ON DIRECT SUMS AND PRODUCTS OF MODULES

Stephen U. Chase

A well-known theorem of the theory of abelian groups states that the direct product of an infinite number of infinite cyclic groups is not free ([6], p. 48.) Two generalizations of this result to modules over various rings have been presented in earlier papers of the author ([3], [4].) In this note we exhibit a broader generalization which contains the preceding ones as special cases.

Moreover, it has other applications. For example, it yields an easy proof of a part of a result of Baumslag and Blackburn [2] which gives necessary conditions under which the direct sum of a sequence of abelian groups is a direct summand of their direct product. We also use it to prove the following variant of a result of Baer [1]: If a torsion group T is an epimorphic image of a direct product of a sequence of finitely generated abelian groups, then T is the direct sum of a divisible group and a group of bounded order. Finally, we derive a property of modules over a Dedekind ring which, for the ring Z of rational integers, reduces to the following recent theorem of Rotman [10] and Nunke [9]: If A is an abelian group such that $\operatorname{Ext}_{z}(A, T)=0$ for any torsion group T, then A is slender.

In this note all rings have identities and all modules are unitary.

1. The main theorem. Our discussion will be based on the following technical device.

Definition 1.1. Let \mathscr{F} be a collection of principal right ideals of a ring R. \mathscr{F} will be called a filter of principal right ideals if, whenever $a R$ and $b R$ are in \mathscr{F}, there exists $c \in a R \cap b R$ such that $c R$ is in \mathscr{F}.

We proceed immediately to the principal result of this note.
Theorem 1.2. Let $A^{(1)}, A^{(2)}, \cdots$ be a sequence of left modules over $a \operatorname{ring} R$, and set $A=\prod_{i=1}^{\infty} A^{(i)}, A_{n}=\prod_{i=n+1}^{\infty} A^{(i)}$. Let $C=\sum_{a} \oplus C_{\alpha}$, where $\left\{C_{\alpha}\right\}$ is a family of left R-modules and α traces an index set I. Let $f: A \rightarrow C$ be an R-homomorphism, and denote by $f_{\alpha}: A \rightarrow C_{\alpha}$ the composition of f with the projection of C onto C_{α}. Finally, let \mathscr{F} be a filter of principal right ideals of R. Then there exists $a R$ in \mathscr{F} and an integer $n>0$ such that $f_{\alpha}\left(a A_{n}\right) \subseteq \bigcap_{0 \hat{R} \in \mathscr{F}} b C_{a}$ for all but a finite number of α in I.

Proof. Assume that the statement is false. We shall first construct
inductively sequences $\left\{x_{n}\right\} \cong A,\left\{\alpha_{n} R\right\} \subseteq \mathscr{F}$, and $\left\{\alpha_{n}\right\} \subseteq I$ such that the following conditions hold:
(i) $a_{n} R \supseteqq a_{n+1} R$.
(ii) $x_{n} \in a_{n} A_{n}$.
(iii) $f_{\alpha_{n}}\left(x_{n}\right) \equiv \equiv 0\left(\bmod a_{n+1} C_{\alpha_{n}}\right)$.
(iv) $f_{\alpha_{n}}\left(x_{k}\right)=0$ for $k<n$.

We proceed as follows. Select any $a_{1} R$ in \mathscr{F}. Then there exists $\alpha_{1} \in I$ such that $f_{\alpha_{1}}\left(a_{1} A_{1}\right) \not \subset \bigcap_{i R \in \mathscr{G}} b C_{\alpha_{1}}$, and hence we may select $b R$ in \mathscr{F} such that $f_{\alpha_{1}}\left(a_{1} A_{1}\right) \not \subset b C_{\alpha_{1}}$. Since \mathscr{F} is a filter of principal right ideals, there exists $a_{2} \in a_{1} R \cap b R$ such that $a_{2} R \in \mathscr{F}$, in which case $f_{\alpha_{1}}\left(a_{1} A_{1}\right) \not \subset a_{2} C_{\alpha_{1}}$. Hence there exists $x_{1} \in a_{1} A_{1}$ such that $f_{\alpha_{1}}\left(x_{1}\right) \not \equiv 0$ $\left(\bmod a_{2} C_{\alpha_{1}}\right)$. Then conditions (i)-(iv) above are satisfied for $n=1$.

Proceed by induction on n; assume that the sequences $\left\{x_{k}\right\}$ and $\left\{\alpha_{k}\right\}$ have been constructed for $k<n$ and the sequence $\left\{a_{k} R\right\}$ has been constructed for $k \leqq n$ such that conditions (i)-(iv) are satisfied. Now, there exist $\beta_{1}, \cdots, \beta_{r} \in I$ such that, if $\alpha \neq \beta_{1}, \cdots, \beta_{r}$, then $f_{\alpha}\left(x_{k}\right)=0$ for all $k<n$. We may then select $\alpha_{n} \neq \beta_{1}, \cdots, \beta_{r}$ such that $f_{\alpha_{n}}\left(a_{n} A_{n}\right) \not \subset \bigcap_{i R \in \mathscr{G}} b C_{\alpha_{n}}$; for, if we could not do so, then the theorem would be true. Hence there exists $b R \in \mathscr{F}$ such that $f_{\alpha_{n}}\left(a_{n} A_{n}\right) \not \subset b C_{\alpha_{n}}$. Since \mathscr{F} is a filter of principal right ideals, there exists $a_{n+1} \in a_{n} R \cap b R$ such that $a_{n+1} R$ is in \mathscr{F}, in which case $f_{\alpha_{n}}\left(a_{n} A_{n}\right) \not \subset a_{n+1} C_{\alpha_{n}}$. Thus we may select $x_{n} \in a_{n} A_{n}$ such that $f_{\alpha_{n}}\left(x_{n}\right) \not \equiv 0\left(\bmod a_{n+1} C_{a_{n}}\right)$. It is then clear that the sequences $\left\{x_{k}\right\}$ and $\left\{\alpha_{k}\right\}$ for $k \leqq n$ and $\left\{a_{k} R\right\}$ for $k \leqq n+1$ satisfy conditions (i)-(iv), and hence the construction of all three sequences is complete.

Now write $x_{k}=\left(x_{k}^{(i)}\right)$, where $x_{k}^{(i)} \in A^{(i)}$. Since $x_{k} \in a_{k} A_{k}, x_{k}^{(i)}=0$ for $k>i$, and $x^{(i)}=\sum_{k=1}^{\infty} x_{k}^{(i)}$ is a well-defined element of $A^{(i)}$. Also, since $a_{n} R \supseteqq a_{n+1} R \supseteq \cdots$, it follows that there exists $y_{n}^{(i)} \in A^{(i)}$ such that $x^{(i)}=$ $x_{1}^{(i)}+\cdots+x_{n}^{(i)}+a_{n+1} y_{n}^{(i)}$. Therefore, setting $x=\left(x^{(i)}\right)$ and $y_{n}=\left(y_{n}^{(i)}\right)$, we see that $x=x_{1}+\cdots+x_{n}+a_{n+1} y_{n}$ for all $n \geqq 1$.

It follows immediately from inspection of conditions (iii) and (iv) above that $\alpha_{i} \neq \alpha_{j}$ if $i \neq j$. Hence there exists n such that $f_{\alpha_{n}}(x)=0$. Writing $x=x_{1}+\cdots+x_{n}+a_{n+1} y_{n}$ as above, we may then apply $f_{\alpha_{n}}$ and use condition (iv) to conclude that $f_{\alpha_{n}}\left(x_{n}\right)=-a_{n+1} f_{\alpha_{n}}\left(y_{n}\right) \equiv 0(\bmod$ $a_{n+1} C_{a_{n}}$), contradicting condition (iii). The proof of the theorem is hence complete.

In the following discussion we shall use the symbol $|X|$ to denote the cardinality of the set X.

Corollary 1.3 ([3], Theorem 3.1, p. 464). Let R be a ring, and $A=\Pi_{\alpha \in J} R^{(\alpha)}$, where $R^{(\alpha)} \approx R$ as a left R-module and $|J| \geqq \boldsymbol{S}_{0}$. Suppose that A is a pure submodule of $C=\Sigma_{\beta} \oplus C_{\beta}$, where each C_{β} is a left R -
module and $\left|C_{\beta}\right| \leqq|J| .{ }^{1} \quad$ Then R must satisfy the descending chain condition on principal right ideals.

Proof. Since J is an infinite set, it is easy to see that $A \approx \prod_{i=1}^{\infty} A^{(i)}$, where $A^{(i)} \approx A$, and so without further ado we shall identify A with $\prod_{i=1}^{\infty} A^{(i)}$. Let $f: A \rightarrow C$ be the inclusion mapping, and $f_{\beta}: A \rightarrow C_{\beta}$ be the composition of f with the projection of C onto C_{β}. Finally, set $A_{n}=\prod_{i=n+1}^{\infty} A^{(i)}$.

Suppose that the statement is false. Then there exists a strictly descending infinite chain $a_{1} R \supsetneqq a_{2} R \supsetneqq \cdots$ of principal right ideals of R. These ideals obviously constitute a filter of principal right ideals of R, and so we may apply Theorem 1.2 to conclude that there exists $n \geqq 1$ and $\beta_{1}, \cdots, \beta_{r}$ such that $f_{\beta}\left(a_{n} A_{n}\right) \cong a_{n+1} C_{\beta}$ for $\beta \neq \beta_{1}, \cdots, \beta_{r}$.

Now let $C^{\prime}=C_{\beta_{1}} \oplus \cdots \oplus C_{\beta_{r}}$; then the projection of C onto C^{\prime} induces a Z-homomorphism $g: a_{n} C / a_{n+1} C \rightarrow a_{n} C^{\prime} / a_{n+1} C^{\prime}$, where Z is the ring of rational integers. Also, the restriction of f to A_{n} induces a Z homomorphism $h: a_{n} A_{n} / a_{n+1} A_{n} \rightarrow a_{n} C / a_{n+1} C . \quad A_{n}$ is a direct summand of A, which is a pure submodule of C, and so A_{n} is likewise a pure submodule of C. Hence h is a monomorphism. We may then apply the conclusion of the preceding paragraph to obtain that the composition $g h$ is a monomorphism. In particular, $\left|a_{n} A_{n}\right| a_{n+1} A_{n}\left|\leqq\left|a_{n} C^{\prime}\right| a_{n+1} C^{\prime}\right| \leqq\left|C^{\prime}\right|$.

Observe that $\left|C^{\prime}\right| \leqq|J|$, since J is infinite and $\left|C_{\beta}\right| \leqq|J|$ for all β. However, since $a_{n} R \neq a_{n+1} R, a_{n} R / a_{n+1} R$ contains at least two elements; therefore $\left|a_{n} A_{n}\right| a_{n+1} A_{n}\left|=\left|a_{n} A / a_{n+1} A\right| \geqq 2^{|J|}>|J|\right.$. We have thus reached a contradiction, and the corollary is proved.
2. Applications to integral domains. Throughout this section R will be an integral domain. If C is an R-module, we shall denote the maximal divisible submodule of C by $d(C)$. In addition, we shall write $R^{\omega} C=\bigcap a C$, where a traces the nonzero elements of R.

Our principal result concerning modules over integral domains is the following theorem.

Theorem 2.1. Let $\left\{A^{(i)}\right\}$ be a sequence of R-modules, and set $A=$ $\Pi_{i=1}^{\infty} A^{(i)}, A_{n}=\prod_{i=n+1}^{\infty} A^{(i)}$. Let $C=\sum_{\alpha} \oplus C_{\alpha}$, where each C_{a} is an R module. Let $f: A \rightarrow C$ be an R-homomorphism, and $f_{\alpha}: A \rightarrow C_{a}$ be the composition of f with the projection of C onto C_{a}. Then there exists an integer $n \geqq 1$ and $a \in R, a \neq 0$, such that $a f_{\alpha}\left(A_{n}\right) \subseteq R^{\omega} C_{\alpha}$ for all but finitely many α.

Proof. Let \mathscr{F} be the set of all nonzero principal ideals of R. Since R is an integral domain, it is clear that \mathscr{F} is a filter of principal ideals. The theorem then follows immediately from Theorem 1.2.

[^0]Corollary 2.2 (see [4].) Same hypotheses and notation as in Theorem 2.1, with the exception that now each C_{α} is assumed to be torsion-free. Then there exists an integer $n \geqq 1$ such that $f_{\alpha}\left(A_{n}\right) \subseteq d\left(C_{a}\right)$ for all but finitely many α. In particular, if each C_{α} is reduced (i.e., has no divisible submodules) then $f_{\alpha}\left(A_{n}\right)=0$ for all but finitely many α.

Proof. This follows immediately from Theorem 2.1 and the trivial observation that, since each C_{α} is torsion-free, $R^{\omega} C_{\alpha}=d\left(C_{\alpha}\right)$.

Next we present our proof of the afore-mentioned result of Baumslag and Blackburn concerning direct summands of direct products of abelian groups ([2], Theorem 1, p. 403.)

Theorem 2.3. Let $\left\{A^{(i)}\right\}$ be a sequence of modules over an integral domain R, and set $A=\prod_{i=1}^{\infty} A^{(i)}, C=\sum_{i=1}^{\infty} \oplus A^{(i)}$ (then C is, in the usual way, a submodule of A.) If C is a direct summand of A, then there exists $n \geqq 1$ and $a \neq 0$ in R such that $a A^{(i)} \subseteq d\left(A^{(i)}\right)$ for $i>n$.

Proof. Assume that C is a direct summand of A, and let $f: A \rightarrow C$ be the projection. Then the composition of f with the projection of C onto $A^{(i)}$ is an epimorphism $f_{i}: A \rightarrow A^{(i)}$. We then obtain from an easy application of Theorem 2.1 that there exists $n \geqq 1$ and $a \neq 0$ in R such that $a f_{i}(A) \subseteq R^{\omega} A^{(i)}$. Since each f_{i} is an epimorphism, it follows that $a A^{(i)} \subseteq R^{\omega} A^{(i)}$ for $i>n$.

Now let $z \in R^{\omega} A^{(i)}$, where $i>n$. If $b \neq 0$ is in R, then there exists $x \in A^{(i)}$ such that $a b x=z$. Hence, setting $y=a x$, we have that $y \in R^{\omega} A^{(i)}$ and $b y=z$. It then follows that $R^{\omega} A^{(i)}$ is divisible, and so $R^{\omega} A^{(i)} \subseteq$ $d\left(A^{(i)}\right)$. Therefore $a A^{(i)} \subseteq R^{\omega} A^{(i)} \subseteq d\left(A^{(i)}\right)$ for $i>n$, completing the proof of the theorem.

We end this section with a proposition which will be useful in the proof of some later results.

Proposition 2.4. Let $\left\{A^{(i)}\right\}$ be a sequence of finitely generated modules over an integral domain R, and set $A=\prod_{i=1}^{\infty} A^{(i)}$. Let $C=$ $\sum_{\alpha} \oplus C_{\alpha}$, where each C_{α} is a finitely generated torsion R-module. If $f: A \rightarrow C$ is an R-homomorphism, then there exists $c \in R$ such that $c f(A)=$ 0 but $c \neq 0$.

Proof. As before we let \mathscr{F} be the filter of all nonzero principal ideals of R. Clearly $R^{\omega} C_{\alpha}=0$ for all α, and so we may apply Theorem 2.1 to obtain $a \neq 0$ in R and an integer $n>0$ such that $a f_{\alpha}\left(A_{n}\right)=0$ for all but finitely many α, where $A_{n}=\prod_{i=n+1}^{\infty} A^{(i)}$ and $f_{\alpha}: A \rightarrow C_{\alpha}$ is defined as before. Say this condition holds for $\alpha \neq \alpha_{1}, \cdots, \alpha_{r}$; then, since each C_{α} is finitely generated and torsion, there exists $a^{\prime} \neq 0$ in R such that $a^{\prime} C_{\alpha_{i}}=0$ for $i=1, \cdots, r$, in which case $a \alpha^{\prime} f\left(A_{n}\right)=0$. Since
each $A^{(i)}$ is finitely generated and C is a torsion module, there exists $a^{\prime \prime} \neq 0$ in R such that $a^{\prime \prime} f\left(A^{(i)}\right)=0$ for $i \leqq n$. Set $c=a a^{\prime} a^{\prime \prime}$; then $c \neq 0$ and, since $A=A^{(1)} \oplus \cdots \oplus A^{(n)} \oplus A_{n}$, it is clear that $c f(A)=0$, completing the proof of the proposition.
3. Applications to Abelian groups. This section is devoted to a discussion of the results of Baer, Rotman, and Nunke mentioned in the introduction.

Theorem 3.1 (see [1], Lemma 4.1, p. 231). Let $\left\{A^{(i)}\right\}$ be a sequence of finitely generated modules over a principal ideal domain R, and set $A=\prod_{i=1}^{\infty} A^{(i)}$. If C is a torsion R-module which is an epimorphic image of A, then C is the direct sum of a divisible module and a module of bounded order.

Proof. For each prime p in R, let C_{p} be the p-primary component of C and C_{p}^{\prime} be a basic submodule of C_{p} (see [5], p. 98;) i.e., C_{p}^{\prime} is a direct sum of cyclic modules and is a pure submodule of C_{p}, and C_{p} / C_{p}^{\prime} is divisible. ${ }^{2}$ Set $C^{\prime}=\sum_{p} \oplus C_{p}^{\prime}$; then, since $C=\sum_{p} \oplus C_{p}, C^{\prime}$ is a pure submodule of C and C / C^{\prime} is divisible. Also, C^{\prime} is a direct sum of cyclic modules.

We now apply the fundamental result of Szele ([5], Theorem 32.1, p. 106) to conclude that C_{p}^{\prime} is an endomorphic image of C_{p} for each prime p, from which it follows that C^{\prime} is an endomorphic image of C. Since by hypothesis C is an epimorphic image of A, we then see that there exists an epimorphism $f: A \rightarrow C^{\prime}$. By Proposition 2.4, there exists $c \neq 0$ in R such that $c C=c f(A)=0$; i.e., C^{\prime} has bounded order. Since C^{\prime} is a pure submodule of C, we may apply Theorem 7 of [6] (p. 18) to conclude that C^{\prime} is a direct summand of C. Since C / C^{\prime} is divisible, the proof is complete.

For the case in which R is the ring of rational integers, the assertion of Theorem 3.1 follows from the work of Nunke [9].

In the remainder of this note, R will be a Dedekind ring which is not a field. If A and C are R-modules, we shall write $\operatorname{Ext}(A, C)$ for $\operatorname{Ext}_{R}^{1}(A, C)$. The following two lemmas are well-known, but to our knowledge have not appeared explicitly in the literature.

Lemma 3.2. Let $a \neq 0$ be a nonunit in R, and let A and C be R modules. Assume that $a C=0$, and a operates faithfully on A (i.e., $a x=0$ for $x \in A$ only if $x=0$.) Then $\operatorname{Ext}(A, C)=0$.

[^1]Proof. Since a operates faithfully on A, we obtain the exact sequence-

$$
0 \longrightarrow A \xrightarrow{m_{a}} A \longrightarrow A / a A \longrightarrow 0
$$

where m_{a} is defined by $m_{a}(x)=a x$. This gives rise to the exact cohomology sequence-

$$
\operatorname{Ext}(A, C) \xrightarrow{m_{a}^{*}} \operatorname{Ext}(A, C) \longrightarrow 0
$$

where $m_{a}^{*}(u)=a u$ for u in $\operatorname{Ext}(A, C)$. But, since $a C=0$, we have that $m_{a}^{*}=0$, and so it follows from exactness that $\operatorname{Ext}(A, C)=0$, completing the proof.

Lemma 3.3. Let $a \neq 0$ be a nonunit in R, and A, C be R-modules. Assume that a operates faithfully on A. Then the following statements are equivalent:
(a) a operates faithfully on $\operatorname{Ext}(A, C)$.
(b) The natural mapping $\operatorname{Hom}(A, C) \rightarrow \operatorname{Hom}(A, C / a C)$ is an epimorphism.

Proof. Consider the exact sequence-

$$
0 \longrightarrow C_{a} \longrightarrow C \xrightarrow{m_{a}} C \longrightarrow C / a C \longrightarrow 0
$$

where $C_{a}=\{x \in C / a x=0\}$ and m_{a} is defined as in Lemma 3.2. This sequence may be broken up into the following short exact sequences:

$$
\begin{aligned}
0 \longrightarrow C_{a} \longrightarrow & C \xrightarrow{\mu} a C \longrightarrow 0 \\
0 \longrightarrow & a C \xrightarrow{\nu} C \longrightarrow C / a C \longrightarrow 0
\end{aligned}
$$

where ν is the inclusion mapping and μ differs from m_{a} only by the obvious contraction of the range. Since $a C_{a}=0$ and a operates faithfully on A, we obtain from Lemma 3.2 that $\operatorname{Ext}\left(A, C_{a}\right)=0$, and so the relevant portions of the resulting cohomology sequences are as follows:

$$
0 \longrightarrow \operatorname{Ext}(A, C) \xrightarrow{\mu_{*}} \operatorname{Ext}(A, a C) \longrightarrow 0
$$

$\operatorname{Hom}(A, C) \longrightarrow \operatorname{Hom}(A, C / a C) \longrightarrow \operatorname{Ext}(A, a C) \xrightarrow{\nu_{*}} \operatorname{Ext}(A, C)$.
Since $m_{a}=\nu \mu$, we have that $m_{a *}=\nu_{*} \mu_{*}$, where $m_{a *}: \operatorname{Ext}(A, C) \rightarrow$ $\operatorname{Ext}(A, C)$ is defined by $m_{a *}(u)=a u$ for u in $\operatorname{Ext}(A, C)$. Hence (a) holds if and only if $m_{a *}$ is a monomorphism. But this is true if and only if ν_{*} is a monomorphism, since μ_{*} is an isomorphism. But it is clear from the second exact sequence above that ν_{*} is a monomorphism if and only if (b) holds. The proof is hence complete.

In the remainder of this section we shall set $\Pi=\Pi_{i=1}^{\infty} R^{(i)}$, where $R^{(i)} \approx R$.

Theorem 3.4. Let R be a Dedekind ring, and $a \neq 0$ be a nonunit in R. Set $C=\sum_{n=1}^{\infty} \oplus R / a^{n} R$. Let A be a torsion-free R-module satisfying the following conditions:
(a) Every submodule of A of finite rank is projective.
(b) a operates faithfully on $\operatorname{Ext}(A, C)$.

Then, if $f \in \operatorname{Hom}(\Pi, A), f(\Pi)$ has finite rank.

Proof. Assume that the statement is false for some $f \in \operatorname{Hom}(I, A)$. Then $f(\Pi)$ contains a submodule F_{0} of countably infinite rank. Let $F=\left\{x \in A / a^{n} x \in F_{0}\right.$ for some $\left.n\right\}$. Then F likewise has countably infinite rank. We may then apply condition (a) and a result of Nunke ([8], Lemma 8.3, p. 239) to obtain that F is projective, and then a result of Kaplansky ([7], Theorem 2, p. 330) to conclude that F is free. Let x_{1}, x_{2}, \cdots be a basis of F. Then there exist nonnegative integers ν_{1}, ν_{2}, \cdots such that $y_{n}=a^{\nu_{n}} x_{n}$ is in F_{0}.

Let z_{n} generate the direct summand of C isomorphic to $R / a^{n} R$, and let \bar{z}_{n} be the image of z_{n} under the natural mapping of C onto $\bar{C}=C / a C$. Define an R-homomorphism $\theta_{1}: F \rightarrow \bar{C}$ by $\theta_{1}\left(x_{n}\right)=\bar{z}_{n+\nu_{n}}$. Observe that $\theta_{1}(a F)=0$, and so θ_{1} induces a homomorphism $\theta_{2}: F / a F \rightarrow \bar{C}$. Now, it follows easily from the construction of F that the sequence $0 \rightarrow F / a F \rightarrow$ $A / a F \rightarrow A / F \rightarrow 0$ is exact, and a operates faithfully on A / F. We may then apply Lemma 3.2 to conclude that this sequence splits. It is then clear that θ_{2} can be extended to a homomorphism $\theta: A \rightarrow \bar{C}$. We emphasize the fact that $\theta\left(x_{n}\right)=\bar{z}_{n+\nu_{n}}$.

Since a operates faithfully on $\operatorname{Ext}(A, C)$, we may now apply Lemma 3.3 to obtain $\varphi \in \operatorname{Hom}(A, C)$ such that the diagram-

is commutative. Observe that, since $\theta\left(x_{n}\right)=\bar{z}_{n+\nu_{n}}, \varphi\left(x_{n}\right) \equiv z_{n+\nu_{n}}(\bmod \alpha C)$. That is, the coefficient of $z_{n+\nu_{n}}$ in the expansion of $\varphi\left(x_{n}\right)$ is $1+a t_{n}$ for some $t_{n} \in R$. Since $y_{n}=a^{\nu} x_{n}$, the coefficient of $z_{n+\nu_{n}}$ in the expansion of $\varphi\left(y_{n}\right)$ is $a^{\nu_{n}}+a^{\nu_{n}+1} t_{n}$.

Set $g=\varphi f$; then $g \in \operatorname{Hom}(I, C)$, and so we may apply Proposition 2.4 to conclude that $c g(\Pi)=0$ for some $c \neq 0$ in R. Since each y_{n} is in $f(I I)$, and z_{n} generates a direct summand of C isomorphic to $R / a^{n} R$, it then follows from the preceding paragraph that $c\left(a^{\nu_{n}}+a^{\nu_{n}+1} t_{n}\right)$ is in $a^{n+\nu_{n}} R$ for all n, in which case $c\left(1+a t_{n}\right)$ is in $a^{n} R$ for all n. Let P
be any prime ideal in R containing a; then $1+a t_{n}$ is a unit modulo P^{n} for all $n>0$, and so $c \in P^{n}$ for all n. Therefore $c=0$, a contradiction. This completes the proof of the theorem.

Corollary 3.5. Let R be a Dedekind ring (not a field,) and let A be an R-module with the property that $\operatorname{Ext}(A, C)=0$ for any torsion module C. Then, if $f \in \operatorname{Hom}(\Pi, A), f(\Pi)$ is a projective module of finite rank.

Proof. We may apply a result of Nunke ([8], Theorem 8.4, p. 239) to obtain that A is torsion-free and every submodule of A of finite rank is projective. The corollary then follows immediately from Theorem 3.4.

The following special case of Theorm 3.4 was first proved by Rotman ([10], Theorem 3, p. 250) under an additional hypothesis whitch was later removed by Nunke ([9], p. 275.)

Corollary 3.6. Let A be an abelian group such that $\operatorname{Ext}(A, C)=$ 0 for any torsion group C. Then A is slender. ${ }^{3}$

Proof. We need only show that, for any $f \in \operatorname{Hom}(I, A), f(I I)$ is slender. By Corollary 3.5, $f(\Pi)$ is free of finite rank. But it is wellknown that a free abelian group is slender (see [5], Theorems 47.3 and 47.4, pp. 171-172.) The proof is hence complete.

References

1. R. Baer, Die Torsionsuntergruppe Einer Abelschen Gruppe, Math. Annalen, 135 (1958), 219-234.
2. G. Baumslag and N. Blackburn, Direct summands of unrestricted direct sums of Abelian groups, Arkiv Der Mathematik, 10 (1959), 403-408.
3. S. Chase, Direct products of modules, Trans. Amer. Math. Soc., 97 (1960), 457-473.
4. -, A remark on direct products of modules, Proc. Amer. Math. Soc., 13 (1962), 214-216.
5. L. Fuchs, Abelian Groups, Publishing House of the Hungarian Academy of Sciences, 1958.
6. I. Kaplansky, Infinite Abelian Groups, University of Michigan Press, 1954.
7. -, Modules over Dedekind rings and valuation rings, Trans. Amer. Math. Soc., 72 (1952), 327-340.
8. R. Nunke, Modules of extensions over Dedekind rings, Ill. Math. J., 3 (1959), 222-241. 9. -, Slender groups, Bull. Amer. Math. Soc., 67 (1961), 274-275.
9. J. Rotman, On a problem of Baer and a problem of Whitehead in Abelian groups, Acta. Math. Sci. Hung., 12 (1961), 245-254.

Princeton University

[^2]
[^0]: ${ }^{1} \mathrm{~A}$ is a pure submodule of C if $A \cap a C=a A$ for all $a \in R$.

[^1]: ${ }^{2}$ The definition and properties of basic submodules used here, as well as the theorem of Szele applied in the following paragraph, are in [5] given only for the special case in which R is the ring of rational integers. However, it is well-known that these results can be trivially extended to modules over an arbitrary principal ideal domain.

[^2]: ${ }^{3}$ For the definition of a slender Abelian group we refer the reader to [9].

