
LINEAR DIFFERENTIAL EQUATIONS ON CONES

IN BANACH SPACES

CHARLES V. COFFMAN

1. In [1], Hartman and Wintner show that if A(t) is an nxn matrix
of nonnegative, continuous functions, defined on the interval [0, oo) then
the differential equation

(1) α' = - A(t)x

has a t least one nontrivial solution x(t) = (^(ί), * f #*(*)) satisfying

( 2 ) x(t) ^ 0 , -x'(t) ^ 0 for 0 < t < oo ,

where x^O means that each component of x is nonnegative. It is remark-
ed there that this result can be considered as a generalization of a well
known theorem of Perron-Frobenius on matrices with nonnegative entries.
This theorem states that a constant matrix of this type possesses at
least one nonnegative eigenvalue, corresponding to which there is a non-
negative eigenvector. There have been a number of generalizations of
the latter result to theorems concerning operators on a Banach space
transforming some cone into itself; see [2], [3], [4] and the references
there. In view of this fact, the question of the possibility of a similar
generalization of the above theorem on differential equations naturally
arises. It is the purpose of this note to establish such a generalization-

Let X be a Banach space. The following standard notation and
terminology will be adopted. xeX has the norm |a?|. A cone K is a
subset of X such that x,yeK implies that Xx + μyeK when λ, μ^O-
K is called proper if 0 Φ xeK implies —x $ K. When x and y are
elements of X, x ^ y means x — y e K, so that in particular x^O is equiva-
lent to xeK. An operator A on X is said to be nonnegative (A^O) if
Ax^O whenever x^O. A nonempty set of the form H—{x: xe K,f(x)=
1} where / is in the dual space X* of X, is called a cross-section of the
cone K.

By the derivative of a function x(t) of the real variable t, with
values in X, is to be understood (except in § 6) the limit in the strong
topology on X, as h -+ 0, of the difference quotient (x(t + h) — x(t))lh.

THEOREM 1. Let X be a Banach space and K a closed, convex cone
in X possessing a weakly compact cross-section H. For every fixed t,
0 ^ t < ex), let A(t) be a nonnegative, bounded linear operator on X
and let A(t) be strongly continuous on 0 ^ t < oo. Then the differential
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equation (1) has at least one solution x = x(t) φ. 0 satisfying (2).
As in the finite dimensional case, the Theorem 1 has an analogue

for difference equations: >

THEOREM 2. Let X, K, H be as in Theorem 1. Let A = A(m) be
a bounded operator on X defined and nonnegative for each positive
integer m. Suppose also that I — A(m), where I is the identity operator,
has a bounded, nonnegative inverse for 1 rg m < oo. Then the linear
difference equation

) — —A(m)x(m)

has at least one nontrivial solution satisfying

x(m) >̂ 0 , —jx(m) Ξ> 0 for 1 ^ m

The proof is similar to that of the theorem for differential equations
and will not be given. In connection with the condition that I — A(m)
have a bounded, nonnegative inverse, see § 5 below.

2 Proof of Theorem 1. Let/e X* define a weakly compact cross-
section H of K, then f(x) > 0 for all nonzero x in K. This is seen in
the following way. The set L of elements in K not belonging to the
kernel of / projects onto H by the map P: x -> xjf(x). Assume that
there is an #XG Kfx1 Φ 0, and/ί^) = 0. An elementary argument shows
that on any line segment connecting xx to H there is a half-open interval,
contained in L and having an endpoint x0 f L. It is easy to see that the
image under P of such a half-open interval would be unbounded. This
contradicts the fact that H is weakly compact, hence bounded.

By the principle of uniform boundedness, | |A(ί)| | is bounded on
compact ί-intervals. Let x = x(t) be a solution of (1). The proof will
make use of the Gronwall inequality

( 3) I x(t) I ̂  I x(s) I eMT for 0 ^ s, t ^ T

where M is a bound for || A(ί)ll on [0, T]. This follows from

I x(t) I ̂  I x(s) I + 1 j Jl A(u) || I x(u) I du \ .

If #(£) is a solution of (1) and if x(s) e K for some s > 0, then
#(£) G ίΓ, in fact x(t) ^ #(s), for 0 ^ £ ̂  s. This is so because x(t) is
the limit (in the strong topology) of the sequence of successive approxi-
mations defined inductively as follows: xo(t) = x(s) and

S s

A(u)xn^(u)du if n > 1 .
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Clearly for each n, xn(t) ^ xn(s) for 0 ̂  ί ^ s. Since K is closed, this
implies x(t) ^ x(s) for 0 ̂  t ^ s.

From the last remark, and the fact that f(x) > 0 for 0 φ x € if,
it follows that for each positive integer n, there exists a solution x =

of (1) such that

(4 ) y(t) ̂  0 for 0 ̂  ί ^ n and ?/(0) e i ϊ .

Consider the set of all solutions of (1) satisfying (4) for a given n, and
let En be the set of their initial values. Thus the En, for n — 1, 2,
form a nonincreasing sequence of nonempty subsets of H. Because of
(3), solutions of (1) depend continuously on initial conditions on any
finite interval. It follows that each En is closed. Since the En are
clearly convex, they are weakly closed by Mazur's theorem. Hence the
weak compactness of H implies that there must be a point common to
all of the En. Any solution of (1) whose initial value is such a point
satisfies (2).

3 Cones with weakly compact cross'sections In most of the well
known examples of a Banach space X with a naturally distinguished
cone K, the cone is generating, i.e., X = K — K. Relevant to this fact
is the following

(i) A necessary condition that a cone K generating a Banach
space X have a weakly compact cross-section is that X be reflexive.

The proposition is an easy consequence of the following

LEMMA. Let K be a generating cone in a Banach space X, and
let K have a weakly compact cross-section H. Then there exists a
constant M such that every ze X of norm 1 has a decomposition z —
x — y with x,y e K and \ x|, | y \ < M.

If K is a cone in X, K* below denotes the (dual) cone in X* con-
sisting of elements / G I * satisfying f(x) Ξ> 0 for all xe K.

Proof of the lemma. Let feK* determine the cross-section H.
A new norm will be defined on X by

II s II = inf{f(x) + f(y):z = x-y;x,yeK}

in particular, | |^ | | = f(z) if zeK. This device is employed by Schaefer
[4], p. 1013, and he shows that X is a Banach space with respect to
this norm when the cross-section determined by / is weakly compact.
Let Sj = {x: x e X, \ x \ ̂  1} and let S2 = {x: x e X, \\x\\ ̂  1}. A short com-
putation shows the existence of a positive constant k such that kS2 c S^
It follows from the open mapping principle that the two norms define
equivalent topologies. It suffices therefore to prove the lemma for X
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with the new norm.
It is easy to see, from the definition of || ••• ||, that there exist,

for any ze X, elements x,y e K such that z = x — y and || x — y || ^
|| x + y || - 1. Then since || x || ^ 1/2 || a? - y || + 1/2 || a? + # ||, it follows
that if \\z\\ = 1, then ||a?|| ^ 3/2 and similarly \\y\\ ̂  3/2.

Proof of ( i ) . From the lemma, it follows that if {zw} is a gener-
alized sequence with \zn\ ^ 1, then there exist bounded sequences {#Λ}
and {yn} with a?», yn^K and such that for each n, zn = xn — yn. Bounded
generalized sequences of elements in K have weakly convergent subse-
quences, hence so has the sequence {zn}. Thus the unit sphere | z | ^ 1
in X is weakly compact and so, X is reflexive and (i) is proved.

[Added November 1961. A more direct proof of (i) follows from an
observation of H. H. Corson, ("The weak topology of a Banach space/'
Transactions of the American Mathematical Society, 101 (1961), 1-15),
namely a Banach space X is weakly σ-compact (i.e., a denumerable
union of weakly compact sets) if and only if it is reflexive. It is not
hard to see that this equivalence remains valid if "X is weakly σ-compact"
is replaced by "X is generated by a weakly compact subset E," for if
the latter is the case then

X — \J {x: x = axxx + anxn, \ a{ | ^ n, x{ e E, i = 1, , n}

is weakly σ-compact. The assertion (i) is now immediate since a bounded
cross-section of a generating cone in a Banach space generates the space.]

If X is reflexive, then a necessary and sufficient condition that a
closed cone Kin Xhave a weakly compact cross-section is that K* have
an interior element. In fact these two properties for cones in a reflexive
Banach space are dual. More generally, one has

(ii) // X is any Banach space with a cone K, then K [(resp. K*)
has an interior element if and only if if* has a weak* compact cross-
section (resp. K has a bounded cross-section).

For a proof of the two nonparenthetical assertions, see [2], The
other assertions, those involving the parenthesis, are contained in the first
two but are quite easily proved independently.

4. Special form of Theorem 1. An analogue of the theorem of
Perron-Frobenius is the following:

Let X, K, H be as in Theorem 1, A a bounded nonnegative"Όperator.
Then A has an eigenvalue λ ^ 0 and a corresponding eigenvector x0 ^ 0.

This is contained in a stronger theorem of Schaefer [4], pp. 1013-
1014. A very simple proof results from an application of Tychonoff s
fixed point theorem to the map PA restricted to H, where Px = xlf(x)
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as in § 2 above; cf. [3] for a corresponding proof in the finite-dimensional
case.

This analogue of the Perron-Frobenius theorem combined with some
arguments of [3] give the following:

Let X, K, H be an in Theorem 1. Let Γ = {A} be a collection of
commutative, bounded, nonnegative operators. Then there is an element
x0 ψ o of K which is a common eigenvector of every AeΓ belonging
to an eigenvalue λ = XΛ 7z 0.

It can be supposed that 0 Φ xe K, AeΓ imply Ax Φ 0, for other-
wise Γ can be replaced by the collection {A + I}. The arguments in
the last half of the proof of Theorem 3.3, [3], can then be used to obtain
the desired result. This, in turn, implies a special form of Theorem 1:

Let X, K, H, A(t) be as in Theorem 1. In addition, let A(t)A(s) =
A(s)A(t) for 0 S s, t < oo. Then (1) has a solution of the form x =

X(s)ds }XQ, where X(t) ^ 0 is continuous for t ^ 0 and 0 Φ x0 ^ 0.
0 /

5, Remark on Theorem 2, The hypothesis of Theorem 2 requires
that the operator / — A(m) have a bounded, nonnegative inverse for
each positive ra. Obviously, in order that this condition be satisfied, it
suffices for each of the operators A(m) to have a spectral radius r < 1.
It is a consequence of a theorem of Schaefer, [4], pp. 1013-1014, that
when K is a generating cone, this sufficient condition is also necessary.
Schaefer's theorem implies, in fact, that when K has a weakly compact
cross-section and generates X, then the spectral radius of any nonnegative
operator A belongs to the point spectrum of A. (Schaefer's assumption
that the cone be "normal" becomes redundant here since the norm
generating the topology in X can be altered so as to satisfy || x + y \\ =
|| x || + || y || for x,yeK; see Schaefer's proof or lemma in § 3 above.)

6. The dual of Theorem l In this section the differential equation

(5) / ' = - A * ( t ) /

will be considered, where A{t) is as in Theorem 1 and for each fixed t,
0 S t < oo, A*(t) is the adjoint of A(t). A solution of (5) is understood
in this case to mean a function f(t) e l * for 0 ^ t < oo, continuous with
respect to the weak* topology, and possessing a weak* derivative satis-
fying (5). Theorem 1 has the following dual.

THEOREM 3. Let X be a Banach space, and let K be a closed cone
in X possessing an interior point. Let A — A(t) be as in Theorem 1.
Then the differential equation (5) has at least one solution f = f(t) ^ 0
satisfying f(t) G Γ for 0 ^ ί < o o .
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Proof. Consider the differential equation

( 6 ) x9 = A(t)x

adjoint to (5). For any point x0 e X there is a uniquely determined,,
strongly differentiable solution of (6) which takes the value x0 when
t = 0. Let x = α?(ί, tf0) denote this function. It follows from the Gronwall
inequality (3) that solutions of (6) depend continuously on initial con-
ditions. Hence for each fixed t, 0 ^ t < oo 9 the mapping x0 —• #(£, 050) is
a continuous linear mapping of X onto itself. Let Z7= U(t) denote
this bounded linear operator. Since solutions of (6) are continuous in
the norm topology it follows that U(t) is strongly continuous as a function
of t. Clearly for each fixed ί, U~\t) exists, and by the Gronwall ine-
quality (3), it too is a bounded linear operator for each fixed t ^ 0.
Further U~\t) is a strongly continuous function of t. Since U(t) is-
strongly differentiable, U~\t) is as well and [U'\t)]9 = -TJ-\t)A(t).

Let V(t), for each ί, 0 ^ t < oo, be the operator on X* which is
the adjoint of U~\t). Since I7~1(ί) is continuous and differentiable in
the strong operator topology, the function f(t) = V(t)f0 is continuous
and differentiable with respect to the weak* topology on X* for each
/ o e Γ . The function /(«) = V(t)f0 is a solution of (5).

Since K has an interior point, ϋΓ* has a weak* compact cross-section
if*. Let E* C i ί* be defined as follows:

E: = {fo:foeH*, V(t)foeK* ίor O ^ t ^ n } .

Since V(t) is, for each t, the adjoint of a bounded linear operator on
X, it follows that F(ί) is for each t a continuous operator in the weak*
topology on X*, and hence that each E* is weak* closed. The E*
clearly form a nonincreasing S3quence of sets. It remains to show that
each E* is nonempty. A successive approximation argument similar to
that used in the proof of Theorem 1 shows that if x(t) is any solution
of (6) and if x(s) e K, for some s ^ 0, then x(t) e K for s g t < oo. In
other words U(t) Z7-1(s) is a nonnegative operator for t Ξ> s. By the
definition of V(t), V(t)V~\n) = [tf-WItffa)]* = {ϋ(n)U'\t)γ. It
follows that when 0 ^ t ^ n, V(t)V~\n) maps JP* into K*. Let βf e iΓ
and let fo=V-1(n)g, then y(ί)/o = V(ί)y-^JfireK* for 0 g ^ ^ .
Thus, the sets E* are nonempty for n — 1, 2, . Since H* is weak*
compact, there is an feH* with V(t)feK* for 0 ^ ί < oo.
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