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The principal results* A fundamental theorem of Ore [10] states
that if an element in a finite dimensional modular lattice is represented
in two ways as a direct join of indecomposable elements, then the factors
of the two decompositions are projective in pairs. The Krull-Schmidt
theorem is an immediate consequence of this result. Subsequently many
authors have considered direct decompositions in modular lattices. In
particular, Kurosh [8, 9] and Baer [1, 2] obtained conditions which imply
the existence of projective refinements of two direct decompositions of
an element in an upper continuous modular lattice. When applied to
the decompositions of a group G, the conditions of Kurosh and Baer
are reflected in certain chain conditions on the center of G. In a somewhat
different direction, Zassenhaus [11] has shown that the representation
of an operator group as a direct product of arbitrarily many indecomposable
groups each with a principal series is unique up to isomorphism.

This paper studies the direct decompositions of an element in an
upper continuous modular lattice under the assumption that the element
has at least one decomposition with finite dimensional factors. It is
then shown that every other decomposition of the element refines to
one with finite dimensional factors, and that a strong exchange isomorphism
exists between two decompositions with indecomposable factors. This
latter result sharpens the uniqueness result of Zassenhaus.

Before explicitly stating the principal results, let us note the following
definitions. A lattice L is upper continuous if L is complete and

a Γ\ U Xk = U^Π^A;
kβK k€K

for every element aeL and every chain of elements xk (ke K) in L.
If a and a{ (i e I) are elements of a complete lattice L with a null

•element 0, then a is said to be a direct join of the elements a% (i e I),
in symbols

a = \Jaif
iei

if a — \Jiei aif and for each index he I we have ah Π \J^h

 ai = 0. The
direct join of finitely many elements al9 , αΛ is also denoted by
ax U U<ι». An element b is called a direct factor of a if a = b U x
for some element x. An element a is indecomposable if a Φ 0 and a —
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x U y implies x = 0 or y = 0. Finally, an element a is said to be finite
dimensional if every chain of elements less than a is finite.

THEOREM 1. If a is an element of an upper continuous modular
lattice and

a = x [J y =[Jti
iei

where x is finite dimensional and indecomposable, then there exists an
index he I such that th = r U s and

THEOREM 2. If a is an element of an upper continuous modular
lattice and a is a direct join of finite dimensional elements, then every
direct factor of a is also a direct join of finite dimensional elements.

THEOREM 3. If a is an element of an upper continuous modular
lattice and

a = U ai = U &i
iei j€J

where each a{ (i e I) and each bά (j e J) is finite dimensional and
indecomposable, then there is a one-to-one mapping φ of I onto J such
that

a = a, U 0 bj

for each index iei.
These theorems may be applied directly to the lattice of admissible

normal subgroups of an operator group to yield the following extension
of the result of Zassenhaus mentioned above. If an operator group G
is a direct product G = ILe/ -4* where each of the factors A{ (i e I) has
a principal series, then any two direct decompositions of G have
centrally isomorphic refinements.

Even with the strong continuity assumption it seems impossible to
relax the assumption of finite dimensionality particularly in Theorems 1
and 3. The free abelian group of rank 2 shows that in general Theorems
1 and 3 fail for lattices satisfying only the ascending chain condition.
The example in the following paragraph shows that continuity and the
descending chain condition also are not sufficient for these results. It

1 Cf. Jόnsson and Tarski [6].
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is curious that Theorems 1 and 3 hold for groups whose normal subgroup
lattices satisfy only the descending chain condition1 and yet fail for
general continuous modular lattices satisfying the descending chain
condition.

The example is as follows. Let p be an odd prime, and let G be
an additive abelian group isomorphic with

Z(p) x Z(p) x Z(p~) x Z{p-) x Z(p~) x Z(p~) ,

where Z(p) denotes the cyclic group of order p and Zip00) denotes the
generalized cyclic p-group. Let Q, R, S, T, U, and V be subgroups of
G with Q^R^ Z(p), S= T= U= V= Z{p~), and

G = Q ύ jβ ύ S U T ύ Z7LJ V.

Let q and r generate Q and R respectively, and let S, T, Uy and V be
generated respectively by sets {sn}, {ίn}, {un}9 and {vn}, where

psx = 0, psn+1 = sn(n = 1, 2, .) ,

with analogous relations holding for the tn's, un's and vn'&. Set A =
Q U S U T and B = R U U U F. Let C be the subgroup generated by
the set {q + r, s2, s2 + ^ , s3 + u29 , t;̂  v2 + tlf v3 + ί2, •}, and let D
be the subgroup generated by {q + 2r, %, î 2 + su uz + s2, , ίx, ίa +
^i, ^ + 2̂, •}. It then follows that

and G ^ A { j B = A U C = A l ) D = B Ό C = B U D = C Ό D . F u r t h e r -
more, AΓ)C,An D,B ΓiC,B n DΦO. Now let L be the set of all
subgroups I g S U ΓU U U F, together with all subgroups of the form
i U l , S U l , C U l , a n d f l U l with X g S U T U CΓ U V, and the
group G. It is easily checked that under set inclusion the elements of
L form a complete sublattice of the lattice of all subgroups of G. Hence
L is an upper continuous modular lattice satisfying the descending chain
condition. Moreover, the subgroups A, By C, and D are indecomposable
in L, and each is protective only with itself. Thus Theorems 1 and 3
fail for the direct joins G - i U δ = C U ΰ .

Proofs of the theorems* The usual notation and terminology is
used throughout. Lattice join, meet, inclusion, and proper inclusion are
denoted respectively by U, Π, S, and <. If α and 6 are elements of
a lattice and b g α, then the quotient sublattice {x | b ^ x ^ α} is denoted
by α/δ. The symbol s denotes the isomorphism of two lattices. The
null element of a lattice is always denoted by 0.

We begin with the following lemmas. The first is generally known.



460 PETER CRAWLEY

LEMMA 1. If L is an upper continuous lattice, S is a subset of
L, and a is any element of L, then

a n u s - u a n U ^ ,

where j ^ ~ is the collection of all finite subsets of S.

The lemma is trivial when S is finite. Suppose that S is an infinite
subset of L, and suppose that the lemma is true for every subset S'
of cardinality less than the cardinality of S. Then there is a chain Si
(ie I) of subsets of S such that each Si has cardinality less than that
of S and such that S is the set-sum of the subsets Si(iel). If ^ t

is the collection of all finite subsets of Si9 applying upper continuity
and the inductive assumption we therefore have

a n U S = a Π [U U SJ = U [a Π U St]
iei ίei

= U U [α n U * Ί = U « n U f ,
iei Fe&i Fe$ί

and hence the lemma follows by induction.
An element c in a complete lattice L is said to be compact if for

every subset S C L with c g \J S there is a finite subset S' S S such
that c ίg U S'. A lattice L is compactly generated if L is complete and
every element of L is a join of compact elements.2 The next lemma is
an immediate consequnce of the definition of compactness.

LEMMA 2. If {cly •••, cn} is a finite set of compact elements in a
complete lattice, then cx U U cn is also compact.

LEMMA 3. Every finite dimensional element in an upper continuous
lattice is compact.

We shall first show that if q is completely join irreducible, then q
is compact. Suppose SQL and q ^[J S. Let p = U {x | x < q). Then
p < q since q is completely join irreducible. Let j ^ denote the collection
of all finite subsets of S. If (J F ^ Q for every Fe^", then
g Π U ^ < ^ a n d hence q f] \J F ^ p for every F e J^". And it follows
by Lemma 1 that

q = q (Ί U S = U Q Π U ^ ^ P ,

a contradiction. Hence q is compact.
Now suppose that a is a finite dimensional element different from

2 For a discussion of compactly generated lattices see [4].



DIRECT DECOMPOSITIONS WITH FINITE DIMENSIONAL FACTORS 461

0 and suppose that every element properly contained in a is compact.
If a is join irreducible, then a is compact from above. If a is not join
irreducible, then there are two elements b,c < a such that a = b U c.
Since b and c are compact, a is therefore compact, and the lemma follows
by induction.

LEMMA 4. If an element a of an upper continuous modular lattice
is a join of finite dimensional elements, then the quotient sublattice α/0
is compactly generated, and each compact element is finite dimensional.

For suppose a = \J C where each c e C is finite dimensional. If
x 5Ξ α, then with j ^ ~ denoting the set of all finite subsets of C we have

χ = χ n u c - u x n U ^ .

Since the lattice is modular, x Π U F is finite dimensional and hence
compact for each Fej^. The lemma now follows.

LEMMA 5. If c, au α2, , an are elements of a compactly generated
lattice, c is compact, and c ^ ax U U ^ , then for each m — 1, , n
there is a compact element dm S am such that c ^ dτ (J \J dn.

Since the lattice is compactly generated, for each m = 1, , n there
is a set Cm of compact elements such that am = U Cm. Then c ^
U CΊ U U U Cn9 and since c is compact there are finite subsets
C'm S Cm such that c ^ U Cί U U (J C'n. By Lemma 2, U C is a
compact element for each m — 1, , n.

LEMMA 6. / / a, x, y are elements of a modular lattice, x (J y =

# U #, &wώ αj gΞ α ^ OJ U y, then a = x \J (a Π y).

For a? Π (a Π 2/) = x Π 1/ = 0, and a? U (α Π y) = α Π (a? U y) = α.

Proof of Theorem 1. Suppose α, x, y, ti (i e I) are elements
of an upper continuous modular lattice, x is finite dimensional and
indecomposable, and

Since x is compact by Lemma 2, there is a finite subset of indices

{ii, , i j S / such that a; ^ th ύ ύ t»n. For each m = 1, 2, , n

let us set

ί . = ί 4 l U ••• U ί V l U ί i B + 1 U . . ϋtin,
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and define xm = (x U tm) Π tim. Then it follows that3

x <: δ = xx U U ^ .

Now x m n ς = (ί«U t J Π ί<B1 n tm = t ί f Λ Π «„ = 0, and

^ U ί m = [(a? U O n tim] U t . = (t ί | Λ U L ) Π (a U ί J = a U ί . .

Thus #m/0 = £m/tfm n l - ^ U fm/ίTO = x U £W/Fm = x\x n £TO, and hence

each xm is finite dimensional, and its dimension does not exceed the

dimension of x. It follows that b = xλ U U xn is finite dimensional.

Since x ^ 6 ^ x U 2/, we infer from Lemma 6 that

6 = x U (6 n y) .

Therefore, since # is indecomposable and the dimension of each xm is at
most the dimension of x, it follows from Ore's theorem4 that (renumbering
the xm's if necessary)

b = x1ϋ (b Πy) = x i) x3i) ύ xn .

Then 2/ U #x = y U (& Π y) U αά = 2/ U b = a. From the fact that xx is
finite dimensional and xjx1 Π y = ^ U 2//l/ = y I) b/y ~ b/y Π b = xJO, it
follows that cι?i Π 2/ = 0. Thus

α = a?! U 2/

Moreover, since xx ^ ίίχ, it follows from Lemma 6 that

th = χι u (y n t ^ ) .

Let us set

T h e n s i n c e x 2 U U # w ^ ί ί a U U ^ ^ t * 1 w e h a v e

» u [(» n ί4l) ύ ί ? j - a? u x, u u χn u (y n «*,) u t*x

= 6 U (2/ Π ί4 l) U ί?x = ί4 l U i f , - a ,

and since a?/a? Π [{y Π ί4l) U tfj = a/(y n ί4l) U ifx = »i/0 ~ a?/0, it follows

that £ Π [(2/ Π «<,) U ί?J = 0. Hence

α = a ι L ) [ ( ϊ n ί4 l) U t?J - x U (2/ ΓΊ ^ ) U U ti ,

3 See for example [3, p. 95].
4 Actually we use the somewhat stronger version of Ore's theorem given in [5, pp. 128-

130].
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and the proof of Theorem 1 is complete.

Proof of Theorem 2. Throughout the proof of Theorem 2 we will
assume that a is an element of an upper continuous modular lattice and

a — U ai

where each ai (i e I) is finite dimensional and indecomposable.
Suppose a — r U s. We shall first show that r and s are direct

joins of elements which are joins of a countable number of compact
elements.5

Consider the collection & of all subsets P of the lattice which
satisfy the following conditions:

(1) U P - 0 ί = U α<
tep %eκ

for some subset K <ΞΞ I.

(2) t = (ί Π r) 0 (t Π s) for each t e P.
(3) ί Π r and ί ί l s are both joins of a countable number of compact

elements for each te P.

& is nonempty since the null set is in &m Moreover, since by Lemma
1 a set is independent if every finite subset is independent, it follows
that the set-sum of a chain of sets in & also belongs to ^ . By the
Maximal Principle & contains a maximal element Q.

Set

g - L J Q = L U ; , w = ύ ( t n r ) , v = ύ (* n β).
ίeM teQ teQ

Then it follows from condition (2) that q = u U v, and from condition

(1) that a = q\Jb = u[Jv{Jb where b = U^e/-^ °̂ . Furthermore, if

we set r ' = r Π (6 U v) and s' = s Π (δ U v), then it follows from Lemma

6 that r = r' \J u and s = s' U v. Hence

α = r' 0 s' ϋ 9 .

Suppose q Φ a. Then for some ioel we must have aiQS Q Since αί()

is compact and α/0 is compactly generated by Lemma 3, it follows by
Lemma 5 that compact elements c± ^ rr and d± ^ s' exist such that

aio ^ cx U dx U g .

«! U tZx is also compact, and hence there is a finite subset MλS I such

5 The proof of this part was suggested by the main theorem of Kaplansky [7].
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that

cΊ U dλ ^ U a{ .

Again \JieMlai is compact, and hence there are compact elements c2 ^ rr

and d2 ^ sf such that

U α* ^ 2̂ U d2 U g .

Continuing in this way we get a sequence {i0}, Mu M2, , Λfn>
of finite subsets of I and two sequences of compact elements
Ci, c2, , cn, ^ r ' and cix, d2, •", dn, g s ' such that

^ U a>i ̂  ^n+1 U d*+i U

for each n = 1,2,
Let

r* = U c. , β * = U i , .

Then r* g r ' and s* ^ s', and if M* is the set-sum of the sets M, {i0},
Mu M2, * , it is clear that

ί* = r* U s* = r* ύ s* ,

and

t* u ? = t* U g = U α<

Hence the set-sum of ζ) and {£*} is a member of & properly containing
Q. Since this is contrary to the maximality of Q, we must have q = α.
It follows that r = u and s = v, and thus r and s are direct joins of
elements which are joins of a countable number of compact elements.

We now prove the following: if & is a direct factor of a and c is
a compact element with c ^ 6, then there exists a finite dimensional
direct factor w of b such that c <£ w. Suppose α = 6 LJ e. Since c is
compact, there is a finite subset {iu , in} s / such that / =
α^ U U αt n Ξ> c*. Applying Theorem 1 to the element ai± and the
decompositions

a = aiΛ LJ LJ α< = 6 LJ β ,

it follows that b = b[ \J b[', e = e[ \J eϊ (where either bϊ - 0 or βί' = 0),
and

a = b[' LJ βί; LJ LJ α* = α, LJ &ί LJ ej .
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Now consider the direct decompositions

α = ah u U «< = ah U δί U βί .

If we apply Theorem 1 to the element ah and these decompositions, then

since ah Π U**ί2

 α ; = α^ > 0, it follows that δj = 63 U 65', ej = 62 0 e",
and

α - bϊ LJ < LJ U α< = α 4 i ύ α ί χ LJ 62 LJ β̂  .

Repeating this replacement for each aij& we conclude that for every
k = 1, , n there exist elements δj, δ" ^ δ and eί, e" ^ β such that

α = δ j 'ύ βί' LJ U ^ = α,. LJ U ah (j K Ό e'k .

In particular

α = / ύ δ; ύ e; .

Let w = b n (βi U / ) . Then w is finite dimensional, and w ^ δ Π / ^ c.
Moreover, Lemma 6 implies that δ = b'n U w, and the assertion follows.

In view of what has been proved above, to complete the proof of
Theorem 2 it suffices to show that if δ is a direct factor of a, and δ is
a join of a countable number of compact elements, then δ is a direct
join of finite dimensional elements. To this end, suppose

b=\Jcn
n<°°

where cn is compact for each n = 1, 2, . Then it follows from the
preceding paragraph that elements wλ and vλ exist such that wx is finite
dimensional, wx ^ cl9 and

δ = w1 U vx.

Since c2 is compact and α/0 is compactly generated, by Lemma 5 there
is a compact element dλ ^ v1 such that c2 <£ ̂  U ώi. Now vλ is a direct
factor of α, and again applying the result of the preceding paragraph
we obtain elements w2 and v2 such that w2 is finite dimensional, w2 ^ du

and Vj = ^ 2 U v2. Thus oa ^ wλ U w2

δ = wλ U ^ 2 U v2.

Continuing in this way we get a sequence of finite dimensional elements
Wi, w2, , ww, ^ δ such that

w1\J U ^ w = wx U LJ wn ^ cw
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for each n = 1, 2, . Thus the set {wn\n = 1, 2, •} is independent
since every finite subset is independent, and hence

b= \J wn.
n<.oo

This completes the proof of Theorem 2.

Proof of Theorem 3. Let a be an element of an upper continuous
modular lattice and suppose that

(1) a = 0 α, = U h
i€I j€J

where each a{ (i e I) and each bd (j e J) is finite dimensional and
indecomposable. We shall show the following: there exists a well-ordering
{<) on the index set I and a one-to-one mapping φ of I onto J such
that for each index he I we have

a = U Kd) U U a* = <*>h U LJ

Let & be the collection of all ordered triples (H, <, ψ), where
HξΞ: I, (<) is a well-ordering of H, ψ is a one-to-one mapping of ίΠnto
J, and such that the following conditions are satisfied:

(i) for each index heH we have

a= U btii) U LJ at U 0 α<

= αft 0 0

(ii) U α, ̂  U W
Partially order ^ by defining (ίί', •<', ψf) ^ (ίί, •<, ψ) if and only if
H = H' or there is an element h' e H' such that

(-<') on Jϊ coincides with (-<), and ψ'9 restricted to H coincides with ψ.
Note that & is nonempty since it contains the triple (φ, <°, ψ°) where
φ, -<0, and ψ° are respectively the empty set, relation, and mapping.

Suppose that {Hσ, <σ, ψσ) (σ e Σ) is a chain of elements in ^ . Let
H be the set-sum of the subsets Hσ(σeΣ). Define a well-ordering (<)
on H by i < ir if and only if i, i' e Hσ and i <σ if for some σ e Σ. And
define the mapping ψ on 3 into J by ψ(i) = α/rσ(ΐ) where ΐ e Hσ. Then
it is easily verified that (£Γ, -<, ψ) e ^ and that (S", -<, ̂ ) is an upper
bound of the chain (ίfσ, <σ,ψσ) (σeΣ). Thus by the Maximal Principle
^ contains a maximal element (Λf, •<,<£•).
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Now the set-sum of {bφ{i) \ i e M) and {a^iel — M) is independent
since by (i) every finite subset is independent. Therefore it follows from
(ii) that

(2) a = LJ «W> U LJ at .
iβM iei — M

Suppose that M Φ I. This implies that φ(M) Φ J. Pick an index
joe J — <p{M). Then applying Theorem 1 to the element bJQ and the
direct decompositions (1) and (2), it follows that an index ίoe I — M
exists such that

(3) a = bJQ U i ^ KM U ϋ ^ a, = aίQ U LJ K .

The element aίQ is compact, and hence there is a finite subset Jo^ J
such that

Let Mo be the set-sum of M and {%}, and let {ju « ,im} denote the
subset of Jo consisting of those indices different from j 0 which are not
contained in <p(M). Then repeated application of Theorem 1 yields the
following: there exist m distinct indices ίlf , ime I — Mo such that for
each n = 1, , m we have

a = bjγι U bjn_τ U U bJo (j Kw U LJ ai

= ain U 0 K

Again the element aiχ U U aim is compact, and therefore a finite subset
Ji S J exists such that

ah u * * U αi jΛ ^ _LJ &i

Let Mi denote the set-sum of Af and {i0, •• ,i1Λ}, and let {im+i, •• ,iP}
denote the subset of indices contained in Jλ but not contained in either
ψ{M) or {j0, -- ,im}. Applying Theorem 1 repeatedly to the elements
^im + 1 ? , δyp it follows that indices im+u , ip e I — ikίΊ exist such that

α =hjn U ' U δiO T + 1 U &iTO U U 6 i o U _U ^ ( ί ϊ U ^ (j f a{

= ain U _LJ bj

f o r e a c h n — m + 1 , •••,#>. W e m a y c o n t i n u e t h i s p r o c e d u r e o b t a i n i n g
t w o s e q u e n c e s o f i n d i c e s i0, ίl9 - * - , i n , ••• i n / a n d j o , j l f •• ,jn, ••• i n
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J (both of which may be finite with an equal number of terms) such
that equations (4) hold for every n = 0,1, 2, and such that

U ain ^ U hn U U b
φ{i)

Let ilf* be the set-sum of M and {%, il9 •••, i n , •••}. Define the well-

ordering (•<*) on M* as follows: if i, i ' e l , then i <* if if i -< V in

ikί; and

for every ίe M. Define the mapping φ* on ikf * into J by <p*(i) = φ(i)
for each ieJlί, and φ*(in) — iw for each n = 0, 1, 2, . Then it is clear
that (M*, <*, φ*)e^> and (M*, <*, cp*) > (AT, -<, φ). Since this con-
tradicts the maximality of (M, •<,?>) we must have M = I. From (2)
it follows that φ(M) = <p(/) = J. Hence the proof is complete.
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