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1. Introduction* Let Lu = 0 be a homogeneous linear partial
differential equation with constant coefficients in two independent
variables x and y. In [1] Lewy introduced a class of compositions each
of which associates with any two solutions u and v of the differential
equation a function w which depends bilinearly on u and v. The
main result of [1] is that w is a solution of the same differential
equation. In this paper we first give a simpler proof of this result
and then investigate when the composition is commutative and as-
sociative. We prove that for every differential equation at least one
of the compositions is commutative. For associativity our results are
limited to second order equations. We show that when the differential
equation is parabolic, one of the compositions is both commutative
and associative. For elliptic and hyperbolic equations none of the
compositions are associative, but by a suitable modification an operation
which is both commutative and associative is obtained.

2. The compositions* The solutions u and v will be assumed to
be defined in a domain 3f of the x, y'-plane with the origin 0 as an
interior point. Let xP, yP and xQ, yQ be the coordinates of the points
P and Q, respectively; and let P — Q be the point with coordinates
xP — xQ, yP — yQ. We use ξ and ΎJ to denote operators which map
functions into functions such that

(2.1) ξf(P) = ητ-f(P), Vf(P) = -J^
dxP dy

Note that this implies that

Vf(Q) =
xQ

dyQ

ξf(P - Q) = ηr-fiP - Q) = —χ-f(P - Q)
dxP dxQ

All derivatives occurring in formulas will be assumed to be continuous
so that the operators ξ and η commute. When a path of integration
from 0 to P is considered, it will always be assumed that for each
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point Q of the path both Q and P — Q are in the domain £&.
If L is the operator defined by the equation

(2.2) Lu(P) = Σakιξ"V

ιu{P)

where the sum is over nonnegative integers k and I with k + I ^ p,
then by Green's formula if u and v have continuous derivatives of
order Sp

(2.3) j j ^ [u(P - O)Lι;(Q) - v(Q)Lu(P - Q)]dxQ dyQ

Q), v(Q))rfa?β + 5 2 W P - Q), v

where the B{ are certain bilinear forms in u and derivatives of order
t^p — 1 evaluated at P — Q on the one hand and v and derivatives of
order Sp — 1 evaluated at Q on the other. In general, these bilinear
forms are not uniquely determined by L.

Using an arbitrary choice of the Bi for which (2.3) holds, Lewy
defines the composition u o v of two solutions u and v of

(2.4) Lu(P) = 0

by setting

(2.5) u o v(P) = Γ ί f t M P - Q), ̂ (Q))d*β + ft(u(P - Q), v(Q))dtfβ] .
JO

By (2.3) the integral is independent of the path from 0 to P. In
this way we obtain, in general, not a single composition but a class
of compositions.

Let £&' be the domain consisting of all points P in & which
can be reached by paths from 0 such that for each point Q on the
path both Q and P — Q are in &. (In particular, if 3f is convex,
£&' is identical with i^.) The following theorem is the main result
Of [1].

THEOREM 1. If v, and v are solutions of (2.4) with continuous
derivatives of order 2p — 1 in Si and if u o v is an arbitrary com-
position given by (2.5), then L(u o v) — 0 in the domain &\

3. Proof of Theorem l We begin by establishing that if the
theorem holds for some one of the compositions given by (2.5) it holds
for all of them. If Bly B2 are the bilinear forms associated with one
composition and B[, B'2 the forms associated with another composition,
then by (2.3) for all sufficiently differentiable functions u(P — Q) and
v(Q) (whether solutions of (2.4) or not)
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(3.1) [B^u, v) - B[(u, v)]dxQ + [B2(u, v) - B'2(u, v)]dyQ

must be an exact differential of some function F. Let us prove that
this function F is a bilinear form with constant coefficients in u, ξu,
Ύ)u, and v, ξv, ηv, - --. By repeated use of the equation

ξkηιu(P - Q)ξmψv{Q) = - ? - [ξkyιu(P - Q)ξm~1Vnv(Q)]
dxQ

+ ξk+1ηιu(P - Q)ξm~ψv(Q)

we can remove differentiations of v with respect to x in the expression
multiplying dxQ in (3.1). Thus we find (3.1) is equal to

(3.2) -£-(F0(u, v))dxQ + -£-(FQ(u, v))dyQ + F,{u, v)dxQdxQ dyQ

+ F2(u, v)dyQ

where the F{ are forms bilinear in u, ξu, rju, and v, ξv, ηv,
and where all derivatives of v in Fx are with respect to y. Also,
we must have {dfdy^F^u, v) = (dldxQ)F2(u, v). If F2 did not vanish
identically, then {djdxQ)F2(uy v) when written as a form in u, ξu,
and v, ξv, would contain a term in which differentiation of v with
respect to x occurs. But, in (ΘldyQ)F1(u, v) all derivatives of v are
with respect to y. Consequently F2 and Fx vanish identically, and
F = Flu, v).

We observe that all derivatives of u and v occurring in Fo must
be of order ^p — 2. The difference between the two compositions
^(^(0), v(P)) - F0(u(P), v{0)) is a linear combination of u(P), ξu(P),
• , v(P), ξv(P), ••• with constant coefficients. Now, if u and v are
solutions of (2.4) with continuous derivatives of order ^2p — 2, then
because L has constant coefficients, all derivatives of u and v of order
^p — 2 are solutions of (2.4). Thus the difference between the two

.compositions is a solution.

We now define a particular composition, which we shall call the
symmetric composition, and verify that it is a solution of the differ-
ential equation. Consider the exterior differential form

[u(P - Q)ξkγv(Q) ~ v{Qψηιu{P - Q)]dxQ dyQ .

Regarding P as fixed and differentiating with respect to Q, we find
that this form is equal to

- Q)]dχQ]

and also is equal to
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- Q)]dyQ

- Q)]dxQ} .

With

Vkι(u, v) = ^ ( [ g i y Q F - ' - V ^ C P - Q)]dyQ

- Q)]dxλ ,

(3.3)
Vl(u, v) =

we set

(3.4)

Both ^(P) and w*(P) are compositions of u and # of Lewy's type..
The proof of Theorem 1 given in [1] was made by verifying that
L(w) = 0. It turns out, however, to be more convenient to prove
that L(u o v) = 0 where u o v is the symmetric composition given by
the formula

(3.5) u o v(P) = —(w(P) + w*(P)) .
2

The line integrals Vkl and V*t are, in general, not independent
of path. However, in computing the partial derivatives of u o v it
is convenient to be able to operate on the terms Vkl and V*t sepa-
rately. For this reason we extend the operators ξ and rj. If

I - UP) + \P(UP, Q)dxQ + Λ(P, Q)dyQ) ,
JO

then we set

fl = J£L.(P) + Λ(P, P)
to

Λ(P, P)^(P) + Λ(P, P) + [ΊηrΛiP* Q)dχQ + ^
dy )o\dyP dy

The consistency of these definitions follows from the usual rules for
differentiating an integral which is independent of the path.
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note, however, that some care is required in using these extended
operators because the extended operators ξ and η may not commute.

We have

, Vkl(u, v) = Vot(u, ξ*v) + Vtt(γu, v) ,

' VUu, v) = Vol(ξ*u, v) + Vφi, Vιv) .

Setting

(3.8) Skn(u, v) = Σ ΣίξΎv(P)ξk-1-ψ-1-ίu(P)
<=0 3=0

and applying (3.6), we obtain

ξVol(u, v) = VΛ(ξu, v) - Su(u, v)

VVk0(u, v) = Vk0{ηu, v) + Skl(u, v)

ξVk0(u, v) = Vk0(ξu, v)

VVol(u,v) = Va(ηu,v) .

Moreover, since

ξSku(u, v) + Sln(ξku, v) = Sk+lιn{u, v) ,

ηSkn{u, v) + Skl{ηnu, v) = Sk,n+1(u, v) ,

we obtain

r Vol(u, υ) = Val(ξ™u, v) - Sml(u, v) ,

Vn Vk0{u, v) = Vk0{rfu, v) + Skn(u, v) ,

' ξmVko(u,v)=Vko(ξmu,v),

ynVoι(u,v) = Vtl(ψu,υ) .

Hence by (3.7)

+ Skn(ξmvιu, v) - Sml(u,

u, v) = Vol(tmvΨu, v) + VkM

- S U f ^ X υ) + Skn(u,

By (2.2) and (3.4) we have

Lw(P) = Σ amnψtm

If Lu = 0 and Lv — 0, then

Σ akι[Voι(Lu, ξkv) + Vk0(Lvιu, v)} = 0
kl
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Therefore,

(3.10) Lw(P) = Σ Σ M « [ W ί " Λ v) - Sml(u, ξkψv)] .
m,n k,l

Similarly

(3.11) Lw*(P) = Σ Σ am%aklξ"7j* VUu, v)
m.n k.l

mnakl[-Sml(ξkψu, v) + SkΛ(u, ξ™ηιv)] .
m,n k,l

The value of this sum is unchanged if we interchange k and m and
interchange I and n throughout. Doing this, we obtain

(3.12) Lw*(P) = -Lw(P) .

Thus for the symmetric composition

L(u ov) = —(Lw + Lw*) = 0

and, as we have seen, this implies that L(u o v) = 0 for any of the
compositions. This completes the proof of Theorem 1.

If we assume that there is a straight line segment joining 0
to P which lies entirely in sgr, then the change of variable Q' = P
— Q takes the line segment from 0 to P into the segment from P
to 0. If this path of integration is used, it is easily verified that

(3.13) Vkl(v, u) - Vΐt(u, v)

and hence for the symmetric composition u o v(P) = v o u(P), i.e., the
symmetric composition is commutative.

4. A covariant composition. In this section we introduced for
operators of all orders a special composition of Lewy's type which
we shall call the covariant composition. For operators of order ^ 2
it coincides with the symmetric composition of §3.

If u is a solution of the differential equation

(4.1) Lu = Σakl

 dk+l u = 0
v } dxkdyι

and the linear transformation

yf = jx + δy , J = α<5 - /5γ =̂ 0

is made, then u considered as a function of xf and y' satisfies a new
differential equation of the same order
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flk + l

(4.3) L'u = Σa'kl— u - 0 .
v } kl dx'kdyn

For the transformed operator U we can then obtain the Lewy com-
positions. We now show how to single out a composition such that
if Δ = 1 the same function w = u o v is obtained whether the com-
position considered is with respect to L or with respect to IΛ

We begin by introducing certain exterior differential forms Ωnj

which depend bilinearly on u and v. Let A and B be arbitrary real
constants (indeterminates). Then Ωnj is defined by equating coefficients
in the equation

(4.4) Σ(Aξ + BηYv(Q)(Aξ + Bηf^uiP - Q)(AdyQ - BdxQ)

J JΣ
3=0

We define the covariant composition of two solutions u and v of
(4.1) by the equation

(4.5) u o v{P) = \PΣ akιΩk+ι>k(u(P - Q), v(Q)) .
JO

Before stating our main result for the covariant composition, let us
verify that it is indeed a composition of the type considered by Lewy.
Regarding P as fixed and differentiating with respect to Q> we
obtain

d\±(f}A*B»-Ώnλ = Σ {(Aξ + Bη)^v{Q)(Aξ + BηY~^u(P - Q)

- {Aξ + Bηyv(Q){Aξ + Bη)n-ju(P - Q)}dxQdyQ

- {(Aξ + Bη)*v(Q)u(P - Q) - v(Q)(Aξ + Bη)*u{P - Q)}dxQdyQ .

Hence

(4.6) dΩnj = {?ψ-jv(Q)u(P -Q)- v(Q)ξ>η»-*u(P - Q)}dxQdyQ ,

and consequently (4.5) defines a composition.

THEOREM 2. // the linear change of variables (4.2) is made,
then the covariant composition with respect to the transformed
operator U is equal to Δ times the covariant composition with
respect to L.

Proof. Starting with u o v(P) as given by (4.5) we make the
change of variables (4.2) and express u o v(P) in terms of the new
variables x' and y\ With ξf = d/dx' and Ύf = d\dyf we have
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! = «£' + rη' , dy = — (αd

(4.7)
η = βξf + δη' , —dx = — (βdyr - δdxf) .

Δ

We define β£y(%, v) by the following equation which corresponds to
(4.4):

(4.8) Σ ( A f + BΎ]Jv{Q){Aξf + Bη'y-^uiP - Q)(Ady'Q - Bdx'q)
3=0

= ±(n.
We now express the left hand side of (4.4) in terms of ξ\ rj\ dxf

Q,
dy'Q. Since

Aξ + Bη = (Aa + Bβ)ξ' + (AT + Bδ)ηf

AdyQ — BdxQ = —{(Aa + Bβ)dy'q — (AT + Bδ)dxr

Q} ,
Δ

the left hand side of (4.4) is equal to \\Δ times the expression obtained
by replacing A by Aa + Bβ, B by AT + Bδ, ξ by f', η by )y', dxQ by
dα?ρ, dί/ρ by dy'Q. Therefore

(4.9) Σ ( ^ * , Σ
j=o\j/ J i=o

Next we introduce a linear operator Γ which takes differential
forms into differential forms and satisfies the equation

(4.10) TΩ'%i - Ω'nJ+1 (j - 0,1, 2, , n - 1) .

From (4.9) we obtain

i i f t W + BβTYiArr +
j=o\J/ A j=o

= —{AaT + £/3Γ + AT

4Σ
A j=o

Therefore

(4.11) Ωnj - - l

The covariant composition of u and v with respect to the operator
U is given by the integral
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(4.12) \PΣa'kιΩ'k+ι.k(u(P - Q), *(Q)) .
Jo

By (4.7) a term a,-,*..,-!*-' in the operator L transforms into

Hence

(4.13) ^ 0 ; + , , * = Σ as.n-A(<xT + 7)j(βT

Comparing (4.13) with (4.11), we see that the composition with respect
to 1/ is Δ times the composition with respect to L; this completes
the proof of the theorem.

REMARK. If the straight line segment from 0 to P lies in the
domain &, then one can easily show that u o v(P) = v o w(P), i.e.
that the covariant composition is commutative. The proof is similar
to that given in §3 for the commutativity of the symmetric com-
position.

5. Associativity In this section we consider an arbitrary second-
order operator with constant coefficients,

θxdy

Throughout, the composition considered will be the covariant com-
position of §4; and the path of integration will be the straight line
segment from 0 to P. As we have seen, the covariant composition
is commutative. We now investigate when it is associative.

THEOREM 3. For the second-order operator (5.1) and the covariant
composition

(5.2) u o (v o w) - (u o v) o w = Dv(0)(u(0)w(P) - u(P)w(0))

where

L) — ftn ^20^02

REMARK. From the theorem it follows that the covariant com-
position is associative if and only if the operator L is parabolic. Note,
however, that if the convariant composition is restricted to the subset
of solutions of Lu = 0 which vanish at O, then it is always associ-
ative,
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Proof. I t is convenient to define two operations % and * by
the equations

S P

u(P — Q)v{Q)dyQ .

u*v = — I u(P — Q)v(Q)dxQ .
x Jo

where the integrals are taken along the straight line segment from
0 to P. It is well known that these convolution operations are com-
mutative and associative, i.e.,

u* v — v *u , u*v = v*u,
x χ 7 y y

(5.4) u * (v * w) = (u * v) * w . u* (v * w) = (u* v) * w ,
7 x N x ' y x '' x y v x v y ' x

u* (v * w) = (u* v) * w , u*(v*w) = (u*v)*w.
x v y ' x x ' y ' y v y ' v y ' y

By a linear transformation of the independent variables the operator
L can be brought into the canonical form

(5.5) ^ ^ A A
dx2 dy2 dx dy

where ε = 1 for elliptic operators, ε = 0 for parabolic operators, and
ε = — 1 for hyperbolic operators. In the following computations we
shall assume that L has this form and that Lu — 0, Lv = 0, and
Lw = 0. We have

vow — ξw * v + w * ξv + εvw * v + εw *wv + aw * v + bw * v ,
y y ' x x ' y x 7

ξ(v o w) = ξv o w - εηw{P)v{0) - εw{P)ηv{0) - bw(P)v(O) ,

η(v o w) = ηv o w + ξw(P)v(O) + w(P)ξv(O) + aw(P)v(0) .

Consequently, u o(v o w) is equal to

Φ(u, v, w) — εv{O)r]w * u — εηv(O)w *u — bv(O)w •*u + εv(O)ξw * u

+ εξv(O)w * u + av(0)w * u

where Φ(u, v, w) is equal to the sum of the following 36 terms:
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ξw * V * ξu W * ξv * ξu £Ύ]W * V * ξu

ξw * ξv *u w * ξ2v * u εvw * ξv *u
v v y v ' x ^ y

εξw * v *vu εw * ξv * vu ε2vw * v *vu
y x ' y x ' ' x x '

εξw *ηv*u εw * ξvv * u ε2vw *vv*u
y x y x x x

y x

aξw *v*u
y y

bξw * v * u
3 y x

aw

bw

y x

* ξv *u
v y

"A* f t / "A" W
y * »

x

εα^w * v

εw *Vv *
x ' y

εw 5 ^

ε% * vv •
x ' :

ε2w -κ )^2^

ε δ ^ * lyv

y

*U
X

ξu

*u
y

* u
X

*u
y

X

aw *

aw *
y

εaw

εaw

a2w

abw

:V * ξU
ι y

: ξV *U
' b y

* V *VU
y x J

* VV * U
y ' x

* V * U
y y

bw *

bw *
X

εbw

εbw

abw

b2w •

v *
y

ξv

•x- V
X

ξu

*u

*Vu
*Ύ)V *U

X ' X

•X- V
X

* u
y

If these 36 terms are arranged as a 6 x 6 matrix with the first six
lines above as the first three columns of the matrix and the last six
lines as the last three columns, then terms on the main diagonal are
unchanged if u and w are interchanged, while a term off the diagonal
is changed into the one symmetric with respect to the diagonal.
Hence Φ{u, v, w) = Φ{w, v, u). From this it follows easily that

u o (v o w) — (u o v) o w — εv{O){rju * w — ξu*w — ΎJW *u + ξw *u}

= εv(O){\Pw(P - Q)du{Q)

= εv(O){w(O)u(P) - w(P)u(O)} .

This proves the theorem if L is in the canonical form (5.5). The
general case is then easily obtained by using Theorem 2.

Although for D Φ 0 the covariant composition is not associative,
there is a modification of this operation which is both commutative
and associative. Using o to denote the covariant composition, we let

(5.6) u v = u © v + cλu{P)v{0) + c2u(O)v(P) .

where cx and c2 are constants.

THEOREM 4. The operation defined by (5.6) is commutative if
and only if c1 — c2. It is associative if and only if cx = c2 and
c\ = D.

Proof. The first statement is obvious. We have
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v w = v o w + c1v(P)w(O) + c2v(O)w(P) ,

and hence, using the fact that v o w(0) = 0 ,

u (v w) = uo(vow) + cxw(O)u o v + c2v(O)u o w

O)w(O) + c2u(O)v o w

c1c2u{0)v{P)w{0) + du(O)v(O)w(P) ,
ΐ ) f = ( ί ί o t ; ) o ί i ; -f CXV{O)U o w + C2u(O)v o W

Using Theorem 3 we obtain

w (i; w) — (t6 v) w = (c2 — Ci)v(0)t6 o

+ (i) - CIΦ(0)[M(0)K;(P) - u(P)w(0)]

from which the second statement of the theorem follows immediately.
Theorem 4 can be used to answer the question of which com-

positions for second order operators are commutative and associative.
The operation is a composition if and only if cx — — c2. In §3 it
was shown that for second order operators an arbitrary composition
has the form

u o v + c(u(0)v(P) - u(P)v(0))

where u o v is the con variant composition. Thus by Theorem 4 the
covariant composition is the only compostion which is commutative.
Also, it follows from Theorem 4 that a composition is associative if
and only if D — 0 and c — 0. Thus for parabolic operators only the
covariant composition is associative, while for elliptic and hyperbolic
operators none of the compositions are associative.

It is interesting to note that for real hyperbolic equations the
two modifications of the composition which are commutative and
associative, when applied to two real solutions yield real solutions,
but for real elliptic equations no such modification exists. In the case
of elliptic equations one must consider complex-valued solutions to
obtain an associative operation.
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