DIRECT DECOMPOSITIONS WITH FINITE DIMENSIONAL FACTORS

Peter Crawley

The principal results. A fundamental theorem of Ore [10] states that if an element in a finite dimensional modular lattice is represented in two ways as a direct join of indecomposable elements, then the factors of the two decompositions are projective in pairs. The Krull-Schmidt theorem is an immediate consequence of this result. Subsequently many authors have considered direct decompositions in modular lattices. In particular, Kurosh [8, 9] and Baer [1, 2] obtained conditions which imply the existence of projective refinements of two direct decompositions of an element in an upper continuous modular lattice. When applied to the decompositions of a group G, the conditions of Kurosh and Baer are reflected in certain chain conditions on the center of G. In a somewhat different direction, Zassenhaus [11] has shown that the representation of an operator group as a direct product of arbitrarily many indecomposable groups each with a principal series is unique up to isomorphism.

This paper studies the direct decompositions of an element in an upper continuous modular lattice under the assumption that the element has at least one decomposition with finite dimensional factors. It is then shown that every other decomposition of the element refines to one with finite dimensional factors, and that a strong exchange isomorphism exists between two decompositions with indecomposable factors. This latter result sharpens the uniqueness result of Zassenhaus.

Before explicitly stating the principal results, let us note the following definitions. A lattice L is upper continuous if L is complete and

$$
a \cap \bigcup_{k \in K} x_{k}=\bigcup_{k \in K} a \cap x_{k}
$$

for every element $a \in L$ and every chain of elements $x_{k}(k \in K)$ in L.
If a and $a_{i}(i \in I)$ are elements of a complete lattice L with a null element 0 , then a is said to be a direct join of the elements $a_{i}(i \in I)$, in symbols

$$
a=\bigcup_{i \in I} a_{i}
$$

if $a=\bigcup_{i \in I} a_{i}$, and for each index $h \in I$ we have $a_{h} \cap \bigcup_{i \neq h} a_{i}=0$. The direct join of finitely many elements a_{1}, \cdots, a_{n} is also denoted by $a_{1} \dot{\cup} \cdots \dot{\cup} a_{n}$. An element b is called a direct factor of a if $a=b \dot{\cup} x$ for some element x. An element a is indecomposable if $a \neq 0$ and $a=$

[^0]$x \cup y$ implies $x=0$ or $y=0$. Finally, an element a is said to be finite dimensional if every chain of elements less than a is finite.

Theorem 1. If a is an element of an upper continuous modular lattice and

$$
a=x \dot{\cup} y=\dot{U}_{i \in I} t_{i}
$$

where x is finite dimensional and indecomposable, then there exists an index $h \in I$ such that $t_{h}=r \dot{\cup} s$ and

$$
a=r \dot{\cup} y=x \dot{\cup} s \dot{\cup} \dot{U}_{i \neq h} t_{i}
$$

Theorem 2. If a is an element of an upper continuous modular lattice and a is a direct join of finite dimensional elements, then every direct factor of a is also a direct join of finite dimensional elements.

Theorem 3. If a is an element of an upper continuous modular lattice and

$$
a=\bigcup_{i \in I} a_{i}=\dot{\bigcup}_{j \in J} b_{j}
$$

where each $a_{i}(i \in I)$ and each $b_{j}(j \in J)$ is finite dimensional and indecomposable, then there is a one-to-one mapping φ of I onto J such that

$$
a=a_{i} \dot{\cup} \bigcup_{j \neq \varphi(i)} b_{j}
$$

for each index $i \in I$.
These theorems may be applied directly to the lattice of admissible normal subgroups of an operator group to yield the following extension of the result of Zassenhaus mentioned above. If an operator group G is a direct product $G \cong \prod_{i \in I} A_{i}$ where each of the factors $A_{i}(i \in I)$ has a principal series, then any two direct decompositions of G have centrally isomorphic refinements.

Even with the strong continuity assumption it seems impossible to relax the assumption of finite dimensionality particularly in Theorems 1 and 3. The free abelian group of rank 2 shows that in general Theorems 1 and 3 fail for lattices satisfying only the ascending chain condition. The example in the following paragraph shows that continuity and the descending chain condition also are not sufficient for these results. It

[^1]is curious that Theorems 1 and 3 hold for groups whose normal subgroup lattices satisfy only the descending chain condition ${ }^{1}$ and yet fail for general continuous modular lattices satisfying the descending chain condition.

The example is as follows. Let p be an odd prime, and let G be an additive abelian group isomorphic with

$$
Z(p) \times Z(p) \times Z\left(p^{\infty}\right) \times Z\left(p^{\infty}\right) \times Z\left(p^{\infty}\right) \times Z\left(p^{\infty}\right)
$$

where $Z(p)$ denotes the cyclic group of order p and $Z\left(p^{\infty}\right)$ denotes the generalized cyclic p-group. Let Q, R, S, T, U, and V be subgroups of G with $Q \cong R \cong Z(p), S \cong T \cong U \cong V \cong Z\left(p^{\infty}\right)$, and

$$
G=Q \dot{\cup} R \dot{\cup} S \dot{\cup} T \dot{\cup} U \dot{\cup} V
$$

Let q and r generate Q and R respectively, and let S, T, U, and V be generated respectively by sets $\left\{s_{n}\right\},\left\{t_{n}\right\},\left\{u_{n}\right\}$, and $\left\{v_{n}\right\}$, where

$$
p s_{1}=0, p s_{n+1}=s_{n}(n=1,2, \cdots),
$$

with analogous relations holding for the t_{n} 's, u_{n} 's and v_{n} 's. Set $A=$ $Q \cup S \cup T$ and $B=R \cup U \cup V$. Let C be the subgroup generated by the set $\left\{q+r, s_{1}, s_{2}+u_{1}, s_{3}+u_{2}, \cdots, v_{1}, v_{2}+t_{1}, v_{3}+t_{2}, \cdots\right\}$, and let D be the subgroup generated by $\left\{q+2 r, u_{1}, u_{2}+s_{1}, u_{3}+s_{2}, \cdots, t_{1}, t_{2}+\right.$ $\left.v_{1}, t_{3}+v_{2}, \cdots\right\}$. It then follows that

$$
G=A \dot{\cup} B=C \dot{\cup} D
$$

and $G=A \cup B=A \cup C=A \cup D=B \cup C=B \cup D=C \cup D$. Furthermore, $A \cap C, A \cap D, B \cap C, B \cap D \neq 0$. Now let L be the set of all subgroups $X \leqq S \cup T \cup U \cup V$, together with all subgroups of the form $A \cup X, B \cup X, C \cup X$, and $D \cup X$ with $X \leqq S \cup T \cup U \cup V$, and the group G. It is easily checked that under set inclusion the elements of L form a complete sublattice of the lattice of all subgroups of G. Hence L is an upper continuous modular lattice satisfying the descending chain condition. Moreover, the subgroups A, B, C, and D are indecomposable in L, and each is projective only with itself. Thus Theorems 1 and 3 fail for the direct joins $G=A \dot{\cup} B=C \dot{\cup} D$.

Proofs of the theorems. The usual notation and terminology is used throughout. Lattice join, meet, inclusion, and proper inclusion are denoted respectively by \cup, \cap, \leqq, and $<$. If a and b are elements of a lattice and $b \leqq a$, then the quotient sublattice $\{x \mid b \leqq x \leqq a\}$ is denoted by a / b. The symbol \cong denotes the isomorphism of two lattices. The null element of a lattice is always denoted by 0 .

We begin with the following lemmas. The first is generally known.

Lemma 1. If L is an upper continuous lattice, S is a subset of L, and a is any element of L, then

$$
a \cap \bigcup S=\bigcup_{F \in \mathscr{F}} a \cap \bigcup F
$$

where \mathscr{F} is the collection of all finite subsets of S.
The lemma is trivial when S is finite. Suppose that S is an infinite subset of L, and suppose that the lemma is true for every subset S^{\prime} of cardinality less than the cardinality of S. Then there is a chain S_{i} ($i \in I$) of subsets of S such that each S_{i} has cardinality less than that of S and such that S is the set-sum of the subsets $S_{i}(i \in I)$. If \mathscr{F}_{i} is the collection of all finite subsets of S_{i}, applying upper continuity and the inductive assumption we therefore have

$$
\begin{aligned}
a \cap \cup S & =a \cap\left[\bigcup_{i \in I} \cup S_{i}\right]=\bigcup_{i \in I}\left[a \cap \cup S_{i}\right] \\
& =\bigcup_{i \in I} \bigcup_{F \in \mathscr{F}_{i}}[a \cap \bigcup F]=\bigcup_{F \in \mathscr{F}} a \cap \bigcup F
\end{aligned}
$$

and hence the lemma follows by induction.
An element c in a complete lattice L is said to be compact if for every subset $S \subseteq L$ with $c \leqq \bigcup S$ there is a finite subset $S^{\prime} \cong S$ such that $c \leqq \bigcup S^{\prime}$. A lattice L is compactly generated if L is complete and every element of L is a join of compact elements. ${ }^{2}$ The next lemma is an immediate consequnce of the definition of compactness.

Lemma 2. If $\left\{c_{1}, \cdots, c_{n}\right\}$ is a finite set of compact elements in a complete lattice, then $c_{1} \cup \cdots \cup c_{n}$ is also compact.

Lemma 3. Every finite dimensional element in an upper continuous lattice is compact.

We shall first show that if q is completely join irreducible, then q is compact. Suppose $S \leqq L$ and $q \leqq \bigcup S$. Let $p=\bigcup\{x \mid x<q\}$. Then $p<q$ since q is completely join irreducible. Let \mathscr{F} denote the collection of all finite subsets of S. If $\bigcup F \nsupseteq q$ for every $F \in \mathscr{F}$, then $q \cap \bigcup F<q$ and hence $q \cap \bigcup F \leqq p$ for every $F \in \mathscr{F}$. And it follows by Lemma 1 that

$$
q=q \cap \cup S=\bigcup_{F \in \mathscr{F}} q \cap \bigcup F \leqq p
$$

a contradiction. Hence q is compact.
Now suppose that a is a finite dimensional element different from

[^2]0 and suppose that every element properly contained in a is compact. If a is join irreducible, then a is compact from above. If a is not join irreducible, then there are two elements $b, c<a$ such that $a=b \cup c$. Since b and c are compact, a is therefore compact, and the lemma follows by induction.

Lemma 4. If an element a of an upper continuous modular lattice is a join of finite dimensional elements, then the quotient sublattice a/0 is compactly generated, and each compact element is finite dimensional.

For suppose $a=\bigcup C$ where each $c \in C$ is finite dimensional. If $x \leqq a$, then with \mathscr{F} denoting the set of all finite subsets of C we have

$$
x=x \cap \cup C=\bigcup_{F \in \mathscr{F}} x \cap \bigcup F
$$

Since the lattice is modular, $x \cap \bigcup F$ is finite dimensional and hence compact for each $F \in \mathscr{F}$. The lemma now follows.

Lemma 5. If $c, a_{1}, a_{2}, \cdots, a_{n}$ are elements of a compactly generated lattice, c is compact, and $c \leqq a_{1} \cup \cdots \cup a_{n}$, then for each $m=1, \cdots, n$ there is a compact element $d_{m} \leqq a_{m}$ such that $c \leqq d_{1} \cup \cdots \cup d_{n}$.

Since the lattice is compactly generated, for each $m=1, \cdots, n$ there is a set C_{m} of compact elements such that $a_{m}=\bigcup C_{m}$. Then $c \leqq$ $\cup C_{1} \cup \cdots \cup \cup C_{n}$, and since c is compact there are finite subsets $C_{m}^{\prime} \cong C_{m}$ such that $c \leqq \bigcup C_{1}^{\prime} \cup \cdots \cup \cup C_{n}^{\prime}$. By Lemma $2, \cup C_{m}^{\prime}$ is a compact element for each $m=1, \cdots, n$.

Lemma 6. If a, x, y are elements of a modular lattice, $x \cup y=$ $x \dot{\cup} y$, and $x \leqq a \leqq x \cup y$, then $a=x \dot{\cup}(a \cap y)$.

For $x \cap(a \cap y)=x \cap y=0$, and $x \cup(a \cap y)=a \cap(x \cup y)=a$.
Proof of Theorem 1. Suppose $a, x, y, t_{i}(i \in I)$ are elements of an upper continuous modular lattice, x is finite dimensional and indecomposable, and

$$
a=x \dot{\cup} y=\dot{U}_{i \in I} t_{i}
$$

Since x is compact by Lemma 2, there is a finite subset of indices $\left\{i_{1}, \cdots, i_{n}\right\} \cong I$ such that $x \leqq t_{i_{1}} \dot{\cup} \cdots \dot{\cup} t_{i_{n}}$. For each $m=1,2, \cdots, n$ let us set

$$
\bar{t}_{m}=t_{i_{1}} \cup \cdots \cup t_{i_{m-1}} \cup t_{i_{m+1}} \cup \cdots \cup t_{i_{n}}
$$

and define $x_{m}=\left(x \cup \bar{t}_{m}\right) \cap t_{i_{m}}$. Then it follows that ${ }^{3}$

$$
x \leqq b=x_{1} \dot{\cup} \cdots \dot{\cup} x_{n}
$$

Now $x_{m} \cap \bar{t}_{m}=\left(x \cup \bar{t}_{m}\right) \cap t_{i_{m}} \cap \bar{t}_{m}=t_{i_{m}} \cap \bar{t}_{m}=0$, and

$$
x_{m} \cup \bar{t}_{m}=\left[\left(x \cup \bar{t}_{m}\right) \cap t_{i_{m}}\right] \cup \bar{t}_{m}=\left(t_{i_{m}} \cup \bar{t}_{m}\right) \cap\left(x \cup \bar{t}_{m}\right)=x \cup \bar{t}_{m}
$$

Thus $x_{m} / 0=x_{m} / x_{m} \cap \bar{t}_{m} \cong x_{m} \cup \bar{t}_{m}\left|\bar{t}_{m}=x \cup \bar{t}_{m}\right| \bar{t}_{m} \cong x / x \cap \bar{t}_{m}$, and hence each x_{m} is finite dimensional, and its dimension does not exceed the dimension of x. It follows that $b=x_{1} \dot{\cup} \cdots \dot{U} x_{n}$ is finite dimensional. Since $x \leqq b \leqq x \cup y$, we infer from Lemma 6 that

$$
b=x \dot{\cup}(b \cap y)
$$

Therefore, since x is indecomposable and the dimension of each x_{m} is at most the dimension of x, it follows from Ore's theorem ${ }^{4}$ that (renumbering the x_{m} 's if necessary)

$$
b=x_{1} \dot{\cup}(b \cap y)=x \dot{\cup} x_{2} \dot{\cup} \cdots \dot{\cup} x_{n}
$$

Then $y \cup x_{1}=y \cup(b \cap y) \cup x_{1}=y \cup b=a$. From the fact that x_{1} is finite dimensional and $x_{1} / x_{1} \cap y \cong x_{1} \cup y / y=y \cup b / y \cong b / y \cap b \cong x_{1} / 0$, it follows that $x_{1} \cap y=0$. Thus

$$
a=x_{1} \dot{\cup} y
$$

Moreover, since $x_{1} \leqq t_{i_{1}}$, it follows from Lemma 6 that

$$
t_{i_{1}}=x_{1} \dot{\cup}\left(y \cap t_{i_{1}}\right)
$$

Let us set

$$
t_{\imath_{1}}^{*}=\bigcup_{i \neq i_{1}} t_{i}
$$

Then since $x_{2} \cup \cdots \cup x_{n} \leqq t_{i_{2}} \cup \cdots \cup t_{i_{n}} \leqq t_{i_{1}}^{*}$ we have

$$
\begin{aligned}
x \cup\left[\left(y \cap t_{i_{1}}\right) \dot{\cup} t_{i_{1}}^{*}\right] & =x \cup x_{2} \cup \cdots \cup x_{n} \cup\left(y \cap t_{i_{1}}\right) \cup t_{i_{1}}^{*} \\
& =b \cup\left(y \cap t_{i_{1}}\right) \cup t_{i_{1}}^{*}=t_{i_{1}} \cup t_{i_{1}}^{*}=a,
\end{aligned}
$$

and since $x / x \cap\left[\left(y \cap t_{i_{1}}\right) \cup t_{i_{1}}^{*}\right] \cong a /\left(y \cap t_{i_{1}}\right) \cup t_{i_{1}}^{*} \cong x_{1} / 0 \cong x / 0$, it follows that $x \cap\left[\left(y \cap t_{i_{1}}\right) \cup t_{i_{1}}^{*}\right]=0$. Hence

$$
a=x \dot{\cup}\left[\left(y \cap t_{i_{1}}\right) \dot{\cup} t_{i_{1}}^{*}\right]=x \dot{\cup}\left(y \cap t_{i_{1}}\right) \dot{\cup} \dot{U}_{i \neq i_{1}} t_{i}
$$

[^3] 130].
and the proof of Theorem 1 is complete.

Proof of Theorem 2. Throughout the proof of Theorem 2 we will assume that a is an element of an uper continuous modular lattice and

$$
a=\bigcup_{i \in I} a_{i}
$$

where each $a_{i}(i \in I)$ is finite dimensional and indecomposable.
Suppose $a=r \cup s$. We shall first show that r and s are direct joins of elements which are joins of a countable number of compact elements. ${ }^{5}$

Consider the collection \mathscr{P} of all subsets P of the lattice which satisfy the following conditions:

$$
\begin{equation*}
\bigcup P=\dot{U}_{t \in P} t=\dot{\bigcup}_{i \in K} a_{i} \tag{1}
\end{equation*}
$$

for some subset $K \subseteq I$.

$$
\begin{equation*}
t=(t \cap r) \dot{\cup}(t \cap s) \text { for each } t \in P \tag{2}
\end{equation*}
$$

(3) $t \cap r$ and $t \cap s$ are both joins of a countable number of compact elements for each $t \in P$.
\mathscr{P} is nonempty since the null set is in \mathscr{P}. Moreover, since by Lemma 1 a set is independent if every finite subset is independent, it follows that the set-sum of a chain of sets in \mathscr{P} also belongs to \mathscr{P}. By the Maximal Principle \mathscr{P} contains a maximal element Q.

Set

$$
q=\dot{U} Q=\dot{U}_{i \in M} a_{i}, \quad u=\dot{U}_{t \in Q}(t \cap r), \quad v=\dot{U}_{t \in Q}(t \cap s)
$$

Then it follows from condition (2) that $q=u \dot{\cup} v$, and from condition (1) that $a=q \dot{\cup} b=u \dot{\cup} v \dot{\cup} b$ where $b=\bigcup_{i \in I-M} a_{i}$. Furthermore, if we set $r^{\prime}=r \cap(b \cup v)$ and $s^{\prime}=s \cap(b \cup v)$, then it follows from Lemma 6 that $r=r^{\prime} \dot{\cup} u$ and $s=s^{\prime} \dot{\cup} v$. Hence

$$
a=r^{\prime} \dot{\cup} s^{\prime} \dot{\cup} q
$$

Suppose $q \neq a$. Then for some $i_{0} \in I$ we must have $a_{i_{0}} \nsubseteq q$. Since $a_{i_{0}}$ is compact and $a / 0$ is compactly generated by Lemma 3 , it follows by Lemma 5 that compact elements $c_{1} \leqq r^{\prime}$ and $d_{1} \leqq s^{\prime}$ exist such that

$$
\alpha_{i_{0}} \leqq c_{1} \cup d_{1} \cup q
$$

$c_{1} \cup d_{1}$ is also compact, and hence there is a finite subset $M_{1} \cong I$ such

[^4]that
$$
c_{1} \cup d_{1} \leqq \bigcup_{i \in M_{1}} a_{i}
$$

Again $\bigcup_{i \in M_{1}} a_{i}$ is compact, and hence there are compact elements $c_{2} \leqq r^{\prime}$ and $d_{2} \leqq s^{\prime}$ such that

$$
\bigcup_{i \in M_{1}} a_{i} \leqq c_{2} \cup d_{2} \cup q
$$

Continuing in this way we get a sequence $\left\{i_{0}\right\}, M_{1}, M_{2}, \cdots, M_{n}, \cdots$ of finite subsets of I and two sequences of compact elements $c_{1}, c_{2}, \cdots, c_{n}, \cdots \leqq r^{\prime}$ and $d_{1}, d_{2}, \cdots, d_{n}, \cdots \leqq s^{\prime}$ such that

$$
c_{n} \cup d_{n} \leqq \bigcup_{i \in M_{n}} a_{i} \leqq c_{n+1} \cup d_{n+1} \cup q
$$

for each $n=1,2, \cdots$.
Let

$$
r^{*}=\bigcup_{n<\infty} c_{n}, \quad s^{*}=\bigcup_{n<\infty} d_{n} .
$$

Then $r^{*} \leqq r^{\prime}$ and $s^{*} \leqq s^{\prime}$, and if M^{*} is the set-sum of the sets $M,\left\{i_{0}\right\}$, M_{1}, M_{2}, \cdots, it is clear that

$$
t^{*}=r^{*} \cup s^{*}=r^{*} \dot{\cup} s^{*}
$$

and

$$
t^{*} \cup q=t^{*} \dot{\cup} q=\bigcup_{i \in \mathbb{M}^{*}} a_{i}
$$

Hence the set-sum of Q and $\left\{t^{*}\right\}$ is a member of \mathscr{P} properly containing Q. Since this is contrary to the maximality of Q, we must have $q=a$. It follows that $r=u$ and $s=v$, and thus r and s are direct joins of elements which are joins of a countable number of compact elements.

We now prove the following: if b is a direct factor of a and c is a compact element with $c \leqq b$, then there exists a finite dimensional direct factor w of b such that $c \leqq w$. Suppose $a=b \dot{\cup} e$. Since c is compact, there is a finite subset $\left\{i_{1}, \cdots, i_{n}\right\} \subseteq I$ such that $f=$ $a_{i_{1}} \cup \cdots \cup a_{i_{n}} \geqq c$. Applying Theorem 1 to the element $a_{i_{1}}$ and the decompositions

$$
a=a_{i_{1}} \dot{\cup} \dot{U}_{i \neq i_{1}} a_{i}=b \dot{\cup} e,
$$

it follows that $b=b_{1}^{\prime} \dot{\cup} b_{1}^{\prime \prime}, e=e_{1}^{\prime} \dot{\cup} e_{1}^{\prime \prime}$ (where either $b_{1}^{\prime \prime}=0$ or $e_{1}^{\prime \prime}=0$), and

$$
a=b_{1}^{\prime \prime} \dot{\cup} e_{1}^{\prime \prime} \dot{\cup} \bigcup_{i \neq i_{1}} a_{i}=a_{i_{1}} \dot{\cup} b_{1}^{\prime} \dot{\cup} e_{1}^{\prime}
$$

Now consider the direct decompositions

$$
a=a_{i_{2}} \dot{\cup} \dot{U}_{i \neq i_{2}} a_{i}=a_{i_{1}} \dot{\cup} b_{1}^{\prime} \dot{\cup} e_{1}^{\prime}
$$

If we apply Theorem 1 to the element $\alpha_{i_{2}}$ and these decompositions, then since $a_{i_{1}} \cap \bigcup_{i \neq i_{2}} a_{i}=a_{i_{1}}>0$, it follows that $b_{1}^{\prime}=b_{2}^{\prime} \dot{\cup} b_{2}^{\prime \prime}, e_{1}^{\prime}=e_{2}^{\prime} \dot{\cup} e_{2}^{\prime \prime}$, and

$$
a=b_{2}^{\prime \prime} \dot{\cup} e_{2}^{\prime \prime} \dot{\cup} \bigcup_{i \neq i_{2}}^{\prime} a_{i}=a_{i_{2}} \dot{\cup} a_{i_{1}} \dot{\cup} b_{2}^{\prime} \dot{\cup} e_{2}^{\prime}
$$

Repeating this replacement for each $a_{i_{k}}$ we conclude that for every $k=1, \cdots, n$ there exist elements $b_{k}^{\prime}, b_{k}^{\prime \prime} \leqq b$ and $e_{k}^{\prime}, e_{k}^{\prime \prime} \leqq e$ such that

$$
a=b_{k}^{\prime \prime} \dot{\cup} e_{k}^{\prime \prime} \dot{\cup} \bigcup_{i \neq i_{k}} a_{i}=a_{i_{k}} \dot{\cup} \cdots \dot{\cup} a_{i_{1}} \dot{\cup} b_{k}^{\prime} \dot{\cup} e_{k}^{\prime}
$$

In particular

$$
a=f \dot{\cup} b_{n}^{\prime} \dot{\cup} e_{n}^{\prime}
$$

Let $w=b \cap\left(e_{n}^{\prime} \cup f\right)$. Then w is finite dimensional, and $w \geqq b \cap f \geqq c$. Moreover, Lemma 6 implies that $b=b_{n}^{\prime} \dot{\cup} w$, and the assertion follows.

In view of what has been proved above, to complete the proof of Theorem 2 it suffices to show that if b is a direct factor of a, and b is a join of a countable number of compact elements, then b is a direct join of finite dimensional elements. To this end, suppose

$$
b=\bigcup_{n<\infty} c_{n}
$$

where c_{n} is compact for each $n=1,2, \cdots$. Then it follows from the preceding paragraph that elements w_{1} and v_{1} exist such that w_{1} is finite dimensional, $w_{1} \geqq c_{1}$, and

$$
b=w_{1} \dot{\cup} v_{1}
$$

Since c_{2} is compact and $a / 0$ is compactly generated, by Lemma 5 there is a compact element $d_{1} \leqq v_{1}$ such that $c_{2} \leqq w_{1} \cup d_{1}$. Now v_{1} is a direct factor of a, and again applying the result of the preceding paragraph we obtain elements w_{2} and v_{2} such that w_{2} is finite dimensional, $w_{2} \geqq d_{1}$, and $v_{1}=w_{2} \dot{\cup} v_{2}$. Thus $c_{2} \leqq w_{1} \cup w_{2}$, and

$$
b=w_{1} \dot{\cup} w_{2} \dot{\cup} v_{2}
$$

Continuing in this way we get a sequence of finite dimensional elements $w_{1}, w_{2}, \cdots, w_{n}, \cdots \leqq b$ such that

$$
w_{1} \cup \cdots \cup w_{n}=w_{1} \dot{\cup} \cdots \dot{\cup} w_{n} \geqq c_{n}
$$

for each $n=1,2, \cdots$. Thus the set $\left\{w_{n} \mid n=1,2, \cdots\right\}$ is independent since every finite subset is independent, and hence

$$
b=\bigcup_{n<\infty}^{\dot{~}} w_{n}
$$

This completes the proof of Theorem 2.
Proof of Theorem 3. Let a be an element of an upper continuous modular lattice and suppose that

$$
\begin{equation*}
a=\bigcup_{i \in I} a_{i}=\bigcup_{j \in J} b_{i} \tag{1}
\end{equation*}
$$

where each $a_{i}(i \in I)$ and each $b_{j}(j \in J)$ is finite dimensional and indecomposable. We shall show the following: there exists a well-ordering (\prec) on the index set I and a one-to-one mapping ρ of I onto J such that for each index $h \in I$ we have

$$
a=\dot{U}_{i \equiv h} b_{\varphi(i)} \dot{\cup} \bigcup_{i>h} a_{i}=a_{h} \dot{\cup} \dot{\bigcup}_{j \neq \varphi(h)} b_{j}
$$

Let \mathscr{P} be the collection of all ordered triples (H, \prec, ψ), where $H \cong I,(\prec)$ is a well-ordering of H, ψ is a one-to-one mapping of H into J, and such that the following conditions are satisfied:
(i) for each index $h \in H$ we have

$$
\begin{aligned}
a & =\dot{U}_{i \in H, i \leqq h} b_{\psi(i)} \dot{U} \dot{i \in H, i>h}^{U_{i}} a_{i} \dot{\cup} \dot{i}_{i \in I-H} a_{i} \\
& =a_{h} \dot{\cup} \dot{U}_{j \neq \psi(h)} b_{j} ;
\end{aligned}
$$

(ii) $\bigcup_{i \in H} a_{i} \leqq \bigcup_{i \in H} b_{\psi_{(i)}}$.

Partially order \mathscr{P} by defining $\left(H^{\prime}, \prec^{\prime}, \psi^{\prime}\right) \geqq(H, \prec, \psi)$ if and only if $H=H^{\prime}$ or there is an element $h^{\prime} \in H^{\prime}$ such that

$$
H=\left\{i \in H^{\prime} \mid i \prec^{\prime} h^{\prime}\right\}
$$

$\left(<^{\prime}\right)$ on H coincides with $(<)$, and ψ^{\prime}, restricted to H coincides with ψ. Note that \mathscr{P} is nonempty since it contains the triple ($\phi,<^{0}, \psi^{0}$) where ϕ, \prec^{0}, and ψ^{0} are respectively the empty set, relation, and mapping.

Suppose that $\left(H^{\sigma}, \prec^{\sigma}, \psi^{\sigma}\right)(\sigma \in \Sigma)$ is a chain of elements in \mathscr{P}. Let \bar{H} be the set-sum of the subsets $H^{\sigma}(\sigma \in \Sigma)$. Define a well-ordering ($<$) on \bar{H} by $i \prec i^{\prime}$ if and only if $i, i^{\prime} \in H^{\sigma}$ and $i \prec^{\sigma} i^{\prime}$ for some $\sigma \in \Sigma$. And define the mapping $\bar{\psi}$ on \bar{H} into J by $\bar{\psi}(i)=\psi^{\sigma}(i)$ where $i \in H^{\sigma}$. Then it is easily verified that $(\bar{H}, \prec, \bar{\psi}) \in \mathscr{P}$ and that $(\bar{H}, \prec, \bar{\psi})$ is an upper bound of the chain $\left(H^{\sigma}, \prec^{\sigma}, \psi^{\sigma}\right)(\sigma \in \Sigma)$. Thus by the Maximal Principle \mathscr{P} contains a maximal element (M, \prec, φ).

Now the set-sum of $\left\{b_{\varphi(i)} \mid i \in M\right\}$ and $\left\{a_{i} \mid i \in I-M\right\}$ is independent since by (i) every finite subset is independent. Therefore it follows from (ii) that

$$
\begin{equation*}
a=\dot{U}_{i \in \mu} b_{\varphi(i)} \dot{\cup} \dot{U}_{i \in I-M} a_{i} \tag{2}
\end{equation*}
$$

Suppose that $M \neq I$. This implies that $\varphi(M) \neq J$. Pick an index $j_{0} \in J-\varphi(M)$. Then applying Theorem 1 to the element $b_{j_{0}}$ and the direct decompositions (1) and (2), it follows that an index $i_{0} \in I-M$ exists such that

$$
\begin{equation*}
a=b_{j_{0}} \dot{\cup} \bigcup_{i \in M} b_{\varphi(i)} \dot{\cup} \dot{U}_{i \in M, i \neq i_{0}} a_{i}=a_{i_{0}} \dot{\cup} \bigcup_{\jmath \neq j_{0}} b_{j} . \tag{3}
\end{equation*}
$$

The element $a_{i_{0}}$ is compact, and hence there is a finite subset $J_{0} \subseteq J$ such that

$$
a_{i_{0}} \leqq \bigcup_{j \in J_{0}} b_{j}
$$

Let M_{0} be the set-sum of M and $\left\{i_{0}\right\}$, and let $\left\{j_{1}, \cdots, j_{m}\right\}$ denote the subset of J_{0} consisting of those indices different from j_{0} which are not contained in $\varphi(M)$. Then repeated application of Theorem 1 yields the following: there exist m distinct indices $i_{1}, \cdots, i_{m} \in I-M_{0}$ such that for each $n=1, \cdots, m$ we have

$$
\begin{align*}
a & =b_{j_{n}} \dot{\cup} b_{j_{n-1}} \dot{\cup} \cdots \dot{\cup} b_{j_{0}} \bigcup_{i \in M} b_{\varphi(i)} \dot{\cup}{\underset{i \notin M, i \neq \tau_{0}, \ldots, i_{n}}{ } a_{i}}=a_{i_{n}} \dot{\cup} \bigcup_{j \neq i_{n}} b_{j} . \tag{4}
\end{align*}
$$

Again the element $a_{i_{1}} \cup \cdots \cup a_{i_{m}}$ is compact, and therefore a finite subset $J_{1} \subseteq J$ exists such that

$$
a_{i_{1}} \cup \cdots \cup a_{i_{m}} \leqq \bigcup_{j \in J_{1}} b_{j}
$$

Let M_{1} denote the set-sum of M and $\left\{i_{0}, \cdots, i_{m}\right\}$, and let $\left\{j_{m+1}, \cdots, j_{p}\right\}$ denote the subset of indices contained in J_{1} but not contained in either $\varphi(M)$ or $\left\{j_{0}, \cdots, j_{m}\right\}$. Applying Theorem 1 repeatedly to the elements $b_{j_{m+1}}, \cdots, b_{j_{p}}$ it follows that indices $i_{m+1}, \cdots, i_{p} \in I-M_{1}$ exist such that

$$
\begin{aligned}
a & =b_{j_{n}} \dot{\cup} \cdots \dot{\cup} b_{j_{m+1}} \dot{\cup} b_{j_{m}} \dot{\cup} \cdots \dot{\cup} b_{j_{0}} \dot{\cup} \bigcup_{i \in M} b_{\notin(i)} \dot{\cup}{\underset{i \notin M, M_{1}, i \neq i_{m+1}, \ldots i_{n}}{ }} a_{i} \\
& =a_{i_{n}} \dot{\cup} \bigcup_{j \neq \jmath_{n}} b_{j}
\end{aligned}
$$

for each $n=m+1, \cdots, p$. We may continue this procedure obtaining two sequences of indices $i_{0}, i_{1}, \cdots, i_{n}, \cdots$ in I and $j_{0}, j_{1}, \cdots, j_{n}, \cdots$ in
J (both of which may be finite with an equal number of terms) such that equations (4) hold for every $n=0,1,2, \cdots$ and such that

$$
\bigcup_{n \geq 0} a_{i_{n}} \leqq \bigcup_{n \leqq 0} b_{j_{n}} \cup \bigcup_{i \in M} b_{\varphi(i)} .
$$

Let M^{*} be the set-sum of M and $\left\{i_{0}, i_{1}, \cdots, i_{n}, \cdots\right\}$. Define the wellordering (\prec^{*}) on M^{*} as follows: if i, $i^{\prime} \in M$, then $i \prec^{*} i^{\prime}$ if $i \prec i^{\prime}$ in M; and

$$
i \prec^{*} i_{0} \prec^{*} i_{1} \prec^{*} \cdots \prec^{*} i_{n} \prec^{*} \ldots
$$

for every $i \in M$. Define the mapping φ^{*} on M^{*} into J by $\varphi^{*}(i)=\varphi(i)$ for each $i \in M$, and $\varphi^{*}\left(i_{n}\right)=j_{n}$ for each $n=0,1,2, \cdots$. Then it is clear that $\left(M^{*}, \prec^{*}, \varphi^{*}\right) \in \mathscr{P}$ and $\left(M^{*}, \prec^{*}, \varphi^{*}\right)>(M, \prec, \varphi)$. Since this contradicts the maximality of (M, \prec, φ) we must have $M=I$. From (2) it follows that $\varphi(M)=\varphi(I)=J$. Hence the proof is complete.

References

1. R. Baer, Direct decompositions, Trans. Amer. Math. Soc., 62 (1947), 62-98.
2. -, Direct decompositions into infinitely many summands, Trans. Amer. Math. Soc., 64 (1948), 519-551.
3. G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloquium Publications, rev. ed., vol. 25, 1948.
4. R. Dilworth and P. Crawley, Decomposition theory for lattices without chain conditions, Trans. Amer. Math. Soc., 96 (1960), 1-22.
5. M. Hall, The theory of groups, Macmillan, 1959.
6. B. Jónsson and A. Tarski, A generalization of Weddeburn's theorem, Bull. Amer. Math. Soc. Abstract 51-9-150 (1945).
7. I. Kaplansky, Projective modules, Ann. of Math., (2) 68 (1958), 372-377.
8. A. Kurosh, Isomorphisms of direct products I, Bull. Acd. Sci. URSS, 7 (1943) 185-202.
9. - Isomorphisms of direct products II, Bull. Acd. Sci. URSS, 10 (1946), 47-72.
10. O. Ore, On the foundation of abstract algebra II, Ann. of Math., 37 (1936), 265-292.
11. H. Zassenhaus, Representation theory (mimeographed notes), Calif. Institute of Technology, 1958-59, pp. 49-60.

[^0]: Received July 7, 1961. This work was supported by the Office of Naval Research.

[^1]: ${ }^{1}$ Cf. Jónsson and Tarski [6].

[^2]: ${ }^{2}$ For a discussion of compactly generated lattices see [4].

[^3]: ${ }^{3}$ See for example [3, p. 95].
 ${ }^{4}$ Actually we use the somewhat stronger version of Ore's theorem given in [5, pp. 128-

[^4]: ${ }_{5}$ The proof of this part was suggested by the main theorem of Kaplansky [7].

