ASYMPTOTICS III: STATIONARY PHASE FOR TWO
PARAMETERS WITH AN APPLICATION TO
BESSEL FUNCTIONS

D. SATHER

1. Introduction. The method of stationary phase has long been
a valuable analytical tool for investigating the asymptotic behavior as
p— oo of integrals of the form

1(p) = | @) exv (ipF()dt

As a natural generalization of the method of stationary phase involv-

ing one parameter we will investigate the asymptotic behavior of an
integral of the form

1, 1) = "0a(0) exp [ () + keg(e)lat

where h and k tend to infinity independently.

It will be shown that under certain restrictions between the real
numbers A\, v and v that the asymptotic form of I(h, k) is determined
by the behavior of the ratio kh=* as h,k— o and by the character
of f and ¢ in a neighborhood of t = 0. For example, if v <y <\,
v >0, f(0) >0, g(0) >0 and kh¥*— o then

Or(L) exp (LL
RS S&Zﬁff( )

As an immediate application of our results we will determine the
asymptotic behavior of the Bessel function J,(x) in Watson’s transition
region, i.e. when v, # and |v — 2| are large and v/x is nearly equal to
1. In particular, we will obtain a simple rigorous proof of Nicholson’s
formulas under the restriction that 0 < lim sup 23|y — 2| < oo,

2. General assumptions. Throughout the paper we shall use A-~B
to mean lim A/B =1, and all limits will mean the limit as # and k
tend to infinity. A similar remark applies to order symbols.

We shall consider I(%, k) under the following general assumptions:

Received January 3, 1962. This paper was written at the University of Minnesota in part
under Contract Nonr 710(16), sponsored by the Office of Naval Research, and in part under
a National Science Foundation Fellowship. The author wishes to express his appreciation

to Professor W. Fulks for suggesting the problem and for giving valuable aid in its
solution.

1423



1424 D. SATHER

(i) k= o(h),

(ii) >0, v >0, and v > 0,

(iii) q(0) #= 0 and g(0) + O,

(iv) f, 9 and q are real valued functions such that f e C? g € C*

and ¢ € C on [0, a],

(v) MNf(@) + tf'(t) > 0 on [0, a].

For convenience we shall consider here only the case f(0) > 0. If
f(0) < 0 and — satisfies certain obvious conditions one obtains analog-
ous results with —7 and —g replacing ¢ and g, respectively.

3. Preliminary lemmas. We shall first establish the following
lemmas. ,

LeMMA 1. Consider I(p) :S @) (t) exp (1p@(t))dt. Suppose d is a
nonnegative constant and p, « ;nd I are functions of h and k such
that p— oo, t— 0 and a is bounded as h, k— oo,

(i) O@) = trg(at), V(t) = (Ut + d)), the functions ¢ and
are real with (0)+0, r>0, 0<s<r, dat) >0 for 0=t =,
¢ >0and ¢ C"® and € C* for 0 =t < ¢ where m and n are the
least integers such that mr > 1 and n = m(r — s) + 1, respectively.

(ii) b 1s a constant such that 0 < b < ¢ and bMK/myo < 1 where
M = maximum,g,<,, | 9'(t) |, m, = minimum,.,.,, ¢(t) and K = a when h, k
are suffictently large.

(ili) ® =u + 1w 1s a complex valued function such that w(0) =1,
v0)=0 and u,v € C* for 0=t <¢'. Then

HOr(3) ol )
r[pp(0)]*" ’

Proof. We may set v = 0 since it will be seen that the contribu-
tion from v to I(p) is negligible because »(0) = 0. Let x = t[s(at)]'".
Since 2'(t) > 0 for 0 <t < b and x € C*** there exists a unique inverse
function, say t(x), such that ¢t € C"** for 0 < 2 < b[¢(ab)]'" = a, t(0) = 0
and t'(0) = a, = [¢(0)]". Hence we may write t(x) = a,& + a,2* + -+ +
a,2"" + A(z)2" where A e C* and a, is bounded as h,k— oo for
2<1=n-—1. We may assume that ¢’ is sufficiently small such that
if t(x) = a,2(1 + w(x)) then Jw(x)|] < 1for 0 =<z < a. This implies that

I(p)

(H@) " = ai”Q + b + -+ + b2 + 2(@)r" e

where z € C and b, is independent of  for 1 <l <n — 2. If we now
expand 4 and @ about ¢ = 0 and substitute #(x), and let B(x) =w(¢())
(B(x))* " (Ut(x) + d)) we have

B(») "(‘i% = atu(pd)x*" + ex® + -+ + ¢,2* " 4 D(x)x T2
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where h and k are sufficiently large such that p#d < b, D € C and ¢, is
bounded as &,k — o and independent of z for 0 <! <n — 8. There-
fore,

I(p) = ai’«,b(ﬂd)S:x“‘ exp (tpxr)dx + J(p) + ;::,; c,S:m*“ exp (ipx")dx

where J(p) = S:D (x)x =% exp (tpx")dx. Sincere“tﬂ“dtzexp (izBI2)I"(B)
0
for0<B<land r=n+s—1<r+1 when  >1 we have

Ty — aiy(pd) exp (%}) I’(s?

ot > + J(p) + o(p~*!")

a4 (0) exp (%%)F(%> + J(p) + o(p~*'") .

,rps/r

Finally an integration by parts yields J(p) = 0(1/p) since n—(r+1—s)=0
by the choice of » and D € C. This completes the proof of Lemma I
for the case r > 1. For 0 < r £1 one makes the change of variable
t = 2™ and the desired result follows from the case r > 1.

LemMA II. Suppose that in addition to the assumptions of Lemma
I that r is an even integer, s =1, ¢(at) > 0 for —c' <t <¢', b satis-
fies the same conditions as in Lemma I except that M and m, are now
determined for —c¢' =t < ¢, and o, and ¢ are now in their respec-
tive differentiability classes given in Lemma I for —c¢' <t <¢'. Then

29 (0)I" (-rl—) exp (%)
r[pg(0)1"

The proof follows immediately from Lemma I.

S ib“’(tW(t) exp (ip@(t))dt

We will introduce the following functions which will be used through-
out the remainder of the paper:

F(t) = (), G(t) = t’g(t) and Q(t) = t"'q(t).

LEMMA III. Under the general assumptions on F,G and Q we
have for each arbitrarily small but fixed positive constant ¢ < a that

L(h, k) = SZQ(t) exp [i(hF'(t) + kG(t))]dt = 0(1/R) .

Proof. Let H(t) = F(t) + (k/h)G(t). Then H'(t) >0 forc<t=a
and A,k sufficiently large since )f(t) + ¢f'(t) > 0 by hypothesis and
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k = o(h). Hence an integration by parts implies L(k, k) = 0(1/h).
This completes the necessary lemmas and the main results of the
paper will now be presented.

4. The asymptotic evaluation of I(h, k). We shall first consider
the case where kh~>'* — 0 so that I(h, k) is almost completely determined
by the character of Af at the origin.

THEOREM I. Suppose that

1. feC*?andgqe Crfor0<t=<c, ¢c>0, where m and n are
the least integers such that mhx > 1 and n = m(\ — v) + 1, respectively,

2. if 0=t=c then t"g(Bt) =b,+bt+ --- + b, ,t" 2+ B{t)t"' where
B e C and b, is bounded as B8— 0 for 0 =1l =n — 2,

3. k=o{®) and v < N. Then

q(W’(%) exp (%)

1 1) ~——Fr oy

Proof of Theorem I. For ¢ as given we have
10k = "+ | = e, B) + 01/

by Lemma III. Let t = k™', f(z) = f(xk"), g(x) = g(xk"), Q(x)=
Q(xk™") and p = hk=**. For any b such that 0 < b < ¢ we have

I'(, 1) = ] [3(@) exp ()] exp (ipf@))dn

13

+ k_mg Y I"(h, k) + J(h, k), respectively.

b
Set p=k, 4 =¢q, ¢d=f A=1r, v=28, o) = exp (:2°§(x)) and note
that £(0) > 0 implies that f(x) >0 for 0 =2 =< ¢, ¢’ > 0, so that b may
be chosen to satisfy the requirements of Lemma I. Hence by Lemma I

" o _20)"(v/\) exp (imy[2))
7w MO

Therefore to complete the proof of Theorem I it is sufficient to
show that RY*J(h, k) = o(1). Let d = bk, H(t) = F(t) = + (k/h)G(t)
and P()=)f(t)+tf'(t)+kt~*h[vg(t) + ¢'(t)t]. Note that P(d) — \f(0)=
2B >0 as h,k— o since k*=0(/*) and P(t) is continuous for
0<d=t=a. We may assume that ¢ is such that for %, k sufficient-
ly large, P(t) = B for the entire closed interval d <t <¢. This im-
plies H'(t) = Bt** >0 for 0 < d =<t =c¢ and hence we can integrate
J(h, k) by parts as follows;
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J(h, k) = S:Q(t) exp (iRH(t))dt = Q(c) exp (thH(c)) _ Q(d) exp (shH(d))

thH'(c) thH'(d)
_ 1 S Q(t) exp (hH()dt | 1 S Q)H"(t) exp (ihH(t))d¢
th Ja H'(t) th Ja (H'@))

= 0@1/h) + A + J'(h, k), respectively.

Using the estimates H'(f) = Bt** and | H'(t)| < Kt*? for some K we
see immediately that J = 0(k“~*/h). Since k* = o(h*) this implies
h*J(h, k) = o(1) which completes the proof of Theorem I.

We state the following corollary to Theorem I which may apply
when #'g(Bt) does not have the required smoothness at the origin but
f» 9 and ¢ are highly differentiable on [0, ¢], ¢ > 0.

Corollary. Suppose that v + v >\ and
1. feC*? geCrandgeCrfor0=t=<c, ¢c>0 where m and n are the
least integers such that m(y+v—N)=2, mra>1 and n=m(OW—7)+1,
2. k*=o() and v < ». Then

wor (%) el 5)

1, 1) ~—— . r o

Proof. Note that my = m(x — ) + 2 >n by the definition of n
and hence 2™ € C®. The change of variable ¢ = ™ and the use of
Theorem I completes the proof.

We shall next consider the case where the behavior of kg at the
origin becomes a significant factor in the asymptotic evaluation of
I(h, k).

THEOREM II. Suppose that

1. ¢geC* and geC*"** for 0 <t <c¢, ¢ >0, where m and n are the
least integers such that my > 1 and n = m(y — v) + 1, respectively,

2. if 0=t Zc then t(Bt) =b, + bt + -« + b,_t"* + B()t"" where
BeC and b, is bounded as 83— 0 for 0 =1 <n — 2,

3. g(0) >0, h» =0k and vy <y < A. Then

(D oo (5)

Tk, i) V[eg(0)T™

Proof of Theorem II. The proof of Theorem II follows from the
proof of Theorem I with the roles of f and g, N and v,k and k inter-
charged.
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COROLLARY. Suppose that
1. feC"qeC" and geC"*? for 0 <t <c¢, ¢ >0, where m and n are the
least integers such that m(n +v—v) =2, my >1 and n=m(y—v)+1,
2. g(0) >0,k =0k and v <v <A, Then
0 51004
0r(Z)ess( )
[ kg (0)]""

When kh™*— o and ¢(0) < 0 the character of both F' and G in
a neighborhood of ¢ = 0 becomes important since for % and k suffici-
ently large they determine uniquely in some (0, ¢,) a number 7 such
that hF'(7) + kG'(r) = 0 and in terms of which the asymptotic form
of I(k, k) may be expressed.

I(h, k)

THEOREM III. Suppose that g(0)< 0, v < N, v < \, ¥ = o(k), f € C",
geC®and geC*for 0 <t <c¢, ¢ >0, and hypothesis 1 and 2 Theorem
I1 are satisfied when v = .

A. If v < 27 then

" k)MVEq(O)F<%)exp<—if) st e
| (v = w)" - (—vkg(0)

x exp [i(hF (7) + kG (7))] .
B. If v =2y then
1y i
1, 1) q(O)I <2>exp( 4 ) {Viexp [¢(hF'(7) + kG(2))] _,L-,J_m}
’ (—vkg(0))"" (O — vy -

C. If v > 2v then

w01 (3) e (35)

2v1
v[—kg(0)]"”

Proof of Theorem III. We may assume that ¢ is such that G'(¢) < 0
and f(¢) >0 for 0 <t =¢c. For 0 <t =c let D)= F'(t))—G'(t) with
D(0) = 0. Then D’(t) = t*~¢[(G'{))[vNf()g(t)(v—N) + tE ()] for 0<t <¢
where FE is continuous on [0,c¢]. Hence there exists ¢, such that
0<¢<e D't)>0for 0<t=<c¢, D) >0 and for h and k suffici-
ently large k/h < D(c,). This implies that there exists a unique
7€(0, ¢,) such that D(7) = k/h which is equivalent to AF''(7) + kG'(z)=0.
Moreover from the definition of D we have

—vkg(0)

r = (520 ko )7+ o)

I(h, k)
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which implies that 7~ = o(k/h) = o(1).
If we now let H(t) = F(t) + (k/h)G(t) and expand h(H(t) — H(7))
about ¢t = 7 we have using the integral form of the remainder
1 13
ME () — HE) =k ¢ — )F"@)dy + k| ¢ — )6 @)y
= hR(t, 7) + kS(, 7), respectively.

We may further assume that ¢, is so small that f,f',f",¢g,¢9" and g"”
are of constant sign for 0 <t < ¢, If we apply the mean value theo-
rem for integrals and substitute ¢ = 7(x + 1) we have for —1 <2 <1
that

T(@, %) = R(e( + 1), 9) = ZL [ — DF (e@)a(@)
200+ Do) (@) + @@ = S P)
where «,, a;, a, € C~, a(0) = a,(0) = a,(0) =1, P,e C* and P,(0)=x(A—1)
S (0)+o0(1). Similarly
Wiz, 7) = S(z(x + 1), 7) = §7°2*Py(x)
where P, € C* and P,(0) = v(v — 1)g(0) + o(1). Let d,=(c,/7)—1, I'(h, k)=
exp (—ihH (7))I (h, k) and choose b such that 7(b + 1) <e¢, and 0<b < 1.
' _{e 1\ _ 7n 1
I'(h, k) _So + 0(7:) = I"(h, k) + o(ﬁ).
I"(h, k) = rS:b + rgb_bJr rSZ”Q(T(x + 1)) exp [i(h T(x, 7) + kW (x, 7))|de
= L(h, k) + I'"(h, k) + J(h, k), respectively.
Let
© =1, p=~Q/2ht*, ¥ =q, 0(x) = (1 + )" and ¢(x) = P(x) + (kT h) Py(%).

Then ¢(0) = MX — v)f(0) + o(1) implies for h, k sufficiently large
that ¢(x) >0 for — ¢ =x =<¢,¢’ >0. Hence b may be chosen small
enough that the conditions on b in Lemma II are satisfied. Therefore

— 1 T
1, iy 22O (3)e (% )[ Of @) e
’ (v — )y (—vkg(0)*—™

The contribution of L(k, k) to I(h, k) may be determined by con-
sidering

L'(h, k) = S;(H)Q(t) exp (GhH(t))dt .
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We note that the uniqueness of 7 in [¢, ¢], € > 0, implies that H'(t) # 0
on e =t=7(1—0>b) for every ¢ > 0. In fact, there exists a number
K > 0 which is independent of ¢ and for which we have | H'(t) | = K(k/h)t"
for e =t <7(1 — b).

(i) For v < v the usual integration by parts together with the
above inequality for H'(t) yields that L'(k, k) =o(1/k). Hence L'(h, k) =
o(h" 2 [E})12 0= gince h* = o(k™).

(ii) For v > v we rewrite L'(h, k) as

L, 1) = Q) exp { — ilkt(—g) + X~ O

and apply Theorem II with —g¢g playing the role of f. Hence

Or a —anyY
o)

(iii) Finally for v = v a closer examination of the proof of Lemma
I together with the change of variable ¢ = xh~* implies for p' = k/h**
that L'(h, k) = h7*01/p") = 0(1/k).

The given relation A* = o(k*) and the calculation

kY"'O<< Z,:i: )llmmv)> —0 ((%)v—?ylwxw))

then imply that I""(h, k)=o0(k™") if v>27 and L'(h, k)=o((h*~>[k*2)H/2*-)
if y=v<2y. When v =27 we note that both L'(h, k) and I"'(h, k)
are of the same order so that both terms contribute to I(k, k).

To complete the proof of Theorem III we need only show that
J(h, k) is negligible compared to I'(h, k). For P(t) defined as in the
proof of Theorem I and d = 7(b + 1) we have

P(d) = xf(O)[1 — (b + 1) 2|1 + o(1)) .

Then P(d) > 0 for h and k sufficiently large and hence proceeding
exactly as in the proof of Theorem I we obtain H'(t) = Bt** > 0 for
0<d=t=c¢,and 2B = 7\f(0)[1 — (1 + b)>*]. We now write

J(h, k) = S:"Q(t) exp (ihH(t))dt

and integrate by parts as in Theorem I to obtain J(k, k) = 0((h*~[k*)*),
Hence A = o(k*) implies that

<%>1/2(A—w T k) =0 <<%_>1/2(A—w> — (1) |
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To obtain the value of exp [1(AF'(7) + kG(7))] in 2 more explicit form
we need to know more about the exact relation between h and k.
For example we shall state the following corollary under more stringent
assumptions.

COROLLARY. If im addition to the above assumptions in Theorem
III we have E** = o(R**') then

exp [i(hF () + kG (7))] «~ exp {i(u):; ) [(&Z;%éggzx ]l/)\—y} .

Proof of the Corollary to Theorem III. We will use the same
notation as in the proof of Theorem III. If we expand hH(z) about
the origin and substitute for ¢ we have

exp( (RH (D)) = exp {i |nr© <%)/

I )
e AR [T ()
Hence if k*" = o(h**) the Corollary is established.

Finally, we shall consider the case where lim sup k2~ is bounded
away from both 0 and oo,

THEOREM IV. Suppose that v <\, v < rand 0 <lim sup »p < o
where p = kh™*, Then

I(h, k) q(O)h“*’*S:wy“ exp [i(f(0)x* + pg(0)x*)]dw
=q(0) (%)WH S:oﬂ“ exp [ip*(f(0)x* + g(0)2”)]dx .

Proof of Theorem IV. We will consider only values of ¢ > 0 such
that (i) vg(t) + tg'(t) is of constant sign for 0 < ¢ < ¢ and (ii) for each
¢ >0 we have [g() —q(0)| <&, [f(t) —f(0)]<e and [g(t) —9(0)] <e
for 0=t =ec. Set H(t)= F(t)+ (k/h)G(t) and I'(h, k) =S as usual.
Let m = minimum,.,, Nf(£) + ¢f'(t) > 0, ® = lim supp and 0M =maxi-
mum,c,. (1, | f Y], [g], |4 ], | gP |, | ve(t) + tg'(t)|) for I=0,1,2. Consider
a number b > 1 chosen such that b > N = 4Mw/m)'*>, If d=bh"*<c
then for 0 < d = ¢ < ¢ we have for g(0) <o

H'(t) = t* (m - hﬁ%_ > z (m - TZZG'—*>

\%

1 mtr
2
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since 2w >kh™* for h and k sufficiently large. Hence H'(t) =(1/2)mt*">0
for 0<d=<t=c. Lett=ah"", §g)=qg@h), flx)=Ff(h"") and
g(x) = g(xh**). Then

chlA ~
T k) =" (@) exp [i(F@)e + py(@))lde
0
chlIA
=§" +Sbh — I"(h, k) + J(h, k), respectively.
0
We will first estimate J(k, k) in terms of the number b. Since

H' @)= 1/2ymt** >0 for 0<d =<t =<c¢ we may integrate J(h, k) by
parts as follows:

J(h, k) = hm{Q(C) exp (thH(c)) _ Q(d) exp (ihH(d))

ihH'(c) hH'(d)
1 S”Q’(t) exp (hH@E)dt | 1 S Q) F"(t) exp (shH (t))dt
i Ja H'(t) ih Ja [H'O)]
4k S Q)G (t) exp (ihH(t))dt}
ih* Ja [H' O]

=0V + A+ J'(h, k) + J"(h, k) + J"'(h, k), respectively.
Hence |A| = 2M|mb*Y = B,

2MZ'YI)\ SG ty—)\—ldt < 2M — Blby_A ,
m d

"(h, k)| =
I J (h! ) l - m(x . ’Y)b}‘_'y

A
"(h, k)| <
T B =

AM kR~ SM*w = B"pr—>
M2\ — ¥ — V)OI T mA(2N — v — v)bAY )

= B"b"*, and

[J"(h, k)| =

IIA

Define
W Ik, k) =S:w"‘q(0) exp [i(f(0)z* + pg(0)x”)]ldx = S: + R(b) .

Then there exists a number K which is independent of %,k and ¢ and
for which | J(k, k)| < Kb* and | R(b)| < Kb»*. Consider

W, — 1) = #(0(0) — 7@) exp [i(F @) + pa@)lda
+ 4O @1 ~ P(@) exp [i(/O)" + paO))lde
+ R(b) + 0k — J(h, k)
= L(h, k) + L'(h, k) + R(b) + 0(R***) — J(h, k),
respectively,

where P(x) = exp {i[f(x) — f(0))z* 4+ p(§(x) — g(0))=*]}. By the choice
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of ¢ for each ¢ > 0 we have |L(h, k)| < Meb*", |L'(h, k)| < 2Meb v+
2Mewb*™, If we take lim sup of both sides of (*) as h,k— o we
obtain

0 < lim sup A" | I, — | < 3Meb + 2Meb*™ + 2K b7

which is true for ¢ > 0 and b > N. Since limsup 2* |1, — I| is inde-
pendent of both ¢ and b we first let ¢ — 0 and then 6 — . Hence
WMI, — I) = o(1) which implies that I(h, k)« Ik, k). To obtain the
alternate form of I(h, k) we let x = h'*k[h)'*t.

5. Discussion of the suggested application. Consider for x >0
Schlafli’s generalization of Bessel’s integral:

Jy(x) = %S:cos (vt — x sin t)dt — ﬂr;T—Vlrexp |—vt — xsin ht]di
~1pg S"exp li(vt — @ sin t)]dt + 0 <l) .
T 0 Y

Let F'(t) =t—sint and |G(t)| = 1. We rewrite F'(¢) as F'(t) = (1/6)t*
cos (r(t)) and let h =z, k = |v — x|, q(t) = 1 and £(t) = 1\6 cos ((¢)). It
follows that the condition 3f(¢) + tf'(t) > 0 for 0 <t <7 is satisfied
since F'(t) =1 —cost >0 for 0 <t = 7.

We note that our Theorem 1 and III yield the dominant terms of
some well known complete asymptotic expansions for J,(x) with 7=Arc-
cos v/z in Theorem III'. For the case 0 < limsupz™* |y — 2| < o we
have by Theorem IV with p = 7| (v — x)x™°| that

) 1 « 1 ..
J () A WSU cos <?3_ t* + pt)dt

where the expression on the right is one of Airy’s integrals?, whose

evaluation for »p >0 and p < 0 yields precisely Nicholson’s formulas
when v is an integer®.

1 See W. Magnus and F. Oberhettinger, ‘‘ Formeln und Satze fur die Speziellen Funk-
tionen der Mathematischen Physik,”’” Springer-Verlag, Berlin, 1948, pp. 33-34. Our theorems
I and III give results which are equivalent to the dominant terms of the expansions (bs)
and (by), respectively.

¢ See, for example, G. N. Watson, ‘ Theory of Bessel Functions,” Cambridge, 1944,
pp. 188-190.

3 See G.N. Watson, op. cit., pp. 248-249.
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