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1. The starting point of the present paper is the classical theory
of meromorphic functions in the plane or the disk. We shall generalize
fundamentals of this theory to open Riemann surfaces Ws that carry a
specified conformal metric (Nos. 3, 11). The motivation is that mero-
morphic functions are defined by a local property and it is natural to
consider them on the corresponding locally defined carrier, a 2-manifold
with conformal structure.

The method we shall use largely parallels that of F. Nevanlinna
[10] and L. Ahlfors [1]. We have, however, made an effort to write
the presentation self-contained. The classical theory will be included
as a special case.

We note in reference to earlier work generalizations given in various
directions by L. Ahlfors [2], S. Chern [4, 5], G. af Hallstrom [6],
K. Kunugui [8], L. Myrberg [9], L. Sario [14, 15], J. Tamura [19],
Y. Tumura [22], and M. Tsuji [21].

2. Our principal result will be the integrated (Nevanlinna) form
of the second main theorem on Ws (No. 17). No generalization of this
theorem to Riemann surfaces of arbitrary genus has, to our knowledge,
been given thus far. As a corollary the following extension of Picard's
theorem will be established: Let P be the number of Picard values of
a meromorphic function w on a Riemann surface Wp with the capacity
metric (No. 21). Form the characteristic function T(h) of w on the
region Wh bounded by the level line pβ — h of the capacity function
pβ. Denote by E(h) the integrated Euler characteristic of Wh and set

Then

P g 2 + η .

This bound is sharp (No. 27). Analogous extensions will be given to
other classical consequences of the second main theorem (Nos. 31-36).

A generalization to arbitrary Riemann surfaces of the nonintegrated
form of the second main theorem is given in [18].
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§]l. Cotiformal metric

3. Let W be an open Riemann surface. We introduce on W a
conformal metric

(1) ds = X(z) \dz\ ,

where X(z) ^ 0 is continuous, with no points of accumulation of its zeros,
and ds is invariant under change of parameter z. Other conditions,
easily met in our applications, will be imposed upon \(z) in the course
of our reasoning. The length l(a) of a rectifiable arc a on W is well
defined, and the distance d(zlf z2) between two points is inf l{a) for
arcs a from zx to z2. The distance d(E19 E2) between two subsets of W
is defined as inf d(z19 z2) for zλ e E19 z2 e E2.

Let Wo be the interior of a compact bordered Riemann surface
contained in W. We so choose the metric ds that d(z, Wo) tends to a
constant σβ <£ co for any appoach of z to the ideal boundary β of W:

(2) σβ = lim d(zn, WΌ)

for any sequence {zn} tending to β. We consider the ''level lines"

A, = {* I d(z, Wo) = σ} ,

0 g ί/ < σβ, and postulate that ds satisfies the condition

(3) ( ds = 1 .
Jβa

Finally, the metric ds is chosen sufficiently regular to justify (3) and
other operations to be performed on it. In particular, βσ is assumed
to be smooth at points z with λ(z) > 0.

The interesting differential geometric problem of characterizing all
metrics for which these conditions are satisfied will not be discussed in
the present paper. In our applications (nos. 20-87) the conditions are
trivially fulfilled.

4. Schematically, the parameter σ and the arc length s along βσ

constitute a coordinate system on W. If Wσ signifies the relatively
compact region bounded by βσ, then Wσ — Wo corresponds to a rectangle
of width σ and height 1 in the (σ, s)-plane. A concrete illustra-
tion is given by λ = | grad u\ for a harmonic function u on Wσ — Wo

with u = 0 on β09 u = const, on βσ such that uQdu* = 1. For genus
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g ^ 0 and connectivity c ^ 2 of Wσ — Wo, 2g + 2(c — 2) horizontal slits
.appear in the (σ, s)-reetangle; the edges of the slits, and the horizontal
sides of the rectangle are suitably identified to form a conformal
equivalent of Wσ — Wo. The slits issue from the zeros of Igrad^l.
The g ' "handles" of Wσ — WQ give rise to 2g slits in the interior of the
rectangle, and the c contours cause 2(c — 2) slits terminating at the
vertical edges of the rectangle. In the general case of ds = λ | dz | the
end points of the slits are at the zeros of λ. The rate of growth of the
number of these zeros will play a fundamental role in our approach.

§2, The first main theorem

5. Our principal aim is the second main theorem and Picard's
theorem. Since they concern the behavior of a meromorphic function
w on approaching β, it suffices to consider w in the boundary neighbor-
hood W— Wo. The first main theorem on arbitrary open Riemann
surfaces will first be needed.

The spherical distance [w, a] between the points w and a is given
by

[w, a] = w — a\
l / i + I w | V i + \a

We consider the proximity function

(4) m(σ, a) = — \ log -ds ,
2π Jβσ-β0 [w, a\

where the constant l/2π is for convenience in later calculations. Let
n(σ, a) be the number of α-points, counted with their multiplicities, of
the function w in Wσ — Wo. The counting function is defined as

S o-
n(σ, a)dσ .

0

For m(*7, oo), n{σ, co), N(σ, oo), the notations m(σ, w), n{σ, w), N(σ, w)
will also be used.

6. Differentiation of (4) gives for any α, 6, finite or infinite, and
for σ with no zeros of λ on βσf

ds
w — a

/6v dm(σ, a) _ dm(σ, b) = _ l f —\og

dσ dσ 2π )βσ dσ

= — - I d arg w ~ = n(σ, b) - n(σ, a) + nQφ) - nQ(a) ,
2π jβ<r w — a

where djdσ stands for the exterior normal derivative in the metric
under consideration, and nQ(a) is the number of α-points in WQ. The
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differentiation under the integral sign is legitimate, for 1 is an integral
Jβ<r

with respect to s from 0 to 1. For the characteristic function of w
we choose

(7) T(σ) = m(σ, oo) + N(σ, oo) + n0(co)σ .

On integrating (6) from 0 to σ we arrive at the

FIRST MAIN THEOREM ON RIEMANN SURFACES. Let w be a meromor-
phic function on an arbitrary open Riemann surface W. Then

(8) m(σ, a) + N(σ, a) + no(a)σ = T(σ)

for all values a.

We made no use of properties of ds outside of Wσ. In any compact
subregion Ω c W we can choose ds = (l/2ττ) | grs.άp0 I, where pΩ is the
capacity function of Ω = Wσ (L. Ahlfors-L. Sario [3]), and let β0 be a
level line of pβ near its pole in Ω. Thus the first main theorem is a
general property of w in any compact subregion of an arbitrary W.

7. We observe in passing that the theorem can, of course, also be
written in the classical form. Let nσ = n + n0, Nσ — N + noσ, and
mσ = (l/2τr)( log (l/[w, α])dβ. Then

Jβ<r

(9) mσ(σ, α) + Nσ(σ, a) = T{σ) + 0(1) .

In the case of the 2-plane and for ds — \ dz |/2πτ, this is Nevanlinna's^
first main theorem.

8. As is to be expected, the Shimizu-Ahlfors interpretation of the*
characteristic function continues to be valid in the present case. In
integrating (8) over the area elements dω(a) of the α-sphere A the
integral of log [w, α]"1 is independent of w, and the integral of m(σ, a)
vanishes. One obtains

(10) T(σ) = — [ ( N(σ, a)dω{a) + Cσ ,
π JJΛ

where C is independent of σ.
For convenience we shall indicate differentiation by subindices and.

use the notation

dw

(11) |w.| = -ψ- = \w.\ λ-
as

Ίz



MEROMORPHIC FUNCTIONS AND CONFORMAL METRICS 1083

Then the π^-ίόlά spherical area of the image under w of Wσ — Wo is

S(σ) = -ί (( n(α, α
π J J π Jo Jβσ (1 + I w |2)2

and we have

(13) T(σ) = Γsf(σ)dσ + Cσ .
Jo

The derivative of the characteristic function T(σ) is, up to an additive
constant, the spherical area S(σ).

As a corollary one concludes that T(σ) is convex in σ.

§3 Preliminary form of the second main theorem

9. Our next task is to compare the contributions to T(σ) of
m(σ, a) and N(σ, a). To this end we use a mass distribution

<14) dμ(a) = ρ{a)dω(a)

with density p(a) and total mass unity on the sphere A with diameter
1 above the w-plane. Again we simply postulate that p(a) is sufficiently
regular to justify subsequent operations on it. This condition will be
obviously met by the particular p we shall use.

In the (σ, s)-plane the density takes the form

(15) δ(z) = \J^MI p(w(z)) .
* (1 + I w(z) |2)2 rκ v )}

We apply the theorem on the arithmetic and geometric mean to
S(z) on βσ:

\ log 3 ds g log I δ ds ,
jβσ J Po-

or, equivalently,

(16) ( log —ds +[ logpds^ log ( 8 ds .
Jβσ p Jβσ Jβσ

This is the preliminary form of the second main theorem. The proof
of the final form consists in evaluating the three terms in (16).

10. The first term depends only on w and λ and will be expressed
in terms of T(σ), the counting function N^σ) of the multiple points of
w, and the counting function N(σ, λ"1) of the zeros of λ. The second
term in (16) depends on the mass distribution dμ. If p is chosen with
suitable singularities at given points αx, « , α g of the w-plane, then



1084 LEO SARIO

\ log p ds will be, in essence, the sum of the proximity functions m(σ, α v ).

In the third term of (16) the integral is the σ-derivative of the mass*
on w( Wσ — Wo) and the term will appear as a remainder in the finaL
form of (16). Thus the sum ΣιW(σ, αv) will be estimated in terms of
T(σ), Nλ(σ), and N(σ, λ"1). This is the second main theorem on open.
Riemann surfaces.

§4. Evaluation of I \og(δlp)ds

11. We set

(17) K(σ) = ±-\ log^-ds = -^\ log \w \ ds
4ττ hσ p 2π Jβσ 1 + | w |2

and differentiate:

(18) JP(CJ) = - L A [ log

2π dσ iβ2π dσ her 1 + \w |2 2π iβσ dσ

To evaluate the first integral we have from (4)

m(σ, oo) = — — - I log-- • τds
4π Jβσ-β0 1 + \w\2

and consequently

(19) —4-\ log- 1 ^--odm(σf oo)
cίσ Jβσ 1 + I w |2 dσ

We now impose upon λ the further condition, always met in our
applications, that log λ is harmonic except for logarithmic poles. For
the second integral in (18) the argument principle then gives

(20) -A- ( -A- log I wz\-' I ds - n(σ, -i-Λ - n(σ, w.) -n(σ, -f) + C ,
2ττ Jβσ dσ \ wzJ V λ/

where w(σ, λ"1) is the number of zeros of λ in Wσ — Wo, and C is in-
dependent of σ. The number of multiple points of w in Wσ — Wo> each
&-tuple point counted k — 1 times, is

(21) ^(σ) = w( σ, — ) — n(σ, wz) -
\ wz/

and it follows that
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K'{σ) = rφ) - 2n(σ, w) - 2

dm^'w^ - n(σ, ±) + C ,
dσ V λ/

or, by (8),

(22) K'(σ) = nx{σ) - 2T'(σ) - n(σ, —) +C .

\ x /

On setting

(23) N&) = W(σ)dσ, N(σ, —) = ['n(a, —)dσ
Jo V X / Jo \ λ /

we obtain

(24) -ί- ( log ^-ds = N&) - 2T(σ) - N(G, λ) + Cσ .
4π Jβσ p \ xJ

§5 Estimation of \\ogpds

12. Let au a2, * ,αff be g ^ 3 points of the extended w-plane.
Choose

(25) - ί log p(w) = ± log _ ! — - log ( t loglog p(w) ± log log ( t log η
2 i [w, αv] V i [w, αv]

As ί = [w, αv] —> 0, then ρ(w) —> oo as rapidly as £~~2(log ί)~2, and the mass

\\/>dα> over a ^-neighborhood of αv is dominated by a multiple of

ί"1 (log t)~2dt. Hence the total mass is finite and C in (25) can be

0

chosen to make it unity.

13. Integration of (25) yields

(26) - L ί log p(w) ds = Σ ™(σ> O - 4~ \ log Σ log r

 X ds - C ,
4ττ J^σ i 2ττ Jj3σ l [ w , α v ]

where

( log ( Σ log Γ -1 Λds ^ log Σm(σ, αv) + C .
Jβσ \ i [w, αv] / i

On observing that, by (8), m(σ, αv) ^ 7"(σ), we obtain

(27) -A- f log ^(^)ds ^ Σm(σ, αv) + O(log T(σ)) .
47Γ Jβσ 1
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§6 Estimation of log \δ ds

14. We shall now estimate

(28) ί 8 ds = M'(σ) ,

ho-
where M(σ) is the mass distributed on the image of W<r — Wo:

(29) M(σ) = Γ [ δds = (ί ^(σ, α)/o(α)Λϋ(α) .

On setting

(30) Q(σ) = [σΛf(σ)dσ = (ί iV(σ, a)ρ(a)dω(a)

we get from (8)

(31) Q(α) ^ Γ(iί) .

M'{σ) will now be estimated separately in cases σβ — oo and o β < oo.

15. For σβ = co and any constant α ^ 0, let J ' be the set of
values σ for which M'(tf) ^ ecύσM{σf% We choose an arbitrarily small
fixed σ0 > 0 and let σ > σ0 in the sequel. Then

j ' ~ Jj' ikf2 M(σ0)

For the set J " of values σ with M(σ) Sg e°iσQ(σ)2 we obtain similarly

f < c o .<
Q2

We infer that, for a $ Δ = J ' u ^", ΛP < ^3ασ Q(ί7)4 and consequently

(32) log M'(σ) < Saσ + 4 log Q(σ) .

From (31) it follows that for any a ^ 0

(33) log f δ ds = O(σ + log Γ(σ))

except perhaps in a set J so small that 1 e*σ dσ < co .

16. In the case σβ < co let
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Δ' = {σ\ M\σ) ^ eΛl{^~σ) M{σf)

with a > 0. Then

Similarly for

Δ" = {σ I M(σ) ^ e«^~<* Q(σf}

we have

J A" J A" (^

We conclude for σ φ Δ = Δr U 4" that

(33)' log ( δ ds - Of—I + log T(σ)) .
)βσ \σβ — σ /

§7* The second main theorem

17. It remains to substitute (24), (27), and (33) or (33') into (16).
We have reached the following extension of Nevanlinna's classical the-
orem to Riemann surfaces Ws endowed with our conformal metric ds
(Nos. 3, 11):

SECOND MAIN THEOREM ON RIEMANN SURFACES. Let w be a mero-
morphic function on Ws. For any finite number q ^ 3 of values
<x>i> * y Q>q the sum of the proximity functions m(σ, av) grows so slowly
that, if σβ— oo,

(34) Σm((7, O < 2T(σ) - Nτ(σ) + N^σ, —) + O(σ + log T(σ)

except perhaps in a set Δ of intervals with \ ea<x dσ < oo for a ^ 0.
J Δ

If σβ < oo, then the term O(σ + log T(σ)) in (34) is replaced by

(34') θ( 1 + logT(σ)
\σβ — σ

£/&e resulting inequality holds except perhaps in a set Δ so small

that f β^^-^ dσ < oo for a > 0.

18. An equivalent formulation of (34) is readily found by substi-
tuting for m(σ, αv) from (8). For σβ = oo we have
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(35) (g - 2)T(σ) < Σ>N(σ, αv) - JVi(σ) + N(σ, — + 0(σ + log T(p)) ,

while for σβ < co the term 0(<7 + log T(σ)) is replaced by (34'). Both
inequalities are valid except perhaps in Δ.

19. The presence of exceptional intervals Δ in the second main
theorem was a consequence of the nature of estimation of M'(σ). Since
we had to start from an upper bound for the integral of the integral

of ikf'(σ), viz., \M(σ)dσ ^ T(σ), a bound cannot always be given for

M\σ) for all σ. If, however, T(σ) and N(σ, λ"1) grow sufficiently

slowly, we shall show that the second main theorem holds without

exceptional intervals Δ.

THEOREM. Suppose T(σ) and N{σ, λ"1) do not grow more rapidly
than e"σ for some a > 0, σβ — co. Then

(36) (q - 2)T(σ) + N^σ) < ΣΛ/Xσ, a*) + N(O, —) + O(σ) .
i \ λ /

/ / σβ < co and T(σ) and N(σ, λ"1) are dominated by βc"/(<Γ^~σ) for
some a > 0, then O(σ) in (36) is to be replaced by 0(1 j\σβ — σ)).

Proof. We let N(σ) = ΣiN(σ, av). For σβ = co it follows from
T{σ) -= O(eΛσ) that log T(σ) = O(α ), and (36) holds for σ φ Δ. Now let
σ be an arbitrary point of an interval in Δ and denote by σr the right
end point of that interval. Then (36) is true for σr. Since (q — 2)T(σ)
+ N^σ) is an increasing function, we have

(37) (q - 2)T(σ) + Nx(σ) < N(σ) + N(σ, j-} + [N(σ') - N(σ)]

From N(σ) = O(eωσ) and the convexity of N(σ) it follows that N'(σ) =
eΊσ dσ for Ί>a. By the defin-

σ

ing property of Δf the integral is 0(1). Similarly N{σ\ λ"1) — N(σ, λ"1) =

eΛ(Tdσ, hence σf — σ — 0(1), and we
conclude that O(σ') = O(σ). Statement (36) follows.

If σβ < oo, we obtain analogously log T(σ) == O(l/(σβ — σ)) and
N'(σ) = Oίe7^^-05^ for some 7 > a. The proof, mutatis mutandis, remains
valid.
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§8* Capacity metric

20. To study consequences of the second main theorem we shall
now leave the above generality of λ and introduce a specific metric.

Let Ω be the interior of a compact bordered subsurface of W, with
Wo c Ω, and choose a point ζ e Wo. Consider the capacity function pΩ

of the boundary βΩ of Ω. By definition,

(38) pΩ(z) = ^-\og\z-ξ\+h(z)

near ξ in a fixed parametric disk, h(z) being harmonic with h(ζ) = 0.
Moreover, pΩ = kΩ = const, on βQ. The functions pΩ form a normal
family, and any limiting function pβ is a capacity function of β on TF
with pole at ζ [17, 20]. The constant kΩ increases with Ω and tends to
a limit kβ ̂  oo. The limiting function p β is unique if kβ < cχ>. The
capacity of the ideal boundary /3 is defined as cβ = e~fc .̂

For orientation we refer here to two known [3] properties of pβf

although they will not be needed in the sequel: Among all harmonic
functions p on W with the behavior (38) at ξ, sup^ p is minimized by
pβ and the minimum is kβ. The surface W is parabolic if and only if
cβ = 0.

21. We choose the conformal metric

(39) ds = \gτaάpβ\\dz\ .

Set σ = k and denote by βk the level line pβ(z) = fc with 0 ̂  k < kβ. We
may assume that the parametric disk for (38) was so chosen that β0 is
an analytic Jordan curve. Then Wo is characterized by pβ(z) < 0, and
condition (2) becomes

(40) lim pβ{z) = kβ
Ω-+W

with 2 ^ f l . Condition (3), \ ds = 1, is trivially fulfilled. We shall

designate by TΓP a Riemann surface TΓ with property (40) and with
metric (39).

22. Denote by Wk the region pβ(z) < k and consider the Euler
characteristic

(41) e(k) = —no + v^ — nt

of T7fc — Tfo in a triangulation with ^ 0 vertices, nx edges, and n2 faces.
Without loss of generality we may assume that βk consists of a finite
number of analytic Jordan curves. This can always be achieved by a
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sufficiently small decrease of k without affecting the subsequent re-
asoning.

Our metric (39) has the following property:

LEMMA. The number of zeros in Wk — Wo of grad pβ is the Euler
characteristic e(k) of Wk — Wo.

The geometric content of the lemma is clear. In fact, the number
n(k, λ"1) of zeros of λ = | grad pβ \ is the same as the number of zeros
of the derivative of rj(z) = exp 2π(pβ + ipβ) in Wk — Wo. If βk consists
of one analytic Jordan curve, then the image under rj of Wk — Wo is a
circluar annulus with radii 1, e2πk, and tf{z) has no zeros. If βk consists
of two curves, some level line pβ — const, issuing from β0 branches off
at a zero z0 of Ύ]\Z) in Wk — Wo to reach the two ft-eurves. If Wk — Wo

is cut along this level line from z0 to βk, the two shores of the cut
appear under rj(z) as two radial slits terminating at | η | = e2πk. More
generally, if the connectivity of Wk — Wo is c, then there are c — 2
zeros of 7)\z) and 2(c — 2) radial slits in the image annulus. A similar
reasoning shows that, for positive genus g of Wk — Wo, every handle
gives rise to two zeros of η'(z) and two radial slits in the interior of
the annulus. The total number of zeros of ηf{z) in Wk — Wo is thus

(42) n(k, λ"1) = 2g + c - 2 .

But this is known to be the Euler characteristic e(k) of a bordered surface
of genus g and connectivity c.

23. To establish our lemma analytically we choose the following
simple proof given by B. Rodin in his doctoral dissertation [13]. It
shows that the lemma is an immediate consequence of the Riemann-Roch
theorem.

Form the double Wk of Wk by reflecting Wk with respect to βk

([3], p. 119), and denote by g the genus of the closed surface Wk.
Extend dpβ + idpβ analytically across βk to Wk so as to obtain a
meromorphic differential with two simple poles. By the Rimann-Roch
theorem (e.g. [3], p. 324) the degree of all divisors in the canonical
class on Wk is 2g — 2. It follows that dpβ + idpβ has 2g zeros in Wk.
By symmetry and by our convention in No. 22, g of these zeros are in
Wk; by our choice of Wo they all are in Wk — Wo. But g = 2g + c — 2,
where g and c are the genus and the number of contours of W — Wo.
This completes the proof.

24. We introduce the integrated Euler characteristic
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(43) Eik) = (* e(k) dk
JO

and write our result

(44) n(k, I grad pβ |~0 - e(k)

in the form

(45) N(k, I grader 1) = E(k) .

On substituting this into (35) we obtain the following form of the
second main theorem:

(46) (q - 2)T(k) < ±N(k, αv) - Nλ(k) + E(k) + O(k + log T(k)) ,
1

or, equivalently,

(460 Σm(fc, αv) < 2T(k) - JVi(fc) + E(k) + O(k + log T(k)) .
1

Both inequalities hold for kβ = oo, while for kβ < co the term O(& +
log Γ(fc)) is to be replaced by O(l/(fcβ - fc) + log Γ(fc)).

§9 Extension of Picard^s theorem

25. We know from No. 8 that T(k) is convex in k. We now ex-
clude from our consideration the degenerate case by assuming that

(47) lim

if Jfcβ = oo. By virtue of (13) this means that we only permit functions
with unbounded spherical area S(k) of the image under w(z) of
Wk - Wo.

In the case kβ < co we similarly make the assumption

(47') Πm T(k)(kβ - k) = co ,

which implies that S(k) grows more rapidly than ll(kβ — k).
An illustrative case is the extended plane punctured at a countable

point set. On this region, despite its weak boundary, there trivially
are meromorphic functions with infinitely many Picard values, e.g., the
identity function. To exclude such functions of no interest we require
that there be, in some sense, an essential singularity on the ideal
boundary β. The above condition has this effect:

A meromorphic function with property (47) or (470 comes arbitrarily
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close to every value a in every boundary neighborhood Wp — Wk.

To see this suppose [w(z)9 a] > ε for all ze Wp — Wko and some a,
e, k0 < kβ. Then m(k, a) < (l/2π)logs"1 and N(k, a) ^ n(k0, a)k for k > k0,
and we have T(k) = O(&), a contradiction.

26. We set

(48) η =

and denote by P the number of Picard values of w(z). For nondegen-
erate meromorphic functions characterized by property (47) or (47') on
a Riemann surface Wp we have from (46)

(49) P^2+η- lim

or more simply:

PICARD'S THEOREM ON RIEMANN SURFACES. The number of Picard
values of w defined on Wp exceeds at most by two the upper limit of
the integrated Euler characteristic divided by the Nevanlinna charac-
teristic:

(50) P ^ 2 + η .

For Riemann surfaces Ws of No. 17 an analogous Picard theorem
can be obtained by replacing k by σ in (47) and (47'), and by substi-
tuting N(σ, λ-1) for E(k) in (48).

For functions with E(k)/T(k) —>0 the Picard theorem takes the
simple form P ^ 2 . In particular, this holds for functions on a Riemann
surface of finite Euler characteristic, i.e., of finite genus and a finite
number of boundary components. In the special case of a plane punc-
tured at a finite number of points this is the theorem of G. af Hallstrom
[6]. For the nonpunctured plane we have the classical Picard theorem.

27. We claim:

THEOREM. The bound 2 + η for P is sharp.

Specifically, for any integer d ^ 2 there is a Riemann surface Wp

and a meromorphic function w on Wp such that P = 2 + Ύ] = d.

28. For an even d we can make use of the well-known function
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w =
}* — %

by choosing n = d\2. To this end consider the covering surface W of
the z = a? + %-plane that consists of ?ι sheets with branch points of
multiplicity n at z = iπ(i + h),h = 0, ± 1 , ± 2 , . The sheets are
attached to each other in the usual manner along the edges of the
slits from z — iττ(£ + 2h) to ΐ π ( | + 2h). The function (51) is mero-
morphic on W.

To evaluate E(k)/T(k) choose the capacity function pβ — (l/2πn) log \z\
on W. It differs from the usual capacity function in that it has
several logarithmic poles, one on each of the n sheets above z — 0.
However, the behavior of pβ in a boundary neighborhood is unchanged
and the reasoning in § 8 remains valid. The set Wo with pβ < 0 consists
of n disks | z \ < 1, but the disconnectedness of Wo has no bearing on
our reasoning concerning W — Wo. The metric is ds = | dz \\2πn \ z |,
the set βk lies above | z \ = β27rwfc, and the region PΓft lies above \z\ < e2itnk.

In evaluating e(k) and ^(fc, CXD) for rj we may consider TΓ* instead
of Wk — WQ, in view of klT(k)-^0 and of the fact that Wo only con-
tributes fixed finite quantities to the'above functions for a given w.

For the Euler characteristic e(k) of Wk we have

(52) e(k) = ne0 (k) + Σbv ,

where eQ(k) is the characteristic of the disk | z \ < e2πnk covered by Wk,
and Σbv is the sum of the orders of branch points of Wk. Since eQ(k)
= — 1, and I'δv above | z \ < 2π is 4(^ — 1), we obtain on disregarding
bounded quantities,

(53) e(k)

Integration from 0 to k yields

(54)

- 1)

•— 1

2ττ

The poles w are the zeros of ez — i, that is, zά — %{π\2 + 2πj) with
all integers j . Every pole is simple, and there is only one point of Wk

above each zjt We conclude that

(55)

Consequently

<56)

φ,
2ττ

- )
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From N(k, oo) < T(k) it follows that η ^ 2n - 2. Thus theorem
(50) states that the number P of Picard values cannot exceed 2n. But
this is precisely the number of values w = eίvπln, v = 0, , 2n — 1,
uncovered by w(z) (cf. below), and we have proved the sharpness of
bound (50) for even d.

29. A geometric description of the image under w of W with the
2n Picard values eίvπln may be illuminating. We first take the ^-sheeted
horizontal strip S of W between y = 0 and y — 2π. It is mapped by
s = ez onto an ^-sheeted s-plane Ss slit along the positive real axis
and with branch points of order n — 1 at s = ± i . The linear function
t = (s + i)l(s — i) maps Ss onto an ^-sheeted ί-plane St slit along the
upper half of 11 \ = 1, and with branch points of order n — 1 at t — 0,
co. The function w — ̂  t maps S* onto a 1-sheeted region SQ

W of the
w-plane less slits L, along | w \ = 1 from β2/A7ri/w to e^+i)«/», ^ = o, 1,
w - 1 .

Each ^-sheeted strip 2τrfe ^ y ^ 2π(h + 1) of W is mapped by w
onto a duplicate St of SI,. The image Ww of W is obtained by identi-
fying the inner edges | w \ = 1 — 0 of all slits Ly on St with the outer
edges I w I = 1 + 0 of the corresponding slits L3 on St+1. The process
creates logarithmic branch points at the end points of the slits Lj.
The function w has 2n Picard values eiyπln, v — 0, , 2n — 1.

Regarding the sharpness of (50) for odd integers d the reader is
referred to an example constructed by B. Rodin in his doctoral disserta-
tion [13].

30. The surface described above has no algebraic branch points,
hence Nλ(k) = 0. The question now arises whether or not the bound in
(49) can be reached when the surface is so strongly ramified that lim
(NjKJήlTik)) > 0. We again use (51) and form the function w = wm,
where m is a factor of 2n. A computation similar to the one in Nos.
28, 29 yields η S (2n - 2)/ra, hence by (49)

(57) P
m

For m — 1 we again have the bound 2n. Since P and 2njm are integers
we conclude for m > 1 ίnat P cannot exceed 2n/m. But this is clearly
the number of Picard values of w. For any integer q ^ 2 we can
choose n — q and m = 2, say, and obtain q Picard values. We have
shown that the bound in (49) is sharp for all positive integers.

§ 10- Defect and ramification relations

31. We conclude by listing a number of standard consequences of
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the second main theorem, extended to meromorphic functions w with
(47) or (47') on Riemann surfaces Wp.

The counterpart of the Pίcard-Borel theorem reads: There are at
most 2 + 7] values αv for which lim (N(k, αv)/Γ(&)) = 0.

For the proof we only have to choose q > 2 + η values av in (46)
with N(kfav)IT(k)-^0 to arrive at a contradiction.

32. Consider the defect

of w. If ΎJ < oo, then by (46') the number of values a with δ(a) >
(η + 2)jn is less than n and one infers that there are only a countable
number of values a with δ(a) > 0. The following extension of Nevan-
linna's defect relation results:

(58) Σδ(a) ^ 2 + η .

33. Let nλ{k, a) be the number of multiple α-points of w in

Wk — Wo, an ί-tuple point being counted i — 1 times. Let Nx{k, a) =

n-JJc, a)dk. The ramification index of a is defined as

lc-+kβ 1 (fC)

It is clear that the set of all multiple points of a given w is countable
and that

i ί m ,

T(k) ~ —β T(k)

One obtains the generalization of Nevanlinna's ramification relation:

(59) Σϋ(a) £ 2 + η .

34. Relations (58) and (59) are, of course, special cases of the
following consequence of (46'):

(60) Σ8(a) + Σϋ{a) S 2 + η .

For the sum d(a) + &{a) with a given α one has the inequality

(61) δ(a) + ΰ(a) ^ 1 .

This is obtained on dividing

T(k) = m(k, a) + N(k, a) + O(k)
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by T(k) and on observing that Nx(kf a) S N(k, a).

35. The contribution to T(fc) by the sum m(fc, a) + N^k, a) is
measured by

θ(a) = lim ^^-

The meaning of θ(a) is clarified by considering the number n(k, a) of
n(k, a)dk

_̂ o

and note that n(k, a) — n(k, a) — nx(k, a) and N(k, a) = N(k, a) + Nλ(k, a).
It follows that

h a) + m(k, a) - T(Je) - N(k, a) + O(k)

and consequently

For the sum of the ^(α) we have the bound

(62) Σθ(a) S 2 + η .

In fact,

Σm(k, a) +
^ \[m 2 + ^ .

T{k) ~~ k^rβ T(k) ~~

36. A value a is termed totally ramified if the equation w(z) = a
has no simple roots. The Nevanlίnna relation for totally ramified
values also can be generalized: their number does not exceed 4 + 2f).
In fact, for such α, n(k, a) g 2n(k, a). One concludes that

θ(a) ^ 1 - λΈE{N(k, α)/Γ(fc)) ^ 1 .
2 fe-fcβ 2

The statement follows from (62).

37. It is an open question whether or not there are functions on
a given W with one of the following properties:

(a) P=2 + V,
(b) P - 0 but Σδ(a) = 2 + η,
(c) Σ#(a) = 2 + V,
(d) there are 4 + 2^ totally ramified points.



MEROMORPHIC FUNCTIONS AND CONFORMAL M E T R I C S 1097

BIBLIOGRAPHY

1. L. Ahlfors, ϋber eine Methode in der Theorie der meromorphen Funktionen, Soc. Sci.
Fenn. Comm. Phys. Math. VIII. 10 (1935), 14 pp.
2. , ϋber die Anwendung differentialgeometrischer Methoden zur Untersuchung
von ϋberlagerungsfiachen, Acta Soc. Sci. Fenn. Nova Ser. A. II. 6 (1937), 17 pp.
3. L. V. Ahlfors and L. Sario, Riemann surfaces, Princeton University Press, Princeton,
1950, 382 pp.
4. S. Chern, Complex analytic mappings of Riemann surfaces I, Amer. J, Math. 82, 2
(I960), 323-337.
5. , The integrated form of the first main theorem on complex analytic mappings
in several complex variales, Ann. of Math. 7 1 (1960), 536-552.

<6. G. af Hallstrδm, ϋber meromorphe Funktionen mit mehrfach zusammenhdngenden
Existenzgebieten, Acta Acad. Aboensis, Math. Phys. XII. 8 (1939), 5-100.
7. M. Heins, Riemann surfaces of infinite genus, Ann. of Math. 55, 2 (1952), 296-317.
8. K. Kunugui, Sur Vallure dfune function analytique uniforme au voisinage d'un
point frontiere de son domaine de definition, Japan. J. Math. 18 (1942), 1-39.

*9. L. Myrberg, ϋber meromorphe Funktionen und Kovarianten auf Riemannschen
Flachen, Ann. Acad. Sci. Fenn. A. I 244 (1957), 17 pp.
10. F. Nevanlinna, ϋber die Anwendung einer Klasse von uniformisierenden Transzen-
denten zur Untersuchuny der Wertverteilung analytischer Funktionen, Acta Math. 50
•(1927), 159-188.
11. R. Nevanlinna, Zur Theorie der meromorphen Funktionen, Acta Math 46 (1925), 1-99.
12. •, Eindeutige analytische Funktionen, Springer, Berlin-Gottingen-Heidelberg,
1953, 379 pp.
13. B. Rodin, Reproducing formulas on Riemann surfaces, Doctoral dissertation, University

•of California, Los Angeles, 1961, 71 pp.
14. L. Sario, The second fundamental theorem of meromorphic functions on abstract
Riemann surfaces, Contract DA-04-495-ORD-722, Office of Ordnance Research, U. S. Army,
Tech. Rep. 18, September, 1960, 16 pp.
15. , A Picard-type theorem on open Riemann surfaces, ibid., Tech. Rep. 20,

October, 1960, 17 pp.
16. , Meromorphic maps of arbitrary Riemann surfaces, ibid., Tech. Rep. 22,
November, 1960, 18 pp.
17. , Capacity of the boundary and of a boundary component, Ann. of Math. (2)

.59 (1954), 135-144.
18. , Islands and peninsulas on arbitrary Riemann surfaces, Trans. Amer. Math.
Soc. (to appear).
19. J. Tamura, Meromorphic functions on open Riemann surfaces, Sci. Papers Coll. Gen.
Ed. Univ. Tokyo 9, 2 (1959), 175-186.

.20. M. Tsuji, Existence of a potential function with a prescribed singularity on any
Riemann surface, Tόhoku Math. J. (2) 4 (1952), 54-68.

.21. , Theory of meromorphic functions on an open Riemann surface with null
boundary, Nagoya Math. J. 6 (1953), 137-150.
22. Y. Tumura, Quelques applications de la theorie de M. Ahlfors, Japan. J. Math. 18
(1942), 303-322.

UNIVERSITY OF CALIFORNIA, LOS ANGELES






