conditions (a) — (d) above we say
that G is a uniformly C3Λ domain.

Usually j can be 1, however later in § 4 we shall need j to be two.
If the derivatives up to order j of Tk, Tk

ι are merely continuous and
bounded, we speak of a uniformly C3 domain.

In addition to the function space L2(G) we refer to certain other
function spaces which are by now quite familiar. The space C~(G) is
the set of all infinitely differentiable functions with compact support in
G. We shall always consider complex valued functions unless stated to
the contrary. In the notation of Browder [2], W3 P(G) is the set of all
functions in LV(G) whose distribution valued derivatives up to order j
are functions in LP(G). Using the familiar notation

a = <Pd, , ocny and | a | = Σ ^

where the a{ are nonnegative integers, we write

dx?1 dxy

for the generic differential operator of order \a\. For ue W3p(G) we
write

IIMil,., = ( Σ ιιi>β«ιι;Y'\ KP<C°

where || | |p is the Lp norm. Here we shall mainly be concerned with
the U norm which we shall write as || | |. The following well known
facts we state as a

1.3. L E M M A . W3 P(G) is a Banach space in the norm || \\jιP, and
a Hilbert space for p = 2. C~{En) is dense in W3 P(G) in the || \\jιP

norm.
Let Γ be a subset of dG. For 0 < p < r0 and for φ e Γ define the

set Gp to be {x e G : x = φ — pnφ}. For fixed p < r0 let Γp = {xeG : x =
Φ — ρnφ, φ e Γ}. If u is a function in WltP(Gp) we write up(φ) = u(φ —
pmφ)f φ G Γ. Thus Up is the restriction of u to Γ?. We now make the
following definition



124 ROBERT S. FREEMAN

1.4. DEFINITION. UP has an Lp-boundary value on Γ if
( i ) upe LP(ΓP) for p < r0.
(ii) There exists a function UeLp(Γ) such that

lim I I up(φ) — u(φ) \p dφ = 0 .

We now introduce the class of functions with which we shall be dealing
throughout the remainder of this paper.

1.5. DEFINITION. ^i(G) is the set of all functions u in W12(G)
such that

( i ) ue W22(G1) for each open set G1 whose closure is compact and
lies in G,

(ii) jueLXG),
(iii) u has an L2 boundary value u on dG, and du/dn has an U

boundary value on every compact subset Γ of dG.
It is well known [5] that every function in W1 2 has an L2 boundary

value and an examination of harmonic functions on the unit circle shows
that the inclusion W2 2(G) S A(G) S W12(G) is proper.

Recall that the "minimal operator" associated with the Laplacian is
the closure of the Laplacian restricted to C0°°(G) and the "maximal
operator" is its adjoint. Its domain is the set of functions in ΫF12(G)
satisfying conditions (i) and (ii) of Definition 1.5.

2. Lax-Miigram theorem. We here present the Lax-Milgram theorem
in a form suitable for our purposes. It is the generalization of the
Friedrichs' extension theorem [6] to the nonsymmetric case.

Let £%f and 3f?\ be two Hubert spaces with norms || || and || ||i,
respectively. We suppose

( i ) Sίfx is densely contained in ^f.
(ii) There exists a number k > 0 such that for all u in c%fλ

k \ \ u \ \ g \\u\V .

Let B be a not necessarily Hermitian symmetric bilinear form whose
domain is all of 3$fx and suppose

(a) \B(u,v)\ ^ KWul^Wvl^ for u

(b) Re B(u, u) ^ C \\ u \\l for u e

Lax and Milgram dealt with real Hubert spaces whereas here and
throughout this paper we deal with complex Hubert spaces. Condition
(b) is the obvious modification of their condition, and the necessary
changes to their proof resulting from (b) are of a trivial nature.
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2.1. THEOREM {Lax-Milgram). For any bounded linear functional
I on £%fx there exist two vectors v, v* in ,.%^ such that

( i ) l(u) =- B(u, v) = B(v*, u) for u e £ίfx.
(ii) // we £tfx and I — {-,w\ and v — Pxw9 then Px is a linear

homeomorphism of 3ίf\ onto ^fx.
(iii) If U is a proper closed subspace of , ^ , then there exists a

v e 5ί?x such that for every ue U, B(u, v) — 0.

2.2. THEOREM. There exists a closed densely defined linear trans-
formation T of c%f into itself such that T and its adjoint T* have
domains contained in (

cyίfι and have bounded everywhere defined inverses
in ι^%f. Moreover

B(u, v) = (u, Tv) for ue ..%?u ve &

and

B(u,v) (T*u,v) for ue <&r(T*), v e 2ϊ?x .

The fact the T is densely defined in %'- and closed as a map of
into 3? was not explicitly stated in Lax-Milgram. The density follows
from the fact that Tι is everywhere defined in ;)(f and bounded. In
fact if z is orthogonal to £#(T) then for ue £&(T)9 (u, z) — 0 and since
(., z) is a bounded linear functional on ,^fλ and 2P(T) S β£\ it follows
that (u9z)=:B(u9T-1z) = 0 for ue &(T)= ^{T'1). Thus B(T~ιu9 T~*z) =
0 and in particular B{Tιz)1 = 0 and thus T~λz = 0. Hence z = 0. To
show that T is closed as a map of Stif into 3ίf 9 let {vn} be a sequence
in £&(T) and suppose vn-^ ve £ίf and Tvn-+ we Sίf. Now for each
n and all u e ^fλ B(u, vn) = (u, Γt;w) and thus B(i;Λ) = (vn9 Tvn) -> (α;, tϋ).
But then t>w converges in ^fλ to say 2; and thus in ^f. Hence v — z.
Since T is closed as a map of Sί?x into ^g^, Tz — w — Tv.

The facts about T* follow easily if one recalls that T'1 is every-
where defined and bounded.

We shall now apply Theorem 2.2 to a study of the Laplacian oper-
ator, considered as an operator on L\G). With the aid of Theorem 2.2
we shall prove the existence of a closed densely defined operator with
domain in W12(G) and satisfying certain boundary conditions in a gener-
alized sense. Since the domains lie in W1>2(G) we know that the functions
have U boundary values. It will then be the task of the remainder of
this paper to show in what sense the boundary conditions are satisfied.
To begin we require the following

2.3. LEMMA. Let G be a uniformly C1Λ manifold. Then for any
u e W1>2(G)9 u has an U boundary value u and for each ε > 0, there
exists a C(e) > 0 such that \\u\\\^ K[e|| Vu||2 + C(ε) || u||2].

We write B(x) for B{xj} x).
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Here V represents the gradient of u and || ||9 is the norm on L\dG).
This lemma appears widely in the literature, see for example Ehrl-

ing [5] and Nirenberg [10] where G is assumed to be bounded. When
G is unbounded the proof can be suitably modified without too much
difficulty with the aid of a partition of unity. For an outline of this
proof see Poulsen [11].

Suppose u is a smooth function and that L is a bounded linear
operator on L\dG) and that un — Lu — 0. Let

( Pu Tvdx = [ Σ — — <
Jθ JG

and apply Green's formula to obtain

(-Δu, u) = || Vu ||2 - {Lu,

2.4. DEFINITION. For ue WU\G) let

where 7 is any complex number. Let L be any bounded operator on a
Hubert space <%?. Form Lx = 1/2(L + L*) and L2 = 1/2(L - L*) so that
L* = Ll9 L* = — L2 and L = Lλ + L2. Moreover, Rι{Lu, u) = (L^, w)
and Im(Lu, u) = l/i(L2tc, u). Lx and L2 are respectively the symmetric
and antisymmetric parts of L.

2.5. LEMMA. 7/ ίfce reαi pαrί o/ 7 is sufficiently large, then for
all ue Wι \G)

Proof. Let S,v = α. Then

Λ,BJ(«) == II Vu II2 + α || u ||2 - (Aβ, β),

^IIFttl l + αl lwir-HAII I I i ϊ l lS.

Now by Lemma 2.3

u) ^ || Γtt ||2 + a || it ||2 - || A || ΛΓ[β \\Vu ||2 + C(e) || u |

Choose ε so small that 1 — UAH JΓε > 1/2 and α so large that

α - | | A I I ^ C ( e ) > * .

Note that when L is the zero operator 7 may be taken to be real,
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for the form BG is symmetric.

2.6. LEMMA. There exists a positive real number C such that for
every u and ve Wlt2(G)

(2.6.1) \B2(u,v)\ g CHttlUMIi .

Proof.

^\[ Fu- Fvdx
I

I Ύ(U, V)\ + \ (LU, v)

Ύ\\\u\\\\v\\ + || L \\ \\ u ||d \\v |

+ C(ε) || u \ml2\K(ε \\ Fu ||2 + C(ε) || i; H2)]1'2

for any ε > 0. Choose ε > 0 and let 8 = max (ε, C(ε)). Let η =
max (I 7 I, 1) and C = 2η + 8 || L ||. Then a simple computation yields
(2.6.1).

Let r^r = L%G) and /^ί = Wι\G) and apply the Lax-Milgram theo-
rem to the form 5J. The result is the following:

2.7. THEOREM. Let L be any bounded linear operator on U{dG).
Then there exists a closed, densely defined, linear operator ML in L\G)
with domain in Wi>2(G) such that for every ve &(ML) and ue W1 \G)J

Bβ(u, v) = (u, MjV). Its adjoint Mΐ enjoys the relation BG{u, v) —
(ML'U, V) for ue £2r(M£) and ve W12(G). Moreover, if y is any com-
plex number such that R{y ^ —(8 + II A II KC(ε)) where 0 < 8 < 1 and
C(ε) is the number of Lemma 2.3 with ε < (1 — δ)/|| Lλ ||, then 7 lies in
the resolvent set of ML.

Proof When 7 is as above, Theorem 2.2 shows that ML + j l is
closed and densely defined in L2(G) with domain in Wι>\G). Moreover,
zero is in its resolvent set.

We shall now give a characterization of

2.8. THEOREM. Let ve Wlt\G), then a necessary and sufficient
condition that v e ^r(ML)(^r(M¥

L)) is that —Δv is a distribution in
L2(G), and for ue Wι\G), (u, -Δv) = B(u, v)({-Δv, u) = B(v, v,)).

Proof. We give the proof for MLi the proof for M* being virtually
identical.

Let ve &(ML). Then for every ue T^li2(G), and hence for every u

in CΓ(G), (u9 MLv) = B(u,v). Recalling the definition of the derivative

of a distribution, we have (u, MLv) = B(u, v) = 1 Fu Fvdx = (u, —Fv)
JG
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for u in Co°°(G). Since C0°°(G) is dense in L\G) it follows that MLv =
— Δv. Now suppose v is in W12(G) and — Δv is a distribution in L2(G)
such that for % e PΓ12(G), (u, Δv) — BG(u, v). Then for a suitable com-
plex number 7 the form Έ>1 defined by (u, —Δv + Ίv) = BZ(u, v) is bounded
in W12(G) and i2z5J is bounded from below. It then follows from the
proof of Theorem 2.2 that ^ e £?(ML) and MLv = — Δv.

We now present a series of localization lemmas which will be used
in what follows. These results are by now quite common in the litera-
ture and we follow for the most part the presentation given in Poulsen
[11].

2.9. LEMMA. Let ω be in C\G) and suppose K is an upper bound
for ω and \Pω\. Then for every ue Wλ\G), ωu is also in W12(G).

Proof. W12(G) is the closure of Ci(En) in the W1'2 norm. If {uj}

is a sequence in Cl{En) such t h a t \\uj — u ||1>2 -> 0. Then the inequalities

IIωu j - ωu \\ ̂  K\\ uj — u\\ and | |F(ωu j ) - P(ωu) \\ ̂  K(\\uj — u\\ +
II Puj — Vu | |) show t h a t || ωuj — ωu \\lt2 -> 0.

2.10. LEMMA. Let ωeCo!l(En) be real valued and suppose that K
is an upper bound for \ω\, \Pω\, and \ —Δω\ in G. If ue Wι \G)
and —Δu is a distribution in L2(G) then ωue Wι>2{G) and —Δ(ωu) is
a distribution in L\G).

Proof. Let S(u, ω) = { — Δω)u — 2Vω Vu — ωΔu and observe that

Thus S(u, ώ) is clearly a distribution in L\G) and by the definition
of derivative of a distribution S(ω,u) = —Δ(ωu).

3 Regions with bounded boundaries. In the preceding section we
have given a characterization of the operator ML in terms of the Laplacian
and the form BG{ , •)• Hereafter the symbol ML will always stand for
this operator. Essentially these results concern themselves with regularity
in the interior of G. It is the purpose of this section to study the
boundary behavior of functions in &(ML). Explicitly let £^(2^) be the
set of we ^ i ( G ) (cf. Definition 1.5) for which un — Lu = 0 and let TL

be — Δ with domain &(TL), then we shall show TL — ML.

3.1. DEFINITION. Let ψ be a function in CΓ(En) satisfying

,^ I 1 1 * 1 - 1

Φ(X)= 0 1*1 2 : 2
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and 0 fg ψ(x) ^ 1. Let ωN(x) — ψ(x/N) and let K be an upper bound
for \Vφ\ and | Δψ \.

3.2. LEMMA.

I POJN I g K/N

3.3. LEMMA. Let ue Wlt2(G) and suppose — Δu is a distribution
in L\G). Then as N-+ co

|| ωNu — u | |i,2-> 0

| | - Δ ( O J N U ) - ( -

Proof. For each N,ωNue W1>2 and -~Δ(ωNu) is a distribution in
ί/2(G) by Lemma 2.10. The results follow from an obvious computation,
Lemma 3.2, and the dominated convergence theorem.

3.4. THEOREM {Green's Formulas). Let u and v be in ϋ%(G). Then

(3.4.1) \ {-Δu)vdx = ί Fu-Fv — [ uβdβ
JG JG JGd

S r r* _ _

( — Δu)vdx — I u( — Δv)dx — \ {uvn — unv)dθ .
G JG JdG

Proof. Let BN be the sphere with center at the origin and radius
N and let ωN be the function of Lemma 3.2. Define vN to be ωNv so
that v vanishes outside of B2N. Then

S r r

( — Δu)vNdx = I ( — Δu)vNdx = I Fu VvNdx
G J53^n© J5 3 J N r ιΊ0

unv
Ndθ .

The last of the equalities follows from the fact that ωN vanishes on
and near dB3N.2 Let N-> oo and apply Lemma 3.3 to obtain Eq. (3.4.1).
Formula (3.4.2) can be obtained in a similar manner.

3.5. THEOREM (Localization). Let ωN be as in 3.1. //
), then OJNV e

Proof. We give the proof for ML. By Theorem 2.8 and Lemma
2.10 it suffices to show that for ue Wλ'\G) or even for ueQ(G)

2 Observe that vN = v on dG.
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(3.5.1) (u, -Δ(ωNv)) = B(u, ωnv) .

Here of course N is assumed to be sufficiently large that dG £ BN. We
note that Q(En) is dense in Wι'\G) and, moreover, that if {uj} is a
sequence in Co(En) such that || u3 — ^ ||1>2 —• 0 and if ΐP' is the corre-
sponding boundary value, then || it' — u | |9 -> 0. Hence it suffices to
prove (3.5.1) for ueQ(En). Now by Lemma 2.10, for all ue Wι>\G)

(u, — Δ(ωv)) — (u, ω( — Δv)) + (tt, v( — Δω)) — 2 I

since α> is real valued. Now

(u, ω(~-Δv)) = \ uω( — Δv)dx — BG(uω, v) .
)G

Moreover,

S f f

uv( — Δω)dx = \ uv( — Δω)dx = \ F(uv) * Fωdx .
(? Jβ Jβ

Here β = G ί l 53JV and we note that &> vanishes on and near dB3N. Thus

S r

V(uv) Vωdx — 2 1 uFα> Vvdx .
<? Jβ

r r

Since BG(uωy v) = \ F(^ίo) F^dα; — \ uωLvdx and to = 1 on 0G and

P(uω)
G

+ \ F(%v) Fωdα; — 2 \ ttFω Vvdx
G JG

— \ ωVu Vvdx + \ Vu Fojvdx = \ Pu V(ωv)dx ,
J G J(? J G

we have finally

(u, -Δ(ωv)) = ΰ ( ^ , OJV) for ueQ(En) .

3.6. DEFINITION. Let ^(T z )(^r(T Z 3 | e )) be the set of those u e 3{(
for which un - Lu = 0 (#Λ - L*u - 0) and for ^ in ^ r ( Γ z ) ( ^ ' ( Γ z # ) ) ,
let TLu{TL*u) = -Δu.

When G was bounded it was shown in [1] that TL was closed and
densely defined and that (Γz)* = ΓZHί. In the remainder of this section
we shall identify ML with TL and M* with TL*, thus proving that for
G unbounded, but with dG bounded, we again have (Γz)* = T£ήί.

It is immediately clear by Green's formula that TL S ML and TL* S
M*. The reverse inclusions will be obtained by localization. Consider
a sphere B3N with N so large that dG fi J5^, and let Ω = G ί l J53^, so
that 9/2 = dG U ^JB3^. We define an operator, Lo on L2(9β) by
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(Lu ue L\dG)
L°U== (θ ueL\dB,N)

and the operator TLQ analogously as in Definition 3.6 with Lo replacing
L and Ω replacing G.

In what follows N will be chosen so large that BN contains dG in
its interior. The corresponding ωN will be denoted by ω. Moreover,
we define MlQ, (M*Q) analogously as ML{M£) with β = Gίl BiN replacing
G and Lo replacing L. We need the following

3.7. LEMMA. Let G be a bounded domain with a C 1 1 boundary.
Then ML = TL and M? = TL*.

Proof. By Green's formulas it is clear that ML a TL and Ml a T^.
But since all the operators in question are closed and TL* = (TL)* a
M* a Tz* and as a consequence TL.M = ML*, it also follows that TL =
(TL,r ^MΓ =ML.

We return now to unbounded regions.

3.8. LEMMA. Let ve ^r(ML)(^r(M*))9 then ωv restricted to Ω is
in

Proof. By Theorem 3.5, ωv e W12(G) and —Δ(ωv) is a distribution
in L2(G). The same is also true therefore if G is replaced by β. It
suffices to show therefore that for u e C™(En)

(u, —A{ωv))Ω = BΩ(u, ωv) .

The proof of this is similar to that of the corresponding statement of
Theorem 3.5 and will be omitted.

3.9. THEOREM. ML = TL and M? = TL*. Thus (TL)* = TL*.

Proof. By Lemma 3.8, ωve £2T(MLQ) whenever ve&(ML). Thus
by Lemma 3.7, OJV e J3(TL). It then follows that v e ^(G) and v.n —
Lv = 0, since ω = 1 on BN n G. Thus v e &{TL) and MLv = TLv and
the result follows. The proof that M* = TL* is similar and will be
omitted. It is clear from Theorem 2.7 that the spectrum of TL lies in
a half plane. We can sharpen this estimate considerably to obtain the
results of [1],

3.10. THEOREM. The spectrum of TL lies inside the the parabolic
region τ2 = aσ + b with a, b > 0 where a complex number λ = σ + iτ.

Proof. We follow very closely the proof of Theorem 4.14 of [1]
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first recalling the definition of the operators S, L and P(λ).
{[u, u] : u e £%(G)} and S[u, u] = [ — Δu, un] for [u, u] e &(S). L and
P(λ) have all of U{G)@L\dG) as domains and £ [ / , flr] = [0, L#), P(λ)[/,f/] =
[λ/, 0]. It was shown in [1] that when λ is such that

(3.10.1) \([S - P(X)][u, β], K «]) I > || L || || [u, u] ||2 ,

then zero is in the resolvent set of S — L — P(λ), and, moreover, for

(3.10.2) I ([S - L - P(λ)][u, ίϊj, [u, u]) \ ^

where K(X) is a positive number.
But for [u, u]e&r(S)

([S — L — P(X)][u, ϊί], [u, u\) = || Vu ||2 — λ || u ||2 — (Lΐϊ, ffi

and for ue &(TL)

{{TL - \)u, u) = || Vu ||2 - λ || u ||2 - (LS, «)a .

Thus if (3.10.2) holds for some K(X), then for the same K(X)

I {{TL - \I)u, u) I ̂  K(λ) | | u | | 2 , % e

It only remains to determine conditions on λ such that (3.10.1) is
valid. At this point we may proceed exactly as was done in [lj and we
arrive at the same conclusions.

4. Regions with unbounded boundaries. As was remarked in the
introduction we shall restrict L to be multiplication by a bounded
measurable function. We shall then use a result of Poulsen [11] to obtain
most of the results of the preceding section.

4.1. DEFINITION. The operator ML, when L is the zero operator,
will be denoted by N. N is the operator corresponding to the Neumann
boundary condition.

4.2 THEOREM. Suppose ωeCl'\En) is real valued and such that
\ω\, \Pω\, and \Δω\ are all uniformly bounded on G by say K. Then
if ωe&(N) and ve &(ML)(^(ML*)), if follows that ωv also in

Proof. Let BN be a sphere with center at the origin and radius
N so large that it contains the support of ω in the interior. Ω = G Π BN

and observe that as in the proof of Theorem 3.5, it suffices to show that
for all u e Q{En)
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(4.2.1) (u, Δ{ωv)) = B(u, OJV)

The proof is almost identical to that of Theorem 3.5. We observe
first that if the support of ω is contained in G we may simply apply
Green's formulas. If the support of ω f) dG is not empty we follow
the arguments of Theorem 3.5. Note that since ω e £?(N) and u e Co(En)

we find that (u, v( — Δω)) — \ F(uv) Fωdx .
JG

Following the computations in the proof of Theorem 3.5 yields (4.2.1).
The proof for M* is almost identical.

4.3. LEMMA. (Poulsen [11]). Let G be a uniformly C3 domain
and let θ be any point in dG. There exist neighborhoods Aλ and A2 of
θ with compact closures such that Ax gΞ A2 Moreover, there exists a
real valued function ω e CQ(EU) such that ω is identically 1 in G (Ί Aλ

and vanishes in G Π Ar

2. Moreover, ωe^r(N) and \ω\, \Fω\, and
I Δω I are uniformly bounded on G.

4.4. DEFINITION. Let &(TL) be the set of those functions in
for which un — Lu = 0 on every compact subset of dG. For ue
let TLu = - Δu.

4.5. LEMMA. TL £ ML and TL* £ MLήί.

Proof, As usual we note that it suffices to show that for every
ueQ(En), (u, -Δv) = B&{u, v).

We give the proof for TL, the proof for TL* being similar. We
note that G need only be a C1Λ manifold for this proof. As usual let
BN be a sphere with center at the origin and with radius N sufficiently
large that for a fixed ue Co(En), support of u is contained in BN. Let
Ω = BN Π G. Then

\ u( — Δv)dx = \ u( — Δv)dx = I Fu-Fvdx — \ uvndθ
JG JΩ JΩ }dΩ

c r _

= \ Fu Fvdx — \ uvndθ
JΩ JdΩΓldG

C -

Fu Fvdx — \ uvndθ .
G JdG

Since u was arbitrary in CQΛ{E%) the result follows.
Referring to Definition 1.2, let Vk be one of the covering neigh-

borhoods so that Tk(Vk Π G) = Γ x {0 < xn < r}. Now let Slf S2, and S,
be three C?> manifolds such that

j 3 iΓ x {0 < xn < r/2}
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Γ x {0 < xn < r} 2 S3 .

Let Aik = TjΓ^Si) for i = 1, 2, 3 and observe that UAA& contains
an r/2 neighborhood of dG. Now let α> be the function of Lemma 4.3
with Alk and A2k playing the roles of Ax and A2.

Let ΘA3k n 9G = Λ and Γ2 = dA3/b - Λ .
We define an operator on dA3k by

(0 for θeΓ2 .

Let M ί o ϊ 7^ be the operator corresponding to Lo and A3fc as ML and Tz

correspond to L and (?. Then

4.6. LEMMA. Let v e &(ML)(&r(ML*)), then ωv e &{ML){ &(ML*))

Proof. The proof is almost identical to that of Theorem 4.2. By
ωv we mean of course ωv restricted to A3k.

Now A3k is a bounded C3 manifold and thus by Lemma 3.8, MLQ =
TLQ and ML* = TL*. Thus ωv is in ^ ( ϊ 7 ^ ) . Hence on Γl9 (ωv)n -
L(ωv) — 0. Thus in particular on dG Π dAik, vn — Lv = 0, since here ω
is identically one. Since L)Aίfc covers an r/2 neighborhood of 9G, it
follows that vn — Lv — 0 on every compact subset of dG. Combining
these facts with Lemma 4.5, we finally obtain

4.7. THEOREM. If G is a uniformly C3 manifold then TL — ML and
TL, = ML,. Thus (TLy = TL,.

The fact that TLif — ML^ follows by using almost the same argument
as the above.
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