ASYMPTOTICS III: STATIONARY PHASE FOR TWO PARAMETERS WITH AN APPLICATION TO BESSEL FUNCTIONS

D. Sather

1. Introduction. The method of stationary phase has long been a valuable analytical tool for investigating the asymptotic behavior as $p \rightarrow \infty$ of integrals of the form

$$
I(p)=\int_{0}^{a} Q(t) \exp (i p F(t)) d t
$$

As a natural generalization of the method of stationary phase involving one parameter we will investigate the asymptotic behavior of an integral of the form

$$
I(h, k)=\int_{0}^{a} t^{\gamma-1} q(t) \exp \left[i\left(h t^{\lambda} f(t)+k t^{\nu} g(t)\right)\right] d t
$$

where h and k tend to infinity independently.
It will be shown that under certain restrictions between the real numbers λ, ν and γ that the asymptotic form of $I(h, k)$ is determined by the behavior of the ratio $k h^{-\nu / \lambda}$ as $h, k \rightarrow \infty$ and by the character of f and g in a neighborhood of $t=0$. For example, if $\gamma<\nu<\lambda$, $\gamma>0, f(0)>0, g(0)>0$ and $k h^{-\nu / \lambda} \rightarrow \infty$ then

$$
I(h, k) \backsim \frac{q(0) \Gamma\left(\frac{\gamma}{\nu}\right) \exp \left(\frac{i \pi \gamma}{2 \nu}\right)}{\nu[k g(0)]^{\gamma^{/ \nu}}} .
$$

As an immediate application of our results we will determine the asymptotic behavior of the Bessel function $J_{\nu}(x)$ in Watson's transition region, i.e. when ν, x and $|\nu-x|$ are large and ν / x is nearly equal to 1. In particular, we will obtain a simple rigorous proof of Nicholson's formulas under the restriction that $0<\lim \sup x^{-1 / 3}|\nu-x|<\infty$.
2. General assumptions. Throughout the paper we shall use $A \backsim B$ to mean $\lim A / B=1$, and all limits will mean the limit as h and k tend to infinity. A similar remark applies to order symbols.

We shall consider $I(h, k)$ under the following general assumptions:

[^0](i) $k=o(h)$,
(ii) $\lambda>0, \nu>0$, and $\gamma>0$,
(iii) $q(0) \neq 0$ and $g(0) \neq 0$,
(iv) f, g and q are real valued functions such that $f \in C^{2}, g \in C^{2}$ and $q \in C$ on $[0, a]$,
(v) $\lambda f(t)+t f^{\prime}(t)>0$ on $[0, a]$.

For convenience we shall consider here only the case $f(0)>0$. If $f(0)<0$ and $-f$ satisfies certain obvious conditions one obtains analogous results with $-i$ and $-g$ replacing i and g, respectively.
3. Preliminary lemmas. We shall first establish the following lemmas.

Lemma I. Consider $I(p)=\int_{0}^{b} \omega(t) \Psi(t) \exp (i p \Phi(t)) d t$. Suppose d is a nonnegative constant and p, α and μ are functions of h and k such that $p \rightarrow \infty, \mu \rightarrow 0$ and α is bounded as $h, k \rightarrow \infty$.
(i) $\Phi(t)=t^{r} \phi(\alpha t), \Psi(t)=t^{s-1} \psi(\mu(t+d))$, the functions ϕ and ψ are real with $\psi(0) \neq 0, \quad r>0,0<s<r, \phi(\alpha t)>0$ for $0 \leqq t \leqq c^{\prime}$, $c^{\prime}>0$ and $\phi \in C^{n+2}$ and $\psi \in C^{n}$ for $0 \leqq t \leqq c^{\prime}$ where m and n are the least integers such that $m r>1$ and $n \geqq m(r-s)+1$, respectively.
(ii) b is a constant such that $0<b<c^{\prime}$ and $b M K / m_{0} r<1$ where $M=\operatorname{maximum}_{0 \leqq t \leq c \mid}\left|\phi^{\prime}(t)\right|, m_{0}=\operatorname{minimum}_{0 \leqq t \leqq c} \phi(t)$ and $K \geqq \alpha$ when h, k are sufficiently large.
(iii) $\omega=u+i v$ is a complex valued function such that $u(0)=1$, $v(0)=0$ and $u, v \in C^{n}$ for $0 \leqq t \leqq c^{\prime}$. Then

$$
I(p) \backsim \frac{\psi(0) \Gamma\left(\frac{s}{r}\right) \exp \left(\frac{i \pi s}{2 r}\right)}{r[p \phi(0)]^{s / r}} .
$$

Proof. We may set $v \equiv 0$ since it will be seen that the contribution from v to $I(p)$ is negligible because $v(0)=0$. Let $x=t[\phi(\alpha t)]^{1 / r}$. Since $x^{\prime}(t)>0$ for $0 \leqq t \leqq b$ and $x \in C^{n+2}$ there exists a unique inverse function, say $t(x)$, such that $t \in C^{n+2}$ for $0 \leqq x \leqq b[\phi(\alpha b)]^{1 / r}=a, t(0)=0$ and $t^{\prime}(0)=a_{1}=[\phi(0)]^{-1 / r}$. Hence we may write $t(x)=a_{1} x+a_{2} x^{2}+\cdots+$ $a_{n-1} x^{n-1}+A(x) x^{n}$ where $A \in C^{2}$ and a_{\imath} is bounded as $h, k \rightarrow \infty$ for $2 \leqq l \leqq n-1$. We may assume that c^{\prime} is sufficiently small such that if $t(x)=a_{1} x(1+w(x))$ then $|w(x)|<1$ for $0 \leqq x \leqq a$. This implies that

$$
(t(x))^{s-1}=a_{1}^{s-1}\left(1+b_{1} x+\cdots+b_{n-2} x^{n-2}+z(x) x^{n-1}\right) x^{s-1}
$$

where $z \in C$ and b_{l} is independent of x for $1 \leqq l \leqq n-2$. If we now expand ψ and ω about $t=0$ and substitute $t(x)$, and let $B(x)=\omega(t(x))$ $(t(x))^{s-1} \psi(\mu(t(x)+d))$ we have

$$
B(x) \frac{d t(x)}{d x}=a_{1}^{s} u(\mu d) x^{s-1}+c_{0} x^{s}+\cdots+c_{n-3} x^{s+n-3}+D(x) x^{n+s-2}
$$

where h and k are sufficiently large such that $\mu d<b, D \in C$ and c_{\imath} is bounded as $h, k \rightarrow \infty$ and independent of x for $0 \leqq l \leqq n-3$. Therefore,

$$
I(p)=a_{1}^{s} \psi(\mu d) \int_{0}^{a} x^{s-1} \exp \left(i p x^{r}\right) d x+J(p)+\sum_{l=0}^{n-3} c_{l} \int_{0}^{a} x^{s+l} \exp \left(i p x^{r}\right) d x
$$

where $J(p)=\int_{0}^{a} D(x) x^{n+s-2} \exp \left(i p x^{r}\right) d x$. Since $\int_{0}^{\infty} e^{i t} t^{\beta-1} d t=\exp (i \pi \beta / 2) \Gamma(\beta)$ for $0<\beta<1$ and $r \leqq n+s-1<r+1$ when $r>1$ we have

$$
\begin{aligned}
I(p) & =\frac{\alpha_{1}^{s} \psi(\mu d) \exp \left(\frac{i \pi s}{2 r}\right) \Gamma\left(\frac{s}{r}\right)}{r p^{s / r}}+J(p)+o\left(p^{-s / r}\right) \\
& =\frac{a_{1}^{s} \psi(0) \exp \left(\frac{i \pi s}{2 r}\right) \Gamma\left(\frac{s}{r}\right)}{r p^{s / r}}+J(p)+o\left(p^{-s / r}\right) .
\end{aligned}
$$

Finally an integration by parts yields $J(p)=0(1 / p)$ since $n-(r+1-s) \geqq 0$ by the choice of n and $D \in C$. This completes the proof of Lemma I for the case $r>1$. For $0<r \leqq 1$ one makes the change of variable $t=x^{m}$ and the desired result follows from the case $r>1$.

Lemma II. Suppose that in addition to the assumptions of Lemma I that r is an even integer, $s=1, \phi(\alpha t)>0$ for $-c^{\prime} \leqq t \leqq c^{\prime}, b$ satisfies the same conditions as in Lemma I except that M and m_{0} are now determined for $-c^{\prime} \leqq t \leqq c^{\prime}$, and ω, ψ and ϕ are now in their respective differentiability classes given in Lemma Ifor $-c^{\prime} \leqq t \leqq c^{\prime}$. Then

$$
\int_{-b}^{b} \omega(t) \Psi(t) \exp (i p \Phi(t)) d t \backsim \frac{2 \psi(0) \Gamma\left(\frac{1}{r}\right) \exp \left(\frac{i \pi}{2 r}\right)}{r[p \phi(0)]^{1 / r}} .
$$

The proof follows immediately from Lemma I.

We will introduce the following functions which will be used throughout the remainder of the paper:

$$
F(t)=t^{\lambda} f(t), G(t)=t^{\nu} g(t) \text { and } Q(t)=t^{\gamma-1} q(t)
$$

Lemma III. Under the general assumptions on F, G and Q we have for each arbitrarily small but fixed positive constant $c<a$ that

$$
L(h, k)=\int_{c}^{a} Q(t) \exp [i(h F(t)+k G(t))] d t=0(1 / h) .
$$

Proof. Let $H(t)=F(t)+(k / h) G(t)$. Then $H^{\prime}(t)>0$ for $c \leqq t \leqq a$ and h, k sufficiently large since $\lambda f(t)+t f^{\prime}(t)>0$ by hypothesis and
$k=o(h)$. Hence an integration by parts implies $L(h, k)=0(1 / h)$.
This completes the necessary lemmas and the main results of the paper will now be presented.
4. The asymptotic evaluation of $I(h, k)$. We shall first consider the case where $k h^{-\nu / \lambda} \rightarrow 0$ so that $I(h, k)$ is almost completely determined by the character of $h f$ at the origin.

Theorem I. Suppose that

1. $f \in C^{n+2}$ and $q \in C^{n}$ for $0 \leqq t \leqq c, c>0$, where m and n are the least integers such that $m \lambda>1$ and $n \geqq m(\lambda-\gamma)+1$, respectively,
2. if $0 \leqq t \leqq c$ then $t^{\nu} g(\beta t)=b_{0}+b_{1} t+\cdots+b_{n-2} t^{n-2}+B(t) t^{n-1}$ where $B \in C$ and b_{l} is bounded as $\beta \rightarrow 0$ for $0 \leqq l \leqq n-2$,
3. $k^{\lambda}=o\left(h^{\nu}\right)$ and $\gamma<\lambda$. Then

$$
I(h, k) \backsim \frac{q(0) \Gamma\left(\frac{\gamma}{\lambda}\right) \exp \left(\frac{i \pi \gamma}{2 \lambda}\right)}{\lambda[h f(0)]^{\gamma / \lambda}}
$$

Proof of Theorem I. For c as given we have

$$
I(h, k)=\int_{0}^{c}+\int_{c}^{a}=I^{\prime}(h, k)+0(1 / h)
$$

by Lemma III. Let $t=x k^{-1 / \nu}, \widetilde{f}(x)=f\left(x k^{-1 / \nu}\right), \widetilde{g}(x)=g\left(x k^{-1 / \nu}\right), \widetilde{Q}(x)=$ $Q\left(x k^{-1 / \nu}\right)$ and $p=h k^{-\lambda / \nu}$. For any b such that $0<b<c$ we have

$$
\begin{aligned}
I^{\prime}(h, k) & =k^{-1 / \nu} \int_{0}^{b}\left[\widetilde{Q}(x) \exp \left(i \widetilde{g}(x) x^{\nu}\right)\right] \exp \left(i p \widetilde{f}(x) x^{\lambda}\right) d x \\
& +k^{-1 / \nu} \int_{b}^{c k^{1 / \nu}}=I^{\prime \prime}(h, k)+J(h, k), \text { respectively }
\end{aligned}
$$

Set $\mu=k^{-1 / \nu}, \psi=q, \phi=f, \lambda=r, \gamma=s, \omega(x)=\exp \left(i x^{\nu} \widetilde{g}(x)\right)$ and note that $f(0)>0$ implies that $\tilde{f}(x)>0$ for $0 \leqq x \leqq c^{\prime}, c^{\prime}>0$, so that b may be chosen to satisfy the requirements of Lemma I. Hence by Lemma I

$$
I^{\prime \prime}(h, k) \backsim \frac{q(0) \Gamma(\gamma / \lambda) \exp (i \pi \gamma / 2 \lambda)}{\lambda[h f(0)]^{\gamma / \lambda}}
$$

Therefore to complete the proof of Theorem I it is sufficient to show that $h^{\gamma / \lambda} J(h, k)=o(1)$. Let $d=b k^{-1 / \nu}, \quad H(t)=F(t)=+(k / h) G(t)$ and $P(t)=\lambda f(t)+t f^{\prime}(t)+k t^{\nu-\lambda} / h\left[\nu g(t)+g^{\prime}(t) t\right]$. Note that $P(d) \rightarrow \lambda f(0)=$ $2 B>0$ as $h, k \rightarrow \infty$ since $k^{\lambda}=0\left(h^{\nu}\right)$ and $P(t)$ is continuous for $0<d \leqq t \leqq a$. We may assume that c is such that for h, k sufficiently large, $P(t) \geqq B$ for the entire closed interval $d \leqq t \leqq c$. This implies $H^{\prime}(t) \geqq B t^{\lambda-1}>0$ for $0<d \leqq t \leqq c$ and hence we can integrate $J(h, k)$ by parts as follows;

$$
\begin{aligned}
J(h, k)= & \int_{d}^{c} Q(t) \exp (i h H(t)) d t=\frac{Q(c) \exp (i h H(c))}{i h H^{\prime}(c)}-\frac{Q(d) \exp (i h H(d))}{i h H^{\prime}(d)} \\
& -\frac{1}{i h} \int_{d}^{c} \frac{Q^{\prime}(t) \exp (i h H(t)) d t}{H^{\prime}(t)}+\frac{1}{i h} \int_{d}^{c} \frac{Q(t) H^{\prime \prime}(t) \exp (i h H(t)) d t}{\left(H^{\prime}(t)\right)^{2}} \\
= & 0(1 / h)+A+J^{\prime}(h, k), \text { respectively. }
\end{aligned}
$$

Using the estimates $H^{\prime}(t) \geqq B t^{\lambda-1}$ and $\left|H^{\prime \prime}(t)\right| \leqq K t^{\lambda-2}$ for some K we see immediately that $J=0\left(k^{(\lambda-\gamma) \nu} / h\right)$. Since $k^{\lambda}=o\left(h^{\nu}\right)$ this implies $h^{\gamma / \lambda} J(h, k)=o(1)$ which completes the proof of Theorem I.

We state the following corollary to Theorem I which may apply when $t^{\nu} g(\beta t)$ does not have the required smoothness at the origin but f, g and q are highly differentiable on $[0, c], c>0$.

Corollary. Suppose that $\nu+\gamma>\lambda$ and

1. $f \in C^{n+2}, g \in C^{n}$ and $q \in C^{n}$ for $0 \leqq t \leqq c, c>0$ where m and n are the least integers such that $m(\nu+\gamma-\lambda) \geqq 2, m \lambda>1$ and $n \geqq m(\lambda-\gamma)+1$,
2. $k^{\lambda}=o\left(h^{\nu}\right)$ and $\gamma<\lambda$. Then

$$
I(h, k) \backsim \frac{q(0) \Gamma\left(\frac{\gamma}{\lambda}\right) \exp \left(\frac{i \pi \gamma}{2 \lambda}\right)}{\lambda[h f(0)]^{\gamma / \lambda}}
$$

Proof. Note that $m \nu \geqq m(\lambda-\gamma)+2>n$ by the definition of n and hence $x^{m \nu} \in C^{n}$. The change of variable $t=x^{m}$ and the use of Theorem I completes the proof.

We shall next consider the case where the behavior of $k g$ at the origin becomes a significant factor in the asymptotic evaluation of $I(h, k)$.

Theorem II. Suppose that

1. $q \in C^{n}$ and $g \in C^{n+2}$ for $0 \leqq t \leqq c, c>0$, where m and n are the least integers such that $m \nu>1$ and $n \geqq m(\nu-\gamma)+1$, respectively,
2. if $0 \leqq t \leqq c$ then $t^{\lambda} f(\beta t)=b_{0}+b_{1} t+\cdots+b_{n-2} t^{n-2}+B(t) t^{n-1}$ where $B \in C$ and b_{l} is bounded as $\beta \rightarrow 0$ for $0 \leqq l \leqq n-2$,
3. $g(0)>0, h^{\nu}=o\left(k^{\lambda}\right)$ and $\gamma<\nu<\lambda$. Then

$$
I(h, k) \backsim \frac{q(0) \Gamma\left(\frac{\gamma}{\nu}\right) \exp \left(\frac{i \pi \gamma}{2 \nu}\right)}{\nu[k g(0)]^{\gamma / \nu}}
$$

Proof of Theorem II. The proof of Theorem II follows from the proof of Theorem I with the roles of f and g, λ and ν, h and k intercharged.

Corollary. Suppose that

1. $f \in C^{n}, q \in C^{n}$ and $g \in C^{n+2}$ for $0 \leqq t \leqq c, c>0$, where m and n are the least integers such that $m(\lambda+\gamma-\nu) \geqq 2, m \nu>1$ and $n \geqq m(\nu-\gamma)+1$,
2. $g(0)>0, h^{\nu}=o\left(k^{\lambda}\right)$ and $\gamma<\nu<\lambda$. Then

$$
I(h, k) \backsim \frac{q(0) \Gamma\left(\frac{\gamma}{\nu}\right) \exp \left(\frac{i \pi \gamma}{2 \nu}\right)}{\nu[k g(0)]^{\gamma / \nu}} .
$$

When $k h^{-\nu / \lambda} \rightarrow \infty$ and $g(0)<0$ the character of both F and G in a neighborhood of $t=0$ becomes important since for h and k sufficiently large they determine uniquely in some ($0, c_{0}$) a number τ such that $h F^{\prime \prime}(\tau)+k G^{\prime}(\tau)=0$ and in terms of which the asymptotic form of $I(h, k)$ may be expressed.

Theorem III. Suppose that $g(0)<0, \nu<\lambda, \gamma<\lambda, h^{\nu}=o\left(k^{\lambda}\right), f \in C^{6}$, $g \in C^{6}$ and $q \in C^{2}$ for $0 \leqq t \leqq c, c>0$, and hypothesis 1 and 2 Theorem II are satisfied when $\nu \geqq \gamma$.
A. If $\nu<2 \gamma$ then

$$
\begin{aligned}
& I(h, k) \backsim \frac{\sqrt{2} q(0) \Gamma\left(\frac{1}{2}\right) \exp \left(\frac{i \pi}{4}\right)}{(\lambda-\nu)^{1 / 2}}\left[\frac{(\lambda h f(0))^{\nu-2 \gamma}}{(-\nu k g(0))^{\lambda-2 \gamma}}\right]^{1 / 2(\lambda-\nu)} \\
& \quad \times \exp [i(h F(\tau)+k G(\tau))] .
\end{aligned}
$$

B. If $\nu=2 \gamma$ then

$$
I(h, k) \backsim \frac{q(0) \Gamma\left(\frac{1}{2}\right) \exp \left(\frac{i \pi}{4}\right)}{(-\nu k g(0))^{1 / 2}}\left\{\frac{\sqrt{2} \exp [i(h F(\tau)+k G(\tau))]}{(\lambda-\nu)^{1 / 2}}-i \nu^{-1 / 2}\right\} .
$$

C. If $\nu>2 \gamma$ then

$$
I(h, k) \backsim \frac{q(0) \Gamma\left(\frac{\gamma}{\nu}\right) \exp \left(\frac{\gamma \pi}{2 \nu i}\right)}{\nu[-k g(0)]^{\gamma / \nu}} .
$$

Proof of Theorem III. We may assume that c is such that $G^{\prime}(t)<0$ and $f(t)>0$ for $0<t \leqq c$. For $0<t \leqq c$ let $D(t)=F^{\prime}(t) /-G^{\prime}(t)$ with $D(0)=0$. Then $D^{\prime}(t)=t^{\lambda+\nu-\xi} /\left(G^{\prime}(t)\right)^{[}[\nu \lambda f(t) g(t)(\nu-\lambda)+t E(t)]$ for $0<t \leqq c$ where E is continuous on $[0, c]$. Hence there exists c_{0} such that $0<c_{0}<c, D^{\prime}(t)>0$ for $0<t \leqq c_{0}, D\left(c_{0}\right)>0$ and for h and k sufficiently large $k / h<D\left(c_{0}\right)$. This implies that there exists a unique $\tau \in\left(0, c_{0}\right)$ such that $D(\tau)=k / h$ which is equivalent to $h F^{\prime}(\tau)+k G^{\prime}(\tau)=0$. Moreover from the definition of D we have

$$
\tau=\left(\frac{-\nu k g(0)}{\lambda h f(0)}\right)^{1 / \lambda-\nu}(1+o(1))
$$

which implies that $\tau^{\lambda-\nu}=o(k / h)=o(1)$.
If we now let $H(t)=F(t)+(k / h) G(t)$ and expand $h(H(t)-H(\tau))$ about $t=\tau$ we have using the integral form of the remainder

$$
\begin{aligned}
h(H(t)-H(\tau)) & =h \int_{\tau}^{t}(t-y) F^{\prime \prime}(y) d y+k \int_{\tau}^{t}(t-y) G^{\prime \prime}(y) d y \\
& =h R(t, \tau)+k S(t, \tau), \text { respectively }
\end{aligned}
$$

We may further assume that c_{0} is so small that $f, f^{\prime}, f^{\prime \prime}, g, g^{\prime}$ and $g^{\prime \prime}$ are of constant sign for $0 \leqq t \leqq c_{0}$. If we apply the mean value theorem for integrals and substitute $t=\tau(x+1)$ we have for $-1<x<1$ that

$$
\begin{aligned}
& T(x, \tau)=R(\tau(x+1), \tau)=\frac{\tau^{\lambda} x^{2}}{2}\left[\lambda(\lambda-1) f\left(\tau_{0}(x)\right) \alpha_{0}(x)\right. \\
& \left.\quad+\tau(\lambda+1) \alpha_{1}(x) f^{\prime}\left(\tau_{1}(x)\right)+\tau^{2} f^{\prime \prime}\left(\tau_{2}(x)\right) \alpha_{2}(x)\right]=\frac{\tau^{\lambda} x^{2}}{2} P_{1}(x)
\end{aligned}
$$

where $\alpha_{0}, \alpha_{1}, \alpha_{2} \in C^{\infty}, \alpha_{0}(0)=\alpha_{2}(0)=\alpha_{1}(0)=1, P_{1} \in C^{4} \quad$ and $\quad P_{1}(0)=\lambda(\lambda-1)$ $f(0)+o(1)$. Similarly

$$
W(x, \tau)=S(\tau(x+1), \tau)=\frac{1}{2} \tau^{\nu} x^{2} P_{2}(x)
$$

where $P_{2} \in C^{4}$ and $P_{2}(0)=\nu(\nu-1) g(0)+o(1)$. Let $d_{0}=\left(c_{0} / \tau\right)-1, I^{\prime}(h, k)=$ $\exp (-i h H(\tau)) I(h, k)$ and choose b such that $\tau(b+1)<c_{0}$ and $0<b<1$.

$$
\begin{gathered}
I^{\prime}(h, k)=\int_{0}^{c_{0}}+0\left(\frac{1}{h}\right)=I^{\prime \prime}(h, k)+0\left(\frac{1}{h}\right) \\
I^{\prime \prime}(h, k)=\tau \int_{-1}^{-b}+\tau \int_{-b}^{b}+\tau \int_{b}^{a_{0}} Q(\tau(x+1)) \exp [i(h T(x, \tau)+k W(x, \tau))] d x \\
=L(h, k)+I^{\prime \prime \prime}(h, k)+J(h, k), \text { respectively }
\end{gathered}
$$

Let
$\mu=\tau, p=(1 / 2) h \tau^{\lambda}, \psi=q, \omega(x)=(1+x)^{\gamma-1}$ and $\phi(x)=P_{1}(x)+\left(k \tau^{\nu-\lambda} / h\right) P_{2}(x)$.
Then $\phi(0)=\lambda(\lambda-\nu) f(0)+o(1)$ implies for h, k sufficiently large that $\phi(x)>0$ for $-c^{\prime} \leqq x \leqq c^{\prime}, c^{\prime}>0$. Hence b may be chosen small enough that the conditions on b in Lemma II are satisfied. Therefore

$$
I^{\prime \prime \prime}(h, k) \backsim \frac{\sqrt{2} q(0) \Gamma\left(\frac{1}{2}\right) \exp \left(\frac{i \pi}{4}\right)}{(\lambda-\nu)^{1 / 2}}\left[\frac{(\lambda h f(0))^{\nu-2 \gamma}}{(-\nu k g(0))^{\lambda-2 \gamma}}\right]^{1 / 2(\lambda-\nu)} .
$$

The contribution of $L(h, k)$ to $I(h, k)$ may be determined by considering

$$
L^{\prime}(h, k)=\int_{0}^{\tau(1-b)} Q(t) \exp (i h H(t)) d t
$$

We note that the uniqueness of τ in $\left[\varepsilon, c_{0}\right], \varepsilon>0$, implies that $H^{\prime}(t) \neq 0$ on $\varepsilon \leqq t \leqq \tau(1-b)$ for every $\varepsilon>0$. In fact, there exists a number $K>0$ which is independent of ε and for which we have $\left|H^{\prime}(t)\right| \geqq K(k / h) t^{\nu-1}$ for $\varepsilon \leqq t \leqq \tau(1-b)$.
(i) For $\nu<\gamma$ the usual integration by parts together with the above inequality for $H^{\prime}(t)$ yields that $L^{\prime}(h, k)=o(1 / k)$. Hence $L^{\prime}(h, k)=$ $o\left(h^{\nu-2 \gamma} / k^{\lambda-2 \gamma}\right)^{1 / 2(\lambda-\nu)}$ since $h^{\nu}=o\left(k^{\lambda}\right)$.
(ii) For $\nu>\gamma$ we rewrite $L^{\prime}(h, k)$ as

$$
L^{\prime}(h, k)=\int_{0}^{\tau(1-b)} Q(t) \exp \left\{-i\left[k t^{2}(-g(t))+h t^{\lambda}(-f(t))\right]\right\} d t
$$

and apply Theorem II with $-g$ playing the role of f. Hence

$$
L^{\prime}(h, k) \backsim \frac{q(0) \Gamma\left(\frac{\gamma}{\nu}\right) \exp \left(\frac{-i \pi \gamma}{2 \nu}\right)}{\nu[-k g(0)]^{/ \nu}} .
$$

(iii) Finally for $\nu=\gamma$ a closer examination of the proof of Lemma I together with the change of variable $t=x h^{-1 / \lambda}$ implies for $p^{\prime}=k / h^{\nu / \lambda}$ that $L^{\prime}(h, k)=h^{-\gamma / \lambda} 0\left(1 / p^{\prime}\right)=0(1 / k)$.

The given relation $h^{\nu}=o\left(k^{\lambda}\right)$ and the calculation

$$
k^{\gamma \nu} 0\left(\left(\frac{h^{\nu-2 \gamma}}{k^{\lambda-2 \gamma}}\right)^{1 / 2(\lambda-\nu)}\right)=0\left(\left(\frac{h}{k^{\lambda / \nu}}\right)^{\nu-2 \gamma / 2(\lambda-\nu)}\right)
$$

then imply that $I^{\prime \prime \prime}(h, k)=o\left(k^{-\gamma / \nu}\right)$ if $\nu>2 \gamma$ and $L^{\prime}(h, k)=o\left(\left(h^{\nu-2 \gamma} / k^{\lambda-2 \gamma}\right)^{1 / 2(\lambda-\nu \gamma}\right)$ if $\gamma \leqq \nu<2 \gamma$. When $\nu=2 \gamma$ we note that both $L^{\prime}(h, k)$ and $I^{\prime \prime \prime}(h, k)$ are of the same order so that both terms contribute to $I(h, k)$.

To complete the proof of Theorem III we need only show that $J(h, k)$ is negligible compared to $I^{\prime \prime \prime}(h, k)$. For $P(t)$ defined as in the proof of Theorem I and $d=\tau(b+1)$ we have

$$
P(d)=\lambda f(0)\left[1-(b+1)^{v-\lambda}\right](1+o(1)) .
$$

Then $P(d)>0$ for h and k sufficiently large and hence proceeding exactly as in the proof of Theorem I we obtain $H^{\prime}(t) \geqq B t^{\lambda-1}>0$ for $0<d \leqq t \leqq c_{0}$ and $2 B=\lambda f(0)\left[1-(1+b)^{\nu-\lambda}\right]$. We now write

$$
J(h, k)=\int_{d}^{c} Q(t) \exp (i h H(t)) d t
$$

and integrate by parts as in Theorem I to obtain $J(h, k)=0\left(\left(h^{\nu-\gamma} / k^{\lambda-\gamma}\right)^{1 / \lambda-\nu}\right)$. Hence $h^{\nu}=o\left(k^{\lambda}\right)$ implies that

$$
\left(\frac{k^{\lambda-2 \gamma}}{h^{\nu-2 \nu}}\right)^{1 / 2(\lambda-\nu)} J(h, k)=0\left(\left(\frac{h^{\nu}}{k^{\lambda}}\right)^{1 / 2(\lambda-\nu)}\right)=o(1) .
$$

To obtain the value of $\exp [i(h F(\tau)+k G(\tau))]$ in a more explicit form we need to know more about the exact relation between h and k. For example we shall state the following corollary under more stringent assumptions.

Corollary. If in addition to the above assumptions in Theorem III we have $k^{\lambda+1}=o\left(h^{\nu+1}\right)$ then

$$
\exp [i(h F(\tau)+k G(\tau))] \backsim \exp \left\{\frac{i(\nu-\lambda)}{\lambda \nu}\left[\frac{(-\nu k g(0))^{\lambda}}{(\lambda h f(0))^{\nu}}\right]^{1 / \lambda-\nu}\right\}
$$

Proof of the Corollary to Theorem III. We will use the same notation as in the proof of Theorem III. If we expand $h H(\tau)$ about the origin and substitute for τ we have

$$
\begin{aligned}
\exp ((i h H(\tau))= & \exp \left\{i \left[h f(0)\left(\frac{-\nu k g(0)}{\lambda h f(0)}\right)^{\lambda / \lambda-\nu}\right.\right. \\
& \left.\left.+k g(0)\left(\frac{-\nu k g(0)}{\lambda h f(0)}\right)^{\nu / \lambda-\nu}\right]\left[1+0\left(\left(\frac{k}{h}\right)^{1 / \lambda-\nu}\right)\right]\right\} \\
= & \exp \left\{\frac{i(\nu-\lambda)}{\lambda \nu}\left[\frac{(-\nu k g(0))^{\lambda}}{(\lambda h f(0))^{\nu}}\right]^{1 / \lambda-\nu}+0\left(\left(\frac{k^{\lambda+1}}{h^{\nu+1}}\right)^{1 / \lambda-\nu}\right)\right\}
\end{aligned}
$$

Hence if $k^{\lambda+1}=o\left(h^{\nu+1}\right)$ the Corollary is established.
Finally, we shall consider the case where lim sup $k h^{-2 / \lambda}$ is bounded away from both 0 and ∞.

Theorem IV. Suppose that $\gamma<\lambda, \nu<\lambda$ and $0<\lim \sup p<\infty$ where $p=k h^{-\nu / \lambda}$. Then

$$
\begin{aligned}
I(h, k) & \backsim q(0) h^{-\gamma / \lambda} \int_{0}^{\infty} x^{\gamma-1} \exp \left[i\left(f(0) x^{\lambda}+p g(0) x^{\nu}\right)\right] d x \\
& =q(0)\left(\frac{k}{h}\right)^{\gamma / \lambda-\nu} \int_{0}^{\infty} x^{\gamma-1} \exp \left[i p^{\lambda / \lambda-\nu}\left(f(0) x^{\lambda}+g(0) x^{\nu}\right)\right] d x
\end{aligned}
$$

Proof of Theorem $I V$. We will consider only values of $c>0$ such that (i) $\nu g(t)+t g^{\prime}(t)$ is of constant sign for $0 \leqq t \leqq c$ and (ii) for each $\varepsilon>0$ we have $|q(t)-q(0)|<\varepsilon,|f(t)-f(0)|<\varepsilon$ and $|g(t)-g(0)|<\varepsilon$ for $0 \leqq t \leqq c$. Set $H(t)=F(t)+(k / h) G(t)$ and $I^{\prime}(h, k)=\int_{0}^{c}$ as usual. Let $m=$ minimum $_{0 \leq t \leq a} \lambda f(t)+t f^{\prime}(t)>0, \omega=\lim \sup p$ and $M=\operatorname{maxi}-$ $\operatorname{mum}_{0 \leqq t \leq a}\left(1,\left|f^{(l)}\right|,|q|,\left|q^{\prime}\right|,\left|g^{(l)}\right|,\left|\nu g(t)+t g^{\prime}(t)\right|\right)$ for $l=0,1,2$. Consider a number $b>1$ chosen such that $b>N=(4 M \omega / m)^{1 /(\lambda-\lambda)}$. If $d=b h^{-1 / \lambda}<c$ then for $0<d \leqq t \leqq c$ we have for $g(0)<o$

$$
H^{\prime}(t) \geqq t^{\lambda-1}\left(m-\frac{k M}{h d^{\lambda-\nu}}\right) \geqq t^{\lambda-1}\left(m-\frac{m k}{4 \omega h^{\nu / \lambda}}\right) \geqq \frac{1}{2} m t^{\lambda-1}
$$

since $2 \omega>k h^{-\nu / \lambda}$ for h and k sufficiently large. Hence $H^{\prime}(t) \geqq(1 / 2) m t^{\lambda-1}>0$ for $0<d \leqq t \leqq c$. Let $t=x h^{-1 / \lambda}, \widetilde{q}(x)=q\left(x h^{-1 / \lambda}\right), \widetilde{f}(x)=f\left(x h^{-1 / \lambda}\right)$ and $\widetilde{g}(x)=g\left(x h^{-1 / \lambda}\right)$. Then

$$
\begin{aligned}
h^{\gamma / \lambda} I^{\prime}(h, k) & =\int_{0}^{c h^{1 / \lambda}} x^{\gamma-1} \widetilde{q}(x) \exp \left[i\left(\widetilde{f}(x) x^{\lambda}+p \widetilde{g}(x) x^{\nu}\right)\right] d x \\
& =\int_{0}^{b}+\int_{b}^{c h^{1 / \lambda}}=I^{\prime \prime}(h, k)+J(h, k), \text { respectively. }
\end{aligned}
$$

We will first estimate $J(h, k)$ in terms of the number b. Since $H^{\prime}(t) \geqq(1 / 2) m t^{\lambda-1}>0$ for $0<d \leqq t \leqq c$ we may integrate $J(h, k)$ by parts as follows:

$$
\begin{aligned}
J(h, k)= & h^{\gamma / \lambda}\left\{\frac{Q(c) \exp (i h H(c))}{i h H^{\prime}(c)}-\frac{Q(d) \exp (i h H(d))}{i h H^{\prime}(d)}\right. \\
& -\frac{1}{i h} \int_{d}^{c} \frac{Q^{\prime}(t) \exp (i h H(t)) d t}{H^{\prime}(t)}+\frac{1}{i h} \int_{d}^{c} \frac{Q(t) F^{\prime \prime}(t) \exp (i h H(t)) d t}{\left[H^{\prime}(t)\right]^{2}} \\
& \left.+\frac{k}{i h^{2}} \int_{d}^{c} \frac{Q(t) G^{\prime \prime}(t) \exp (i h H(t)) d t}{\left[H^{\prime}(t)\right]^{2}}\right\} \\
= & 0\left(h^{\gamma-\lambda / \lambda}\right)+A+J^{\prime}(h, k)+J^{\prime \prime}(h, k)+J^{\prime \prime \prime}(h, k), \text { respectively. }
\end{aligned}
$$

Hence $|A| \leqq 2 M / m b^{\lambda-\gamma}=B b^{\gamma-\lambda}$,

$$
\begin{aligned}
& \left|J^{\prime}(h, k)\right| \leqq \frac{2 M h^{\gamma / \lambda}}{m h} \int_{d}^{c} t^{\gamma-\lambda-1} d t<\frac{2 M}{m(\lambda-\gamma) b^{\lambda-\gamma}}=B^{\prime} b^{\gamma-\lambda} \\
& \left|J^{\prime \prime}(h, k)\right| \leqq \frac{4 M^{2}}{m^{2}(\lambda-\gamma) b^{\lambda-\gamma}}=B^{\prime \prime} b^{\gamma-\lambda}, \text { and } \\
& \left|J^{\prime \prime \prime}(h, k)\right| \leqq \frac{4 M^{2} k h^{-\nu / \lambda}}{m^{2}(2 \lambda-\gamma-\nu) b^{2 \lambda-\gamma-\nu}} \leqq \frac{8 M^{2} \omega}{m^{2}(2 \lambda-\gamma-\nu) b^{\lambda-\gamma}}=B^{\prime \prime \prime} b^{\gamma-\lambda}
\end{aligned}
$$

Define

$$
h^{\gamma / \lambda} I_{0}(h, k)=\int_{0}^{\infty} x^{\gamma-1} q(0) \exp \left[i\left(f(0) x^{\lambda}+p g(0) x^{\nu}\right)\right] d x=\int_{0}^{b}+R(b) .
$$

Then there exists a number K which is independent of h, k and ε and for which $|J(h, k)| \leqq K b^{\gamma-\lambda}$ and $|R(b)| \leqq K b^{\gamma-\lambda}$. Consider

$$
\begin{aligned}
\left(^{*}\right) h^{\gamma / \lambda}\left(I_{0}-I\right)= & \int_{0}^{b} x^{\gamma-1}(q(0)-\widetilde{q}(x)) \exp \left[i\left(\widetilde{f}(x) x^{\lambda}+p \widetilde{g}(x) x^{\nu}\right)\right] d x \\
& +q(0) \int_{0}^{b} x^{\gamma-1}(1-P(x)) \exp \left[i\left(f(0) x^{\lambda}+p g(0) x^{\nu}\right)\right] d x \\
& +R(b)+0\left(h^{\gamma-\lambda / \lambda}\right)-J(h, k) \\
= & L(h, k)+L^{\prime}(h, k)+R(b)+0\left(h^{\gamma-\lambda / \lambda}\right)-J(h, k)
\end{aligned}
$$

respectively,
where $\left.P(x)=\exp \left\{i[\tilde{f}(x)-f(0)) x^{\lambda}+p(\widetilde{g}(x)-g(0)) x^{\nu}\right]\right\} . \quad$ By the choice
of c for each $\varepsilon>0$ we have $|L(h, k)| \leqq M \varepsilon b^{\lambda+\gamma},\left|L^{\prime}(h, k)\right|<2 M \varepsilon b^{\lambda+\gamma}+$ $2 M \varepsilon \omega b^{\nu+\gamma}$. If we take \lim sup of both sides of (*) as $h, k \rightarrow \infty$ we obtain

$$
0 \leqq \lim \sup h^{\gamma / \lambda}\left|I_{0}-I\right| \leqq 3 M \varepsilon b^{\lambda+\gamma}+2 M \varepsilon b^{\gamma+\gamma}+2 K b^{\gamma-\lambda}
$$

which is true for $\varepsilon>0$ and $b>N$. Since $\lim \sup h^{\gamma / \lambda}\left|I_{0}-I\right|$ is independent of both ε and b we first let $\varepsilon \rightarrow 0$ and then $b \rightarrow \infty$. Hence $h^{\gamma / \lambda}\left(I_{0}-I\right)=o(1)$ which implies that $I(h, k) \backsim I_{0}(h, k)$. To obtain the alternate form of $I_{0}(h, k)$ we let $x=h^{1 / \lambda}(k / h)^{1 /(\lambda-\nu)} t$.
5. Discussion of the suggested application. Consider for $x>0$ Schlafli's generalization of Bessel's integral:

$$
\begin{aligned}
J_{\nu}(x) & =\frac{1}{\pi} \int_{0}^{\pi} \cos (\nu t-x \sin t) d t-\frac{\sin \nu \pi}{\pi} \int_{0}^{\infty} \exp [-\nu t-x \sin h t] d t \\
& =\frac{1}{\pi} R \int_{0}^{\pi} \exp [i(\nu t-x \sin t)] d t+0\left(\frac{1}{\nu}\right) .
\end{aligned}
$$

Let $F^{\prime}(t)=t-\sin t$ and $|G(t)|=t$. We rewrite $F(t)$ as $F(t)=(1 / 6) t^{3}$ $\cos (r(t))$ and let $h=x, k=|\nu-x|, q(t) \equiv 1$ and $f(t)=1 \backslash 6 \cos (r(t))$. It follows that the condition $3 f(t)+t f^{\prime}(t)>0$ for $0 \leqq t \leqq \pi$ is satisfied since $F^{\prime}(t)=1-\cos t>0$ for $0<t \leqq \pi$.

We note that our Theorem I and III yield the dominant terms of some well known complete asymptotic expansions for $J_{\nu}(x)$ with $\tau=$ Arc$\cos \nu / x$ in Theorem III ${ }^{1}$. For the case $0<\lim \sup x^{-1 / 3}|\nu-x|<\infty$ we have by Theorem IV with $p=x^{-1 / 3}\left|(\nu-x) x^{-1 / 3}\right|$ that

$$
J_{\nu}(x) \backsim \frac{1}{\pi x^{1 / 3}} \int_{0}^{\infty} \cos \left(\frac{1}{6} t^{3}+p t\right) d t
$$

where the expression on the right is one of Airy's integrals ${ }^{2}$, whose evaluation for $p>0$ and $p<0$ yields precisely Nicholson's formulas when ν is an integer ${ }^{3}$.

[^1]
[^0]: Received January 3, 1962. This paper was written at the University of Minnesota in part under Contract Nonr 710(16), sponsored by the Office of Naval Research, and in part under a National Science Foundation Fellowship. The author wishes to express his appreciation to Professor W. Fulks for suggesting the problem and for giving valuable aid in its solution.

[^1]: ${ }^{1}$ See W. Magnus and F. Oberhettinger, "Formeln und Satze fur die Speziellen Funktionen der Mathematischen Physik,'" Springer-Verlag, Berlin, 1948, pp. 33-34. Our theorems I and III give results which are equivalent to the dominant terms of the expansions (b_{3}) and (b_{1}), respectively.
 ${ }^{2}$ See, for example, G. N. Watson, "Theory of Bessel Functions," Cambridge, 1944, pp. 188-190.
 ${ }^{3}$ See G. N. Watson, op. cit., pp. 248-249.

