ANALYTIC METHODS IN THE STUDY OF
ZEROS OF POLYNOMIALS

ZALMAN RUBINSTEIN

Several analytic methods are used to obtain estimates for part
or all zeros of a polynomial with complex coefficients and for linear
combinations of polynomials. Some results of Biernacki, Montel and
Specht are strengthened or generalized. Some results about the
location of zeros of linear combinations of polynomials are also
obtained.

1. Cauchy type estimates,

THEOREM 1. Let P(R)=2"+ a2 '+ .-+ + a, be a polynomial
with complex coefficients. Let By =By = --- = B, be the ordered
positive numbers |b;| = a7, v > 0,1 =2, -+, n, then all the zeros
of the polynomial P(2) are in the union of the two circles:

2] <Y1 +0) and [z +a,| =¥
where
% 0 . ___ 0
1+28; Q-+ By 1+ )

01:6;_

with
0; = Bi — 1 B =0
Proof. It is well known (See e.g. [4]), that all zeros of the
polynomial P(z) are in the unien of the two circles |z + a,| < v and

|2] £v(1 + B;). Let & be a zero of the polynomial P(z). We may
assume that || = vr, where 1 < r <1 + Bj. The inequality

[§" + al* S [ao|[§]" + o0 + | a,]
yields
Q) ™+l =v(blr+ s + b, ) S VB4 oo + B,

since Bi, ©=2,...,n, are decreasing and r > 1. Multiplying both
sides of the inequality (1) by (» — 1)r—"" we get

04 o,
— < P Y2 e — n
('r 1)]; + a1l = 'Y(Bz " poem ) .
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Since r =14 B; and 9; = 0,

b0 O
=Dl +al sy g - 2 i)

Suppose | + a,| > v, then

ol o
r<l 2 — e — [
+ R 1+ 45 Q-+ gy
and
0! o
2 = ;—_____2 — ot — " -) .
2 1€ w<7+7<5 1T (1+B;)”‘1>

Consequently all the zeros of the polynomial P(z) which are outside
the circle |¢ + a,| =< v lie inside the circle (2).

One notes that this result can be repeatedly improved replacing
B: by o0, < B; in the proof of Theorem 1. The last result improves
the known estimate used. As an immediate consequence from Theorem
1 we obtain that all the zeros of the polynomial P(z) are in the
region

lz]| <v@ +o)ln(lz+a]=7Ullz] <71 + a))]) .

(See remark following the proof of theorem 2).

THEOREM 2. Let P(z) =2" +.a2" '+ -+ + a,, be a polynomial
with complex coefficients. Let v > 0,b; =a v, 1=1, ---,n. Assume
Jurthermore that B;,1 =1, -+, 0,6, =By= -+ = B,, are the ordered
numbers |b;|.

Define

0 < a = max Bs <1,
ssisn B,

where the maximum is taken over all + such that B;,_, # 0. Denote

’ ! ”
3{ 32, e 37»

3 =B — — W
®  e=h-Te T Tt Ay a6y

where
62,=a,85—8i+1%0,?:= 17 "'7n;Bu+1= 0;
then all the zeros of the polynomial P(z) are in the circle

|2]| = max (v(a + 03),7) .

Proof. Let ¢ be a zero of P(z). We may assume that
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“) v+ o) | =7 <71+ 8), r=1.
The equality ¢* = —a,f** — --. — a, implies

vt S e [T A e e | = (0 T e 4 (D, ])
Hence,

BT BT 4 s + B,

Algo since » = «, we have

B) r(r —a) S Bt — rHaB, — By) — o0 — 1H(AByy — Byoy)
— @B,y — B,) — aB, = Br® — "t — eee — ), — 0l .

Since a + 0, < r, (5) implies

®) LpsB<p—rtasp—o,

Taking into account (3) and (6) we get

oy o oy 8!
4 oeee 4 < cee .
r r" 1+ ;81 (1 + Bl)n

Since 0} = 0 it follows now that r =1 + B, which contradicts the
assumption made in (4). Hence [{| = (1 + g;). If however, r <1
then |{| <~v. Theorem 2 strengthens a result due to Specht [6],
|2| < (1 + o), where

B

_ :81 Bﬂ cee R b
"“Bl<1+ﬁl Tawey T <1+Bl)">'

One verifies easily that « + 0, <1 + 0.

2. Estimates of at least p zeros (1 < p < n) for a polynomial of
degree n. It is known, [2] p.110, that is the coefficients a,, a,, -,
Gy, By, are fixed, then p zeros of the polynomial

(7 QR)=az"+ -+ + a,

are bounded. Various bounds for at least p zeros of Q(2), as funec-
tions of these coefficients, were obtained by different authors ([2]
Chap. VIII).

LemmA 1. (Montel) [2] p.111-112. Let the polynomial Q(2),
defined in (7), have zeros z,, ---,2,, such that |z,|=|z|=--- =
{2,]. Let
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Q,(z) = Q) — i a2

( — Z) te (zn—p —2) i=0

Define 7, = |2,-p+:|. Then

k
(8) [a},”’]g’r;‘”””’ZC(’n——p—l-j—1,j)|ak_j|fr;f, k:O,l,---,p.
=

THEOREM 3. Let Q(2) be a complex polynomial of degree n defined
mn (7), a,# 0,1 < p<n. Let r(p) be the greatest positive root of
the equation

) (z—p)z—1)"—8S® ¢, 0=0
where 0 < p =1 and

a;
a,

k q’\1/q’
S(p’ q, P) = maxosksp_1<§0< > p-(p—k—l)) ¢ =1.

Then at least p zeros of the polynomial Q(z) are in the circle

(10) 2] < r(p) .

Proof. We apply the Holder inequality to (8) and after some
simple transformations we obtain

k . . ., HPT K e
I e DGR R ) oo i DAL

=0 =0

k I 1/q’
=70 S0 —p+ 5 — Lyl ],
g +1g =1.

Since r(p) = 1, without loss of generality we may assume that », > 1.
We replace the first sum in the right hand side of (11) by

& . o . —(n—p)
(12) %C(n—p+3-—1,a)r;’=( —i) .

Ty

By (11) and (12) we get
(18) la | < (r, — 1)—<n—m[é6 la; |q,]1/«' .

It is known (See e.g. [4]) that all the zeros of @,(2), and in particular
Z._p+1, Satisfy the inequality

a;cp)
a;p)

14) Tp = |Zp—pt:| < max (
0=ksp—1

s + Lp—p+1 )
Lok Lot

for any z; >0,¢=1, -+, p, %,, = 0. Taking into account that a{»
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= (—1)""?a, and using (13) and (14), with z; = 0,1 =1, -+, 9,0 <
p =1, we obtain
25

@) v, = max|r, - DS

0sks=p-—1 j=0

a’\1/q’
) p—(p—k—l) + ‘0] .

Using the definition of S(p, ¢’, p), the equivalent to (15) is
(/rp - p)(/r:ﬂ - 1)n_1J é S(p’ q’v (o) .

It follows now eagily that 7, < 7(p).

n

COROLLARY 1. Theorem 3 includes, as particular cases, a result
due to Marden ([2] p.113) for p =1, and a result due to Montel
(I2] Th. 32,1) for ¢’ — o, p =1,

Proceeding as in the proof of Theorem 3, using this time the
estimate

N, ry—?
(1 + Np)("‘p - 1)n_p - Np'rpﬁp

l a;cp)
a;m

for all £, r, > 1 and

a;
a’ﬁ

N, = max

0<j<p-—1

)

due to Montel (See [2] p. 115), one obtains:

THEOREM 4. Let Q(2) be the polynomial defined in (7). At least
p zeros of Q(z) are in the circle |z| < ri(p), where r(p) is the posi-
tive root of the equation

O ey =yl U B

For p =1, Theorem 4 gives an estimate due to Montel (See [2] p.
115). We remark that by a minimum argument it follows, that for
(p—1N, =1 and p=[(p — 1)N,]"?, Theorem 4 yields results better
than those obtaimed by the classical formula.

Using estimates which involve a number of arbitrary parameters
we obtain bounds for at least p zeros for lacunary polynomials. We
quote first a lemma.

LEMMA 2. At least p zeros, 1 =< p < n, of the polynomial Q(z)
=aq2"+ -+ + aya, +0, lie in or on the circle |z| = 0 where O
18 the positive root of either of the two equations:
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(16) a2 — S Cn —k—1,p—k —1)|a,|2* =0
k=0
and
an la,|2> — S Cln — b, p— k)| aye* =0 .
k=0

(16) is due to Montel, (A7) is due to Van Vlieck. A simultaneous
proof of (16) and (17) was given by Markovitch [3]. We prove now
the following:

THEOREM 5. LetQ() =a,z"+ -+ + ay a,0, + 0,1 < p = n. Let
rand s be two numbers having the properties: r =n — p + 1 is the
smallest number such that a,_,+0; s, 1 <s<p, is the smallest
number such that a,_, + 0. Then at least p zeros of the polynomial
Q(z) lie in, either of the two circles:

(18) |z| < max [,of, (gC(y‘ —-Lp—n+j—1pu" %‘— >W]
and

@9 1212 max[o (00— v+, | ] )]

for any o > 0.

Proof. Denotec, = —Clk—1,p—n+k—1)|a,_/a,]. The left
hand side of (16) can be written as

(20) e+ ot e,g=n—p+1.
By our assumption, (20) is equivalent to
21) Fr+e "+ oo 4,0, #+0.

It follows from the result proved in [5], with =; = 0%, 1 =1, ---, n,
0 > 0, that all the zeros of the polynomial (21) are in the union of
the circle and the lemniscate defined by the inequalities

lz] = 0

and

|2 +e|<>CG—1,p—n+j— 1))—“”"' P
i @,

The inequality (18) follows applying (16) and the last result. To
prove (19), we define ¢,_, = —C(n — k, »p — k)| a,/a,| and proceed as
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before, using this time equality (17).

COROLLARY 2. Let Q(z) = a, 2"+ + -+ + a,2° + ap, @,0,a, 0, 1< p
= n. At least p zeros of Q(z) are in or on, either of the two circles:

>1/n

Qo

21 = (0 — 1,2 — 1)

n

and

121 = (Cou p)

Q
a

>1/p

These results are obtained from Theorem 5, with r =n and r =p
respectively. Both results are due to Van Vlieck. (See [2]).

?

3. Linear combinations of polynomials.

LemMA 3. Let the polynomials R(z) =2+ -+ + a, and S(z) =
2¢+ --- + b, a,b, #+ 0, have zeros z;,,1 =1,---,n, and &;,57=1, ---,
k respectively.

Let F(z; \) = R(2) + MS(2) have zeros 7:i(N), -+ -, 7,(N), [7:] = |7, ]
< .- Z|m]. If the circle |2| <7 contains all the zeros of the
polynomials R(z) and S(z) and m zeros, 0 =< m < 1, of F(z;\), then

< 1 rasanmim—aamk-m
(22) H 11 = C()») T ,

where C(\) equals |1+ M[,[N]|, or 1 according to whether k = n,
k > n, or k < n respectively, provided

R(ze®)
S(ze ")

0<6<27r

—1>0.

Proof. Applying Jensen’s formula to the polynomials R(z), S(z)
and F'(z; ) we obtain (Omitting the parameter X in the notation
for F):

nlogt = _1_S "log | R(ze™) | d6
2r
23) klogt = —1_ S log | S(ze) | d6
2w Jo

I __1 i
tog (1009 11 |7:0) 1) + m log = = | "log | F(ze*)| d0 .
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Using the formulas (23) and the inequality log (az, + Bx,) = « log =,
+ Blogx, with x, = | R| + |AS|, 2, =S| and

— |R|—[S]

STRI= 18T+ s “HPED

after a few transformations we deduce the inequalities
|10z 1 F )10 = [ log (R@)| + |1S(2) has

 log | R(te®) | — log | S(ze®) | 2 i
< + 0.
= So 2. do So log | S(ze®) | d

On the other hand, by the assumption of the theorem it follows that

1 I
af, \) 1+7'

A

Hence

2r m 2r i0 . I )\’ ’ 2
(24) S log | F(2)|d6 < <1+ ; )S log | B(ee) |40 — 1L S
log | S(ze™) | d6 .
Dividing (24) by 27 and substituting the values from (23), we deduce
the inequality

log (| GO, T117:091) + mlog = = (1 + e pnlog e — Dl ktog <.

The desired follows now after simple transformations. We remark
that in case ¢ < 0, Lemma 3 is true interchanging R and S, ) and
1/x. As a consequence of the lemma we have:

THEOREM 6. Under the assumptions of Lemma 3 all the zeros
of the polynomial F'(z; \) are in the disc

1 7_-[(1+|)\|Ill-)n—(|)\|/14)k—-l+1]

2] =
[COV|

Proof.
l
max | 7,(\) | = T [7:0) [( IT [7:0:) )
m+1=is] i=m+1 1Fimax
1 T[(1+MI/p.)n—(\Mlu-)k-Hl] ,

<
e |

gsince |P;AN)| =7 for m +1 =17 =<1. Some estimates for the zeros
of linear combinations of polynomials can be derived by a con-
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tinuity argument. We denote by D(k,n — k) the open domain in
the extended complex X-plane, for which the polynomial F'(z;)\) =
R(z) + MS(2) has exactly k zeros with negative real part (n — k zeros
with positive real part), where E(z) and S(z) are fixed and deg (R + \S)
=n,k=0,1,---,n. Some of the domains D(k, n — k) may be empty.
We quote two results to be used later.

LEmMMA 4. (Marden [2] p.54). The zeros of the linear com-
bination

f(Z) = 7\'1f1(z) + o+ 7\'ﬂ)fp(z)

where N; #0, 1=1,2,---,p, lie in the locus I" of the roots of the
equation

Mz —a)t+ s N — ) =0

when the «,, ---,a, vary independently over the circular regions
C, -+, C, and where C; contains all the zeros of the polynomial f;(z).
The following result is due to Walsh (see [2] p. 55).

LEMMA 5. If the points a, ---, a, vary independently over the
closed interiors of the circles C,, ---, C, respectively, then the locus
of the point.

»
o= > ma;
i=1
where the m; are arbitrary complex numbers, will be the closed
interior of a circle C of center ¢ and radius r, where
vd »
¢ = > mc;, r= Z|m:‘|"‘j
1=1 =1

and c¢; and r; denote respectively the center and radius of the circle
C;. We prove a preliminary result.

LEMMA 6. Let
@25) f(RAN)=@F+a)"+ " |Rea|=1, arga=a, p=n.

Then for all N, |N| =< |cos” «|, the polynomial f(z, \) has all its zeros
in the same right, or left, half plane as the polynomial (z + a)".

Proof. By the remarks made following the proof of Theorem 6
it is sufficient to prove that the domain D(k,n — k), k=0 or =,
which contains the origin, contains also the circle about the origin
with radius |cos” a|. Substituting z = ¢y in (25) and solving for A
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in the equation f(iy,\) = 0 we get

M =liy +ar| XL = Reg
Yy

i+ —“-'p .

Yy
Since by elementary geometric considerations |¢ + a/y| = |Real/a|,
we get |A| = |Rea|"/|a|?, hence the region D which contains the
origin contains also the circle |M| < cos’ a||Rea|*?. Taking into
account the conditions (25) the desired result follows.

THEOREM 7. Let Rz)=2"+ --- + a,, S =2"+ -« +b, k=
n. Let the zeros of R(z) and S(2) lie in the discs C;:|z —¢;| = 7,
1 =1, 2 respectively, such that one of the following conditions holds:

(a) Re [(02 - cl)] - (7'1 + 7'2) = 1
(b) Re [(02—01)]+71+7‘2§ _1

Denote the circle |z —(c; —¢)| =r + 7, by C, and let min,c,, |cos
argz| = A. Then in case (a) all the zeros of the polynomial R(z) +
AS(z) for |[M| = AF, are in the region Rez < r, + Rec,, and in case
(b)—in the region Rez = Rec, — r,.

Proof. By Lemma 4 all the zeros of the polynomial R(z) + \S(z)
are in the locus of the zeros of the polynomial ¢(z) = (z — a)" +
Mz — a,)*, where «;,7 = 1,2 vary independently in C;. By Lemma
5, a,— a,e C; for any ;€ C;. We may apply therefore Lemma 6 to
the polynomial g(¢ + a,) = [ + (@, — a)]* + \¢*. It results that in
case (a) all the zeros of the polynomial ¢g(¢ + «.) are in the region
Ref <0 for |[\| £ A%, and Rez = Re{ + Rea, < Rea, < r, + Rec,.

Similarly, in case (b), the zeros of ¢(¢ + «,) are in the region
Re& = 0. It is clear that if k£ > n, similar results can be obtained
replacing «, by a,, » by 1/» and R by S.

Combining the last result with a similar result for the imaginary
part of the zeros of R(z) + AS(z) we obtain:

COROLLARY 3. With the motations and assumptions of Theorem
T suppose that one of the following holds

(@) Rel(c, — ) —(r+r)=1
(b’) Im [(02 - 01)] - (7'1 + 7'2) =1.

Denote

A, = min (min | cos arg z |, min | sin arg 2|) ,
2603 2603
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Then for |N| < Af, in case (a’) all the zeros of the polynomial R(z) +
AS(2) are in the quadrant Rez < r, + Rec,, Imz < r, + Im ¢,, and in
case (b') all the zeros of the above polynomial are in the quadrant
Rez= Rec,— 7,y Imz=Imc, — 7,.

The estimates based on the continuity argument can be further
developed and it is possible to obtain bounded regions for the zeros
under suitable restrictions upon the parameter .

We prove finally a result concerning the location of at least p
zeros of linear combinations of polynomials.

THEOREM 8. Let R(z) and S(z) be two polynomials of degree n
and k& with zeros z; and ¢; respectively, 1 =1,--+,n,5=1---,k.
Let the numbers a,r, vy, Ts, T3y N, Ngy k1, gy M+ Ny =m0, k, + k= k
satisfy the following conditions:

(a) The polynomial R(z) has m, zeros in the disc C;: |z —a | < 7
< r and m, zeros outside the disc C, which are in the disc |z| = r.

(b) The polynomial S(z) has k, zeros in the disc Cy; |2 —a| = 1,
< r which are also in the disc |z| <r and k, zeros outside the disc
C, which are also outside the disc |z — a| = r, > 7.

Suppose furthermore that ome of the following conditions 1s
satisfied:

r+a0+n2r—aa < |, T % +k2r+a0

(¢;) r<a, and n, =
’ r—r 2r + a, r r—nr

'r+a0+n27'——ao gklr—ao+k27'—|—a0

(c)) r>a, and m, =
r—1r 2r r 4+ 7, r— 1,

’

then the polynomial F'(z;\) = R(2) + AS(2) has at least n, zeros in
the disc |z — a| < r, for any complex number \.

Proof. A straightforward calculation yields the following results:
(1) Let z = a + re®, then

M=maxRe< i >= r* — |a’| + Re(au) + r|u|

0=0s2r 2 — U r*—|u—al

2 >: r*—|a|’+ Re(a®t) F r|u|

m=minRe<
z— U r—lu—al

0g0=2r

according to |#4 — a| S r respectively.
(2) Let a =ae”, z—a =re’, u— a = pe*, then
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uforp<¢

r—p
M1=maxRe< il >= uforp>r,|u]<'r
0=6,p52m 2 — U r—pQ
’l”-aopz—?"l?%—Pl for p>r, |u|>7r
) e
r

=% tor ¢ | <r
L=l tor 1> p, Jul

m1=minRe( 2 >= 7= 0 — 7] — for r > o, [u| >
0<6,p<2m 2 — U r*— 0

for r<p.

r + a,
r—p

(4) Let the polynomial R(z) satisfy condition (a) of Theorem 8, then

M2=max-dilﬁ—argR(z)gn1 Tt d 1 qy— o

for r < a,
|z—a]=r r—1r 2r + a,

r+ a r—
M, < n, + .+ n, % for r» > a,.
r—nr 2r

(5) Let the polynomial S(z) satisfy condition (b) of Theorem 8, then

mz=min—‘i—arg’S(z)glc1 =& 4, "+ &% gop r < a,
le—al=r QO r r—7

3

my = k- — % +k27'+a0 for r > a, .
r 4+ r, r— 1,

By the results (4) and (5), the condition (¢,) or (c,) implies that

d R@) _ d R0 — min % _
RS G R gy = A gy o1 ) min e ) 20,

Hence the arg R(z)/S(z), as |z — a| = r and z makes one turn in the
positive direction, decreases monotonically.

R _ _
lz_zlljrg W = 2n(n, — k) .

It follows now that

R(z) 3
Iz~€|=r<arg %— + 7\'> = 2(’”/1 kl)

for any complex number x. Hence

1 _Al_arg’ (R(z) + AS(z)) = 2n(n, — k,) + 2rk, = 27n, .
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This completes the proof.

In the particular case a = 0, n, = k, = 0, at least n zeros of the
polynomial F'(z; \) are in the dise |z| < max ((nr, + kr)/(k — n), ry) for
E > n. The last result is due to Biernacki (See. [1]). If ¢ =0 and
the zeros of R(z) and S(z) are in the discs |z — ¢;| < d;, it results
from Theorem 8, with »; = |¢;| + d;, ¢ = 1, 2, that in the case k > n,

at least n zeros of the polynomial F'(z; \) are in the disc

lzlémax("%izd‘ + n[ciiﬁlcll ,d2+lczl>.

This result is due to Jankowski [1].
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