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l Introduction. The Cay ley-Hamilton theorem states that any
linear transformation (sometimes called "operator") on a finite dimen-
sional vector space over a field is a root of its characteristic polynomial.
On the other hand an operator on an infinite dimensional vector space
need not be the root of any nonzero polynomial with scalar coefficients.
It is our purpose to give necessary and sufficient conditions for a bounded
operator on a complex Hubert space to be the root of a nonzero poly-
nomial with complex coefficients.

Significant in much linear algebra is the fact that an operator A
on a finite dimensional vector space V over an algebraically closed field
F must have an eigen value; more precisely, there is a scalar λ in F
and a nonzero vector z in V such that (A — X)z = 0. We make the
following

DEFINITION. An element X in a field F is said to be an eigen
value for the operator A on a (possibly infinite dimensional) vector
space V over F if there exists at least one nonzero vector z in V such
that (A — X)z = 0. An operator A on V is said to be an eigen value
producing (henceforth abbreviated "evp") operator if for each linear
maniforld V reducing A and Φ V, the operator A! induced by A on
the quotient space VjV has at least one eigen value.

In particular if A is evp it has an eigen value, because (0) reduces
A. One example of an evp operator is any operator on a finite dimen-
sional vector space over an algebraically closed field. The central result
of the present paper is that a bounded operator on a complex Hubert
space is evp if and only if it is the root of a nonzero polynomial with
complex coefficients. Before we introduce Hubert space operators we
establish some algebraic machinery.

2. The structure of evp operators* In this section let A be an
operator on a vector space V over the field F, and let Fλ be the linear
manifold consisting of all vectors annihilated by some power of the
operator A — λ, for each λ in F.

LEMMA 1. Let X and μ be distinct scalars and let z be a vector
such that
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(A - X)e+1 = 0φ(A- X)ez .

Then

(A - X)e+1(A - μ)z = 0 Φ (A - X)e(A - μ)z .

In particular if μlf , μn is a finite set of scalars different from λ,
then

(A - X)e+1w = 0 Φ (A - Xfw

where w = (A — μj (A — μn)z.

Proof. Since A commutes with itself

(A - X)e+1(A - μ)z = (A - μ)(A - X)e+1z = 0 .

On the other hand (A - X)e(A - μ)z = (A - μ)(A - X)ez

= (A- X)e+1z + (λ - μ)(A - Xfz

= (λ - μ)(A - X)ez Φ 0

because X Φ μ. The final statement follows by induction on n.

LEMMA 2. The Vλ are linearly independent.

Proof. Suppose Vλ contains a vector z which is also in the subspace
spanned by VH, , Vμn where μi Φ X. Say z = zx+ + zn where z{

is in Vμi and (A - μ^fizi = 0. Then

(A - μy i (A - μn)
e-z - (A - μ^ . . (A - μ^{z, + . . + zn) = 0 .

By Lemma 1, z = 0.

LEMMA 3. The Vλ together span V if and only if A is evp.

Proof. Assume the F λ span V. Let V be a subspace of V reducing
A and Φ V, and select ^ in 7 - V. Then z — zx + + zn where zt is in
Vλi and consequently there are scalars μlf * ,μm such that (A—μJ
(A — μm)z = 0. Among the vectors

z, (A - μm)z, (A - μm-λ){A - μm)z, , (A - μλ) (A - μjz = 0

the first is not in V but the last is in V. Let w be the last vector
listed which is not in V. Obviously there is a scalar μ such that
(A — μ)w is in V. It is clear that Af, induced by A on VjV, has the
eigen value μ. Hence A is evp.

Assume A is evp and let V be the subspace spanned by the Vλ. We
will show V = V by contradiction; suppose V Φ V. Because A is evp
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there exists a scalar λ and a vector z in V — V such that (A — X)z is in
V. Say μlf , μm are scalars such that (A — μj (A — μm)(A — X)z = 0.
Clearly [πμ&λ(A — μi)]z is a vector which is annihilated by some power
of A — λ; it is in Vk. Now let λx, , λn be those μt Φ X. We have

(A - X1)z = (A - X)z + (λ - λOz

and

(A - λ2)(A - \)z = (A - λa)(A - λ)z + (λ - λxχA - λ)z + (λ - λ2)(λ - \)z .

Recalling that V reduces A and repeating this argument we see finally
that [7Cj(A — Xj)]z — cz + w where w is in V and c is the scalar
π5 (λ — λ̂  ). Since c =£ 0 and ca; + w is in F ' , 2 must be in V contrary
to the choice of z.

Thus A is evp if and only if V is the direct sum of all the Vλ.
Of course in this general context infinitely many Vλ might be =£(0) and
Vλ might not be annihilated by any power of A — λ. We leave to the
reader the construction of examples demonstrating these possibilities.

LEMMA 4. // A is evp then for each vector z in V there exists a
nonzero polynomial p with coefficients in F (depending perhaps on z)
such that p(A)z = 0.

Proof. Assume A is evp and select z in V. By Lemma 3, z is in
the subspace spanned by the Vλ and there exist scalars Xl9 , Xn such
that (A - λχ)(A - λ2) (A - Xn)z = 0. Then (x - λx) (x - Xn) is an
appropriate polynomial.

LEMMA 5. Let F be algebraically closed and suppose for each
vector z in V there exists a nonzero polynomial p with coefficients in
F such that p(A)z = 0. Then A is evp on V.

Proof. Let V be a subspace of V reducing A and V Φ V. Select
any z in V — V. Let p be a polynomial such that p(A)z = 0. Since F
is algebraically closed there exist scalars c, X19 , Xn such that

p(A) = c(A - X±) (A - Xn)

and

(A - λ2) (A - Xn)z = 0 .

By the argument employed on the vectors

z, (A - \)z9 (A - λx)(A - λ2)z, , (A - λ j (A - Xn)z

in Lemma 3, it follows that A is evp.



432 S. CATER

3. Evp operators on Hilbert space* We now have all the algebraic
machinery necessary to tackle the structure of bounded evp operators
on complex Hilbert space. Until further notice assume that A is a
bounded evp operator on the complex Hilbert space h.

LEMMA 6. For each scalar X there exists an integer N such that

Proof. Our proof is by contradiction; suppose there exists no inte-
ger JV such that (A — X)*Vλ = (0). Let Zn be the null space of the
operator (A — λ)\ Then each Zn is a closed subspace of h and together
the Zn span Vλ. The inclusions

are all proper, for if Zn = Zn+1 for some n every vector annihilated by
(A — λ)w + 1 is annihilated by (A — X)n and likewise every vector annihi-
lated by (A — λ)m, m > n, is annihilated by (A — X)n contrary to as-
sumption. Setting Zo = (0) select a unit vector zn in Zn Γl Z^ for each
index n > 0 and put z — ΣΓ2~"%22%. By Lemma 4 there is a nonzero
polynomial p with complex coefficients such that p(A)z = 0. For each
index n > 0 we have (A — X)Zn c Zn^. For each index m

0 = (p(A)zf zm)

= ((p(A) - p(\))z, zm) + p(λ)(z, zm)

= 2~™\[p(A) - p(X)][ Σ 2* a - a *J f zm) + 2-
+l

because p(A) — p(λ) contains a factor of A — λ and zm is orthogonal to

[p(A) - p(X)][Σn=i2-n\]. Dividing out 2~m2 we obtain

for and m, and clearly p(X) = 0; indeed if q is a polynomial such that
q(X) Φ 0, then {q{A)z, zm) Φ 0 for infinitely many indices m. Let q
be the polynomial such that p(A) = (A — X)eq(A) and q(X) φ 0. Now
0 = p(A)z = (A — λ)eg(A)z and g'(A)^ is in Ze. But by the above argu-
ment (q(A)z, zm) Φ 0 for infinitely many indices m and zm _L Ze for m > e,
contradiction.

LEMMA 7. TΆere are at most finitely many complex scalars X for
which Vλ Φ (0).

Proof. Our proof is by contradiction; suppose there are infinitely
many λ for which F λ Φ (0). Since A is bounded, the set of such λ is
bounded. Let {Xn} be a sequence of distinct members of this set con-
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verging to a fixed scalar c such that XnΦ c for all n. Let N be an
integer such that (A — c)NVc = (0). (It makes no difference if Vc = (0)
already.) Let Zn be the null space of the operator (A—c)N(A—λx) (A—\n)
for n > 0 and set Zo = Vc. All the inclusions

are proper by Lemma 1, and (A — Xn)Zn c Zn-X. Select in each Zn Π Zt-\
a unit vector zn and put z — Y^2~%2zn. There is a nonzero polynomial
p such that p(A)z = 0. For each index m

0 = (p(A)z9 zm)

= (\p(A) - p(Xm)]z, zm) + ([p(Xj - p(c)]zf zm) + (p(c)zf zm)

and

2-™\[p(A) - P(Xj ] [ e g + 2 w 2 - ^ J , O

+ 2"w2[p(λw) — p(c)] + 2"m2p(^) — 0 .

Dividing out 2~m2 we obtain

1 p(c) I ̂  2~2m || p(A) - p(Xm) || + I p(λm) - p(c) \ .

Asm tends to oo, \\p(A) - p (λ j | | tends to ||p(A) — p(c)|| and |p(λm) —p(c)|
tends to 0. Clearly ί9(c) = 0; indeed if q is a polynomial such that q(c) Φ 0,
then (q(A)z, zm) Φ 0 for infinitely many indices m. Let q be the polynomial
such that p(A) = (A- c)eq(A) and q(c) φ 0. Then 0 = p(A)z = (A- c)eq(A)z
and q(A)z is in Fc = ZQ. By the above argument (q(A)zf zm) Φ 0 for in-
finitely many m but zm J_ ^ 0 for all m > 0, contradiction.

We are now able to prove our theorem. Let A be a bounded
operator on the complex Hubert space h and drop the assumption that
A is evp.

THEOREM. The following properties are equivalent for A.
(1) A is evp.
(2) There is a nonzero polynomial P with complex coefficients

such that P(A) = 0 on h.

Proof. Assume (1). By our development h is the direct sum of
Vλl, , Vλn and for each index i = 1, , n, there is an integer et such
that (A - Xi)HVλi = (0). Clearly πn

λ{A - λ,)"* = 0 on h and πl{x = Xtf*
is an appropriate polynomial P.

Now assume (2). By Lemma 5, A is evp, and the proof is complete.
The next corollary is of particular interest because it states that a

pointwise property is equivalent to a global property. The proof is an
immediate consequence of Lemma 5 and our theorem.
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COROLLARY 1. The following properties are equivalent for A.
(1) For each vector z in h there exists a nonzero polynomial p

(depending perhaps on z) such that p(A)z = 0.
(2) There exists a nonzero polynomial P such that P(A) = 0 onh.

Any operator on a finite dimensional complex Hubert space is of
course evp. Such an operator A must also be bounded and the poly no*
mials in A must constitute a uniformly closed subset of the ring of all
operators; the latter fact is due to the theorem that any linear manifold
in a finite dimensional normed linear space is closed in norm. Conse-
quently we should not be surprised by

COROLLARY 2. Let A be a bounded operator on a complex Hilbert
space h. Then the following properties are equivalent for A.

(1) A is evp.
(2) the polynomials in A constitute a uniformly closed subset of

L(h), the ring of all bounded operators on h.

Proof. First suppose A is evp. Let P be a nonzero polynomial of
minimal degree such that P(A) = 0 and say n is the degree of P. Then
any polynomial in A is equal to an appropriate polynomial in A of
degree less than n. It follows that the polynomials in A form a finite
dimensional linear manifold in the normed linear space L(h) over the
complex field, and this manifold must be closed in norm.

Now suppose the polynomials in A form a uniformly closed subset
of L(h). (The author is indebted to B. Yood for the remainder of the
argument.) Select a positive scalar r greater than the spectral radius of
A. Then A — r is nonsingular and (r — A)'1 is the limit of a convergent
series in A and this series must converge to a polynomial p(A). Thus
(r — A)p(A) — 1 and A is a root of the nonzero polynomial (r — x)p(x) — 1.

4 Principal idempotents Given operators A and B on the respec-
tive Hilbert spaces h and k we say A is similar to B if there exists an
invertible linear tranformation S of h onto k such that S and S'1 are
bounded and SAS"1 = B on k. This section concerns the theorem on
principal idempotents on finite dimensional vector spaces (see [7], pp.
175-7) which states that a matrix is similar to a diagonal matrix if and
only if it is a linear combination of mutually orthogonal idempotent
matrices (of course no condition of boundedness enters here). In partic-
ular if the field of scalars is the complex field this theorem remains
valid when "normal matrix" replaces "diagonal matrix".

The following corollary generalizes this result by means of bounded
normal evp operators. By the spectral mapping theorem all the spectral
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values of a bounded normal evp operator are roots of a certain nonzero
polynomial; hence such an operator N has finite spectrum, and further-
more by the spectral theorem all of its spectral values are eigen values
and N is a linear combination of finitely many mutually orthogonal
projections the sum of which is the identity.

COROLLARY 3. For an operator A mapping h into h the following
are equivalent.

(1) A is similar to a bounded normal evp operator N on a
Hilbert space.

(2) There exist a finite collection E19 , En of mutually or-
thogonal nonzero idempotent operators, each mapping h onto a closed
subspace of h, and distinct scalars X19 , Xn such that I = ΣΐEi and
A = Σ ? λ ^ .

Proof. Assume (1). Then N is a linear combination of mutually
orthogonal nonzero projections Pl9-"9Pn) say N = ΣiΐXiPi and I=ΣιΐP%
where λ4 Φ λ i if i Φ j . There exists an invertible linear transformation
S such that SAS'1 = N and

A = S-'NS = S-^itϊ

and obviously E{ = S^PiS suffices in (2). Of course the operators A,
El9 ,En are bounded because S9 S~\ N, Pl9 "9Pn are bounded.
Furthermore each linear manifold EJi is closed in h because the range
of a bounded idempotent operator on Hilbert space must be closed.

Now assume (2). Then each EJi is a closed linear subspace of h
and h is the direct linear sum of the EJi. Let k be the direct orthogonal
product of the Hilbert spaces EJi. Let S< be the linear transformation
mapping h onto E{h (regarded as a subspace of k) which is the identity
on Eth and which annihilates every vector in Eάh9 j Φ i. Then S = ΣϊSi
is an invertible linear transformation of h onto k. It suffices to show
that S and S"1 are bounded; for if they are, the operators SEiS"1 are
mutually orthogonal projections on k and A is similar to the bounded
normal evp operator SAS'1 = ^XiSES"1 on k. That S'1 is bounded
follows immediately form the inequality || S^z ||2 ^ n2 \\z ||2, all z in k.
By the closed graph theorem S is bounded also, and the proof is complete.
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