
ARITHMETICAL NOTES, III. CERTAIN EQUALLY

DISTRIBUTED SETS OF INTEGERS

ECKFORD COHEN

1. Introduction* In this note we shall generalize the following two
results in the classical theory of numbers. Let n denote a positive
integer with distinct prime divisors plf * , p m ,

(1.1) n = p i p*™ (m > 0), n = 1 (m = 0) ,

and place Ω(n) = ex + + em, Ω(l) = 0, so that Ω(n) is the total number
of prime divisors of n. For real x ^ 1, let S'(a?) denote the number of
square-free numbers n <Z x such that £?(w) is even, and let S"(x) denote
the number of square-free n ?S> x such that Ω{n) is odd. It is well-known
[6, §161] that

(1.2) S\x) ~ — S"(x) ~ — as x -> oo .
π 2 > π 2

Correspondingly, let Tf(x) denote the total number of integers n ^ x
suet t h a t Ω(n) is even and T"{x) t h e total number oi n ^x with £?(w)
odd. Then [6, §167]

(1.3) T\x) - — T'\x) - — as ίc -> oo .

The proof of (1.2) is based upon t h e deep estimate [6, §155] for t h e
Mobius function μ{n),

(1.4) M(x) ΞΞ 2 A«(w) = o(x) ,

while the proof of (1.3) is based upon the analogous estimate [6, §167]
for Liouville's function λ(w),

(1.5) L(x) = Σ Hn) = o(x) .

In Theorem 3.3 we prove a generalization of (1.2) and in Theorem
3.4 the corresponding generalization of (1.3). The respective proofs are
based upon an estimate (Theorem 3.1) corresponding to (1.4) for an
appropriate extension of μ(n) and an estimate (Theorem 3.2) corresponding
to (1.5) for the analogous extension of λ(w). The proofs of these estimates
are in the manner of Delange's proofs [3, /(ί>), (c)] of (1.4) and (1.5),
both being based upon a classical Tauberian theorem (Lemma 3.2) for
the Lambert summabillty process. We also require some elementary
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estimates contained in §2, and a lemma on inversion functions (Lemma 2.1).

2 Preliminary results. For an arbitrary set A of positive integers
n, the characteristic function a(n) and inversion function b(n) of A are
defined by

(nφA) .

The enumerative function A(x) of A is the number of n ^ x contained
in A, and the generating function is the function f(s) = Σ ; = 1 a(ri)jns,
s>l.

We shall be concerned with several special sets of integers. Let Z
denote the set of positive integers, keZ. Then Pk will represent the
set of fcth powers of Z, and Qk the set of fe-free integers of Z. The
set of Mull intergers, that is, the integers (1.1) with each e4 ^ k, will
be denoted Rk. We shall use Sk to denote the integers (1.1) in which
each βi has the value 1 or k. Finally, the set of integers (1.1) such
that et = 0 or 1 (mod k), i = 1, , m, will be denoted Γfc. The charac-
teristic functions Pk, Qk, Rk, Sk, and Tk will be denoted respectively
Vk(n)f Qk(n), rk(n)9 sk(ri), and tte(n); the corresponding enumerative functions
will be denoted Pk(x), Qt(x), R^x), Sk(x), Tk(x). Also let Q = Q2, Q(x) -
Qi(x), and q(n) = ga(τι). All of the sets defined are understood to include
the integer 1.

REMARK 2.1. It will be observed that Tλ = Z, & = Q2, S2 = Q3

In addition to the above notation, we shall use Xk(n) to denote the
inversion function of Pk and μk(n) the inversion function of Rk or Qk

according as k > 1 or k = 1. By familiar properties of μ(n) and λ(w),
[4, Theorem 263 and 300], it follows that

{2.1) fa(n) = ^(^) , λ,(w) - λ(») .

LEMMA 2.1. The functions μk(n), Xk(n) are multiplicative. If p
is a prime and e a positive integer, then for k ^ 1,

ί 1 if e - k Φ 1 ,

(2.2) μk(pe) = \-l i / β = l ,

( 0 otherwise ,

Ze /or & > 1,

1 if e = 0 (mod &) ,

(2.3) λ^(pβ) = \ - 1 i / β Ξ l (mod fc) ,

0 otherwise .
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REMARK 2.2. The multiplicativity property in connection with (2.2)
and (2.3) completely determine μk(n), k^l, and Xk(n) for k ^ 2.

Proof. By definition, if k > 1,

<2.4) ΣM«=*) = | !
*.* (0 \ί n$Rk .

Hence, application of the Mobius inversion formula yields

(2.5) μk(n) Σ Kd)rk (%) , k > 1 .
d\n \ d /

Since μ{n) and rfc(%) are multiplicative, it follows by (2.5) that μk(n) is
also multiplicative (cf. [4, Theorem 265]). Also by (2.5), μk(pe) =
^k(Pe) — rk{ve~ι), from which (2.2) results in case k > 1. The case k =
1 of (2.2) is a consequence of (2.1). The proof of (2.3) is similar and
can be omitted.

We recall next some known elementary estimates for Pk(x), Qk(x),
and Rk(x). Let ζ(s), s > 1, denote the Riemann f-function.

LEMMA 2.2. // k > 1, then

(2.6) Pk(x) = v 7 ^ + 0(1) ,

(2.7) QΛ(aj) - £

<2.8)

where ck is a certain nonzero constant depending upon k.
The result (2.6) is trivial, (2.7) is the classical estimate of Gegenbauer

(cf. [2, §2]), and (2.8) is a well-known result of Erdδs and Szekeres (cf.

;[1]). In particular, we have

LEMMA 2.3. If k > 1, then

(2.9) Pk(x) - y/~x , Rk{x) - ckV~ΰ as x-> ™ ,

(2.10) Qk(x)

We now deduce, for application in §3, estimates for Sk(x) and Tk(x)
corresponding to those in Lemma 2.3 for Pk(x)f Qk{x), and Rk(x).

LEMMA 2.4. If k > 1, then
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(2.11)

*/ k Ξ> 1, then

(2.12)

where

(2.13)

Tk(x)

Sk(x)

π2

π*

as x -> co

as x

+

i i 9fr 1 / '

1,

according as k is even, k is odd and Φ 1, or fe = 1, the products
ranging over the primes p.

REMARK 2.3. It will be noted that a2 = ς(2)/ξ(S) = τr2/6t(3).

Proof. The elementary estimate (2.11) was proved in [1, Corollary
2.1]. The result in (2.12), in the cases k = 1 and k = 2, is a consequence
of (2.10) and Remarks 2.1 and 2.3. To complete the proof of (2.12) one
may therefore suppose that k > 2.

Under this restriction, we consider the generating function fk(s) of
sk(n). In particular, if s > 1, we have (cf. [4, §17.4])

Ms) s

1
/ -i \—l

M 4-

(2.14)

Since

it follows from (2.14) that

(2.15) Λ ( 8 ) =

where

(2.16) gk(s)^±

w = l

the product, and hence the series, in (2.16) being absolutely convergent
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for s > 1/k. By Dirichlet multiplication [4. §17.1] one deduces from
(2.15) and (2.16) that

*k(n) = Σ Q(d)ak(δ) ,

because ζ(s)/ζ(2s) is the generating function of q(n), [cf. [4, Theorem
3021). Applying (2.7) in the case Q(x) = Q2(x), it follows that

Sk(x) = Σ 8k(n) = Σ Q(d)ak(δ) = Σ ak(n)Q (-) ,

and hence that

Sk(χ) = **. Σ

π 2 % ft /

Recalling that the series in (2.16) converges absoltutely for s > l/k, one
obtains, since k > 2,

β4(ίB) = to. £ 5 M + o(x Σ )

so that

(2.17) SA(B) - $£ψ- + o(x) , /3, = gk(l) .

It is readily verified, using (2.16) with s = 1, that /3fc = αΛ, which
completes the proof of (2.12).

3 The principal results. We introduce some further definitions and
notation. A divisor d of n will be called unitary if dd = w, (d, δ) = 1.
The function Ω\n) is defined by Ω\n) — Ω{g) where g is the maximal,
unitary, square-free divisor of n. Let SI and S", denote, respectively,
the subsets of Sk for which Ωr(n) is even or odd, neSk. Analogously,
let Tr

k and T" denote the respective subsets of Th for which Ω(n) is
even or odd, neTk, k even. In addition, we shall use SΛ(#), Sk(x),
T'h(x), T'k\x) to denote the enumerative functions of Si Skf T'k, Tk\
respectively.

REMARK 3.1. It will be observed that S[(x) = S'(x), S['(x( = S"(x),
T[{x) = T\%), T'2'(x) = T"(a;). In addition, we have, by Lemma 2.1,
μk(n) — ( —l)β/(u)sΛ(^), and in case n is even, Xk(n) = ( —l)0(nϊί*(w).

In addition to the lemmas of §2 we shall need the following three
known theorems.

LEMMA 3.1 (cf. [5, 259, p. 4491). For bounded coefficients any the
series,
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y a ( χ n \

is convergent, provided |cc|.< 1.

LEMMA 3.2 ([3, p, 38]). // the series

Σ nan (—^-—) = s >

converges for 0 ^ x < 1, ami

— X71

then the series 5j~-iα» converges with sum S provided an — 0{ljn).

LEMMA 3.3 ([7, p. 225]). Suppose that the series ΣίΓ=i an%
n converges

for 0 ^ x < 1 and diverges for x — 1. If further, sn = aλ + + α% > 0
/or αίi w, α^d ŝ  ^ Cn (C constant) as n—> 00,

lim (1 - x) Σ ^r^w = C .

THEOREM 3.1. / / k ^ 1,

Σ

(3.1) Mfcίa;) ΞΞ Σ fain) -

Proof. By Lemmas 2.1 and 3.1, and the definition of μk(n)f

V n,(Ύi\l ± \ = Σ μk(n) Σ ^ 7

V r (h\rh — V τ π if k "> 1
-1 n&Rfc

if fc = 1 .

By (2.9), the set Rk has density 0; hence Lemma 3.3 with C — 0 can
be applied to the power series so that

lim (1 - x) Σ A(rc) (\ ^ ) = 0 , A ̂  1 .
χ->i~ w = i \ 1 — Xn J

Since \μk(n)\ ^ 1, Lemma 3.2 is applicable with an = μk(ri)ln, and one
concludes that

(3.2) Σ ^ ^ = 0
n=ι n

Put Ak(x) = Σn^(ft(?ι)W; then by partial summation,
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(3.3) Mk(x) - - Σ-. Ak{n) + Ak(x) ([»]) + 1) .

Since Ak(x) = o(l) by (3.2), the theorem results from (3.3).

THEOREM 3.2. If k^2, then

(3.4) Lk(x) = Σ ftW - o(x) .

The proof is similar to that of Theorem 3.1 and is therefore omitted.
Note that (3.1) reduces to (1.4) in case k = 1 and that (3.4) to (1.5) in
case k = 2.

THEOREM 3.3. If k ^ 1, then

(3.5) S'k(x) ~ - ^ ^ , S'k'(x)
7Γ2

defined by (2.13).

Proof. By (2.12), Remark 3.1, and (3.1), one obtains

Sί(x) + S'k'(x) = SA(*) - -^f- + o ( » ) ,

Sί(») - S'k'(x) = Mk(x) - o(x) ,

and (3.5) results immediately.
Similarly, one may deduce from (2.11), Remark 3.1 and (3.4),

THEOREM 3.4. / / k > 1, k even, then

(3.6) T'k(x) - MϊΆ , T)!(x) - ^ ί ^ as a; -> oo .
π 2 " π2

Finally, it will be observed t h a t (3.5) becomes (1.2) in case k = 1;
while (3.6) becomes (1.3) when k — 2.

I t is possible to extend (3.6) so as to hold for all k > 1. Let #*
denote the largest unitary divisor of n e Tk, such t h a t all prime factors
of g* have multiplicity e = 1 (mod k). Place β*(w) = ω(g*), where ω(n)
is the number of distinct prime divisors of n, and let T*(x) and Tΐ*(x)
denote the number of n ^ x contained in Tk according as Ω*(n) is even
or odd, respectively. Then

THEOREM 3.4'. If k > 1,

(3.7) Tf:(x) - M ^ , τϊ*(x) - ^ ^ as x
π 2 π2
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