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Introduction, Diaz [2] has established some global existence theorems
concerning the partial differential equation uxy = f(x, y, u, ux, uυ) by an
analogue of the Euler-Cauchy polygon method, requiring that n(x, y0) =
σ(x) and u(x0, y) = τ(y) where σ and τ are of class C on the ranges
considered and σ(x0) = τ(y0), f(x, y, z, p, q) is a real valued function defined
for all (x,y,z,p,q) for which x0 ^ x ^ x0 + a; y0 ^ y ^ y0 + 6, — oo < z,p,q < oo,
is continuous and bounded over that set, and satisfies a Lipschitz condi"
tion in the last two variables.

A local existence theorem is given here in which the boundary func-
tions have a Lipschitz condition imposed rather than being of class C,
and f(x,y,z,p,q) = g(x,y,z)p + h(x,y,z)q + j(x,y,z) is required to be
continuous over a more restricted set than that used by Diaz resulting
in the convergence of the approximating functions over a subset of the
original set rather than over the entire set defined by x0 ^ x ^ x0 + a;
y0 <L y ^ yQ + b. The fact that the boundary functions need not have
first derivatives defined over their entire domains of definition results
in the limit function not necessarily having first partial derivatives, nor
a cross derivative defined over its entire domain of definition. The notion
of an ordinary derivative [7] for an interval function is used to replace
the cross derivative.

This is a correction of a stronger result announced earlier by the
author (Abs. 550-15, Notices, AMS No. 1958).

Most of the material in § 1 can be pieced together from the literature
[3], [4], [5], [6]. The definitions and theorems needed will be stated here
for convenience and in some cases proofs will be outlined as details in
the method of proof are needed later in the paper and in some cases
notation to be used later is established.

1. Preliminary definitions and theorems. By line interval will be
meant a closed interval a ^ x ^ b. By plane interval will be meant a
rectangular disk a ^ x ^ 6 ; c ^ y ^ d. These will be denoted by [α, b]
and [α, b c, d]. Suppose g{x,y) is a function defined over [A, B C, D].
We define an interval function G from g as follows. Suppose / =
[α,b c,d] c [A,B C,D], then G(I) = g\h

a\* = g(a,c) - gφ,c) -g(a,d) + gφ,d)
(with a similar notation G(I)\x=.a = g(a, c) — g(a, d) etc., for a function of
a single variable). G is an additive function. In what follows it is
assumed that all points and intervals considered are in [A, B C, D], It is
easily seen that adding to g functions of the single variable x or y does
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not change G. It will be convenient to do this at times.
We shall say g is nondecreasing if G(I) Ξ> 0 for all I and of bounded

variation if G is of bounded variation. It is not difficult to show that
if g is of bounded variation then it is the difference of two nondecreasing*
functions and conversely. We will say that g is anchored if on some pair
of lines x = a, y = b, g = 0. If # is nondecreasing and anchored then
for each point P{x,y) the eight limits g(x + ,y), g{x + ,y + ), g(% + ,y—)>
g(x — ,y), g(x — ,y+), g(x — ,y—), g(%,y—)> and g(x,y+) exist and the
set of all points for which any of these limits differ from g(x9 y) can be
covered by a countable collection of line intervals each of which is parallel
to one of the axes. If g is of bounded variation and for x = a and y — b,
g(a, y) and g(x, b) are of bounded variation then g(a, y) and g(x, β) are
of bounded variation for each a and each β. G is said to satisfy a
Lipschitz condition if there exists a number M such that \G{I)jΔI\ <; M
for all I. g is absolutely continuous means G is absolutely continuous.
A Lipschitz condition implies absolute continuity which implies bounded
variation.

From McShane: A sequence of measurable sets Eu E2, converges
regularly to a point x0 if there exists a set {Qn} of cubes (squares in our
case) with centers at x0 and possessing the following properties. For each
n, the cube Qn contains the set En. As n tends to co, the side of Qn

tends to zero. There is a positive number a such that mEn ^ amQn for
each n. a is called the modulus of regularity. We will be concerned
of course with the case in which Eu E2, are plane intervals. A Vitali
covering theorem follows.

We now define the ordinary derivative of an interval function which
we can apply to G and associate with gxy in a certain way. Let φ(E)
be a function of sets which is defined for all closed intervals contained
in an interval Io. Let x0 be a point of Jo. The ordinary upper derivate
Dφ(x0) and the ordinary lower derivate Dφ(x0) of φ at x0 are respective-
ly the greatest and the least of all numbers I for which there exists a
sequence {In} of closed subintervals of Jo containing x0, converging regular-
ly to x0 and having limit [φ(In)IJIn] = I. If Dφ(x0) = Dφ(x0) then this
number is denoted Dφ(x0) and is called the ordinary derivative of φ at
x0. By the ordinary derivative of g at the point (x0, y0) will be meant
DG(x0, y0) and will be denoted Dg(x0, y0). If g possesses a cross deriva-
tive gxy in some open neighborhood of (x0, y0) which is continuous at (x0, yQ)
then Dg(xQ, y0) = gxy(x0, y0).

THEOREM 1.1. If g is of bounded variation over the plane interval
I the Dg exists almost everywhere on I.

THEOREM 1.2. If g satisfies a Lipschitz condition with constant M
over I = [α, b c, d] then Dg is Lebesque integrable over I and if g is
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S xry

\ Dg.
ajc

An outline of a proof will be given since the method of proof here
motivates the procedure of §2.

It is sufficient to show that there exists a sequence {hn} of step
functions which converge to Dg a.e. on I and are such that \\ \ hn>

forms an equi-absolutely continuous collection over I, [7, p. 171] since
Dg ^ M on I. For each positive integer n subdivide each of [a, b] and
[c, d] into n subintervals of equal length. We now have n2 congruent
subintervals {/$ for each n which are similar for all n. Define

h*(xf y) = G(I$)I4I5 if (x, y) is interior to 1$

= 0 elsewhere.

S xΓy

\ hn satisfy a uniform Lipschitz constant
ajc

(namely M) and hence are equi-absolutely continuous and that hn -> Dg
a.e. on I. In order to get the formula of the theorem we adjoin boundary
terms to hn in the following way.

fn(x,y) = flrte-i, Vi-i) + [Gm)\x^.JJy](y - y^)

+ {G(I^\v=VίJΔx\(x - Xi-J + hn(x, y)(x - x^(y - y^)

fn{x, y) = P.gix, c) + P2g(a, y) - g(a, c) + ^h*

where P1g(x9 c) = {[g{xit c) - g(x^19 c)]IJx)(x - x^) + g(xt-l9 c)

Xί-i ^ X ^ Xt

y) = ([g(a, yd) - g(a, y^/Ay^y - y^) + g(a, y^)

fn converges uniformly to g and Pτg{x, c) and P2g(a, y) converge uniform-
ly to g{x,c) and g(a,y).

In order to treat the problem at hand some consideration must be
given to first partial derivatives. The following theorem will prove
useful.

THEOREM 1.3. Suppose I — [α, δ c, d] is an interval, g satisfies a
Lipschitz condition over I, g(a, y) and g(x, c) are of bounded variation
in y and x respectively. gx and gy exist a.e. on I.

Inasmuch as the author knows of no reference to this theorem an
outline of a proof is given. Taking into account the remarks in the first
paragraph of this section, one need consider only an anchored nondecreas-
ing function over I which satisfies a Lipschitz condition. There is no
loss in supposing / in the first quadrant. For each rational r in [c,d]gx(x,r)
exists a.e. on [α, b]. Denote the union of the exceptional sets on [a, b]
for these rationale by S. S has length zero. It follows now that for
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each t in [α, b]gx(t, y) is nondecreasing over the set of [c, d] for which it
is defined. Suppose now t is in [α, b] — S, then gx(t, y) exists for all
rational y. Suppose y is not rational, then from the quasi-continuity of
9x(t, y) for each t and the Lipschitz condition on g it follows that gx(t, y)
exists. Hence, there are no further exceptional points and the set of
all exceptional points is of plane measure zero.

2. An existence theorem. Suppose a and b are functions defined
over 0 ^ x ^ X, 0 ^ y ^ Y respectively, not both the zero function,
α(0) = ί>(0) = c and each of a and b satisfy a Lipschitz condition with
constant K > 0. Denote by k the max absolute value of a and b on
their ranges. Suppose there exists a number oo > λ > 1 such that
g{x, y, z), h(x, y> z) and j(x, y, z) are continuous over the interval
[0, X O, Y; — Xk, Xk]. For convenience write

f(x, y, z, p, q) = g(x, y, z)p + h(x, y, z)q + j(x, y, z) .

Denote by R the interval

[0, X; 0, Y; -λfc, Xk; -{K + L), (K + L); -(K + L), (ίΓ + L)]

for some 0 < L < oo, and by Λf the max|/ | over R. Consider the planes
Px: (K + L)x + k = z, P2:(K + L)x + k= ~z, P3:(K+ L)y + k =
z, P4:(K+ L)y + k= —z and their intersections x = (X — ΐ)kl(K + L);
y = (λ — l)kj{K + L) with the planes z = Xk and 2 = — λfc over the first
quadrant. Now choose A so that A ^ min{X, (λ — l)kj(K + L)} and
AM ^ L; and £ so that B ^ min{F, (λ - l)kl(K + L)} and BM ^ L.

THEOREM 2.1. There exists a function u defined on [0, A 0, B]
which is continuous and satisfies a Lipschitz condition on [0, A 0, B]
and such that u(0, y) = b(y); u(x, 0) = a(x) and

Du(x, y) = #(#, 2/, %)wβ + h(x, y, u)uy + j(x, y, u) a.e. on [0, A 0, S] .

Proof. The proof is by construction. A sequence of functions will
be constructed, much like the procedure in Theorem 1.2, the sequence
being uniformly bounded, equi-continuous and satisfying a uniform
Lipschitz condition. Ascoli's theorem asserts the existence of a uniform-
ly convergent subsequence and then it will be shown that the limit of
such a subsequence is indeed a solution.

For each positive integer n consider the sequences {jAjn}n

3=Q = {i}y=0

and {kB/n}Uo = {&}£=<> which subdivide [0, A 0, B] into n2 congruent sub-
intervals {/£*} for each n which are similar for all n. Now for each n
a function un is defined by recurrence relations in the following way.
First un is defined along the axes in such a way that un(x, 0) is a poly-
gonal graph of chords joining consecutive points (j,a(j)) of the graph
of a and a similar definition holds for un(0, y) with respect to b. un is
next defined over l£ as a ruled surface
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u»(xf y) = c + m1(x - 0) + m2(y - 0) + /(0, 0, c, ml9 m2)(x - 0)(y - 0)

where m1 is the slope of the chord joining (0, c) and (ϊ, α(ϊ)) and similarly
for m2. The procedure continues as follows. Suppose for a given interval

I*ku
n has been defined along the " a f t " sides, α? = j — 1, y = h — 1, then

over JJ

m1(x - j - 1) + ma(i/ - k -

j - 1, fc - 1), ml9 m2)(x - j - l)(y - k - 1)

where m1 and m2 are the slopes (already determined from previous com-
putations) along the "aft" x and y sides of Ifk respectively.

For each n, the graph of un consists of n2 ruled surfaces, each of
which is ruled in both the x and y directions, the adjacent ruled surfaces
having common line intervals on their boundaries. These surfaces can-
not have extremum except on their boundary sets, hence if it can be
shown that the boundary sets are uniformly bounded it will follow that
{un} is uniformly bounded.

Denote by D the domain bounded by the planes Pl9 P2, P3, P4, y = 0,
x — 0, x = A and y = B. Suppose n is a positive integer and consider

-L ±

the boundary pieces of un on In, for x = 0,y = 0, x = l and y — 1 re-
spectively we have for the slopes

|m 2 | - I [6(1) - 6 ( 0 ) ] / l | <K<K+ L

— α(0)]/ϊ| < K< K + L

, b,c,ml9m2)x\ < K + Λf ϊ <K

, 0,c, ml9 m2)y\ < K + ikf ί < i r

hence, since the pieces start in D, they must remain in D. It is easily
seen that the boundary pieces along the axes are in D since all have
slopes bounded by K, therefore it is sufficient new to investigate only
the "fore" boundaries of each interval. Consider the interval Ifk and
denote by m^j.k) and m2{j,k) the slopes of the boundaries along y=k
and x — j . Suppose that the relationship |mx(p9 q)\ < K + Mq holds

for p = 0, 1, ..., j ; q = 0,1, ..., k - 1 and |raa(p, g)| < if + Mp holds for
p = 0,1, ...,i — 1; g = 0,1, ..., k. We have just shown that these do
for p — q = 1 and along the axes it was observed that K would suffice
for a bound.

+ f(J - 1, k - 1, ^ ( i - 1, k - 1), m,(i, k - 1), ma(i - 1, k)) (y-k-1)

and
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m2(i, k) = m2(j - 1 , k)

+ f(j - 1 , k - 1 , u*(j - 1 , k - 1 ) , mJΰ, k-1) m2(j -1, fc))(a - j - 1)

hence

and

thus the induction is complete, the slopes of the boundary pieces are
bounded by K + L and hence since un starts in D it must remain there
for each n and therefore {un} is uniformly bounded.

It follows easily from this argument that un cannot have a slope in
either the x or y directions as great as K + L, and this gives the equi-
continuous property at once. Suppose n is an integer, e > 0 and d =
e/2(K + L), (α,δ) and (p, g) are in [0, A 0, B]; \a-p\<d and | 6 - g | <(Z.
Then

Iu*(a, b) -un(p, q)\S\ [un(a, b) - u*(a, q)](b - q)l(b - q)\

+ I [un(a, q) - un(p, q)(a - p)(a - p) | < 2(K + L)d = e ,

which establishes the property.
Let V[Ifk, u

n] denote the total variation of un over Ifk. It is easily
seen that

V[I?k, u*] - \f(j - 1, k - 1, u*(j - 1, k - 1) ,

m1(j,k--l),m2(j-l,k))\-ϊ-Ϊ^M-ϊ-l so that F[[0, A O, ΰ], un] ̂
for all n, hence {̂ w} is uniformly of bounded variation. A closer look at
the preceding statement shows that for any subinterval / = [α, b c, d] of
[0,A;0,B]V[[a,b;c,d],u*]^M(b-a)(c-d) and hence \Un{I)jAI\^M
and {un} satisfies a uniform Lipschitz condition with constant M.

Now making use of Ascoli's theorem [1] there is an infinite sub-
sequence {uni} of {un} which converges uniformly to a limit function on
[0, A O, B]. Denote one such subsequence by {um} and its limit by u.
Since each un is continuous so is u. Furthermore u satisfies a Lipschitz
condition with constant M, u(x, 0) = a(x) and ^(0, y) = b(y). From Theorem
1.2 we have

S xΓy

\ Du .
0 JO

We have yet to show that Du = g(x, y, u)ux + h(x, y, u)uy + j(x, y, u)
a.e. From Theorem 1.3 we know that ux and uy exist a.e. on [0, A O, B].
Now recall that in the sequence {un} and therefore in {um} it was observed
that no slope in the x or y directions could exceed K + L, therefore
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K + L, \uy\^K+L, \u™\^K + L and \v%\^K + L where v£ and
u™ are the slopes in the usual sense at points where the derivatives
exist and are the average of the left and right limits elsewhere.

We first show that ux and uy are Lebesque integrable with respect
to x and y respectively. It will suffice to show one, say ux. Recall the
technique of Theorem 1.3. Here the function was first anchored and
then decomposed into nondecreasing functions, u can be anchored on
the axes by considering X(x, y) — u(x, y) — a(x) — b(y) + c. The only effect
of this on ux is the removal of a'(x) which is Lebesque integrable since
a is absolutely continuous. Recall that u satisfies a Lipschitz condition,
hence λ satisfies the same condition (i.e., same Lipschitz constant) and
is anchored, hence λ is absolutely continuous in x for each y and y for

S x

ux(t, y)dt for
0

each y and similarly for uy. Since g and h are continuous, gux and huυ

are integrable with respect to x and y respectively. It is easily seen that
ux is the limit a.e. of a sequence of measurable functions on [0,A;0,£>]
and hence is measurable and therefore since it is bounded it is integrable
and gux is also integrable and by Fubini's theorem

j ! 9 )\o 9 U χ = Jo U o ^ * ' Z' u)Uχ(tf z^dt\dz

Similarly for uy and hence huy

1 hUy — \\\ h(t, z, u)uy(t, z)dz \dt .

oJo Jo LJo J

Define, for fixed (x,y), a functional T(v) such t h a t

T(v) = f Q V ί , «, Φ*(t, z)dtjdz + Γ[Γλ(*» Z, Φv(tf z)dzYt

S yCx

\ j(t, z, u)dtdz
o Jo

and, again as in Theorem 1.2 write the functions {um} in integral form,

um(x, y) = P?a{x) + P2

mb(y) - c + Π 7 ( Γ ^ 1 , fc^ϊ, um(j^l, F = Ί ) ,
Jo Jo

raiO', k — 1), m2(j — 1, k))dtdz

where PΓa(x) and P™b(y) are the mth polygonal approximations to a and
b respectively. Recalling that / = gnx + huy + j we have,

u"(x, y) = P?a(x) + P2

mb(y) - c

ij, k - l)dtdz + \X\Vh(f^Λ, F = Ί , um(f^l, Jc^Ί))m2(j - 1 , k)dtdz
J J
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Now define

vm(x, y) = a(x) + b(y) - c + \\ g(t, z, u(t, z))u?(t, z)
Jo Jo

+ h(t, z, u(t, z))u™(t, z) + j(t, z, u{t, z))dzdt .

Now consider

\um-vm\^\P?a-a\ + \P?b-b\ + VV\g\-\mMtk -1)
Jo Jo

- < ( £ , z ) \ d t d z \ X \ y ^ ^ j ^ l

- flf(ί, z, u(t, z) I \v£(t, z) \dtdz + 1 \ I h | | m2(i - 1, fc) - u?(t, z) \dt dz
Jo Jo

+ ίT
Jo Jo

+ (T
Jo Jo

Taking into account that PΓa->a, P™b-+b, um-*u uniformly and that
g, h, j and u are uniformly continuous and v% and u™ are uniformly
bounded we can restrict our attention to the terms involving

I m^j, k - 1) - v£(t, z) I and | m2(j - 1, k) - u™(t, z) \ .

Recalling the definition of um(t, z) we have at once that each of these
i

is uniformly less than ikΓ 1 and M 1 respectively and hence converge uni-
formly to zero. Hence we have that \um—vm\-+0 and hence vm(x,y)->u(x,y),
and hence that T(um)-+[*[V Du, for each (x,y) in [0, A O, B] .

Jo Jo

We shall now show that T(um) -> T(u) and hence obtain g(x, y, u)ux +
h(x, y , u)uy + j(x, y', u) = Du a.e. Suppose e > 0. Since # and fe are con-
tinuous over [0, A O, J5] they can be approximated by funcions gv and hp

which are C" (and hence absolutely continuous in x and in /̂) and are
zero on the boundary of [0, A O, B] and such that

\Ύ\β ~ 9v\2 < ell2(K + LfAB and \*\v\h-h9\*< e/12(K + LfAB.
Jo Jo Jo Jo

D e n o t e b y E a c o m m o n b o u n d o n \gp\ a n d \hp\. N o w c o n s i d e r

I T(um) - T(u)\S I T(um - u ) - Tp(um - u ) \ + \ Tp(um -u)-\\j\.

where Tp is T with gr and fe replaced by gp and fe,, respectively.

\T(um)~
JoLJO

\ IVhp(u? — uy)dz\dt
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the terms in j(x, y, u) adding to zero. In the first two terms on the right,
apply the Schwartz inequality, recall that \uϊ — ux\< 2(K + L) and
IU7 — uv I < 2(iΓ + L) and obtain β/3 in each case for an upper bound.
In each of the second two terms, (since gp and hp are absolutely con-
tinuous in x and y respectively) an integration by parts is carried out
and we have

S yCx
\ \um — u\

o j o

for m > N and obtain | T(um) — T{u)\ < e for m>N. This establishes the
theorem.

REMARKS. The argument here depends heavily on the fact that,
except for the term in j(x, y, u), T is a linear functional. For example
if f{x, y, z, v, q) = g(x, y, z)p2, the argument fails. It also depends upon
the fact that un

x, ux, u
n

y and uy all have a common bound and that the
convergence of um to u is uniform. This indicates that there is little,
if any, hope of using this technique to obtain global solutions for the
quasi-linear equation. It is of interest to note, however, that the method
can be extended to equations of higher order if the linearity conditions
in / are maintained and no derivatives of order greater than one occur
in/.
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