
DOUBLY INVARIANT SUBSPACES

T. P. SRINIVASAN

1Φ Our theme is a theorem on doubly invariant subspaces attributed
to Wiener in the folk lore; our discussion was inspired by that of Helson-
Lowdenslager [2] on simply invariant subspaces and a course of lectures
by Professor Helson on this subject. Let ^ί denote a closed subspace
of U of the circle | z \ — 1, which we shall denote as L\eix). Let λ
denote the function on | z I = 1 defined by X(eίx) = eix. Say that ^£
is doubly invariant if / e ^ C = > λ / , \~xf^^£. An example of such
a subspace is the set of all / e L\eix) which vanish on a fixed measur-
able subset E. Wiener's theorem asserts that every doubly invariant
^£ is of this form. A similar result holds for L2 of the real line
too (which we shall denote as U{dt)). In this case a doubly invariant
subspace is any closed subspace ^£ of L\dt) such that fe^f=>
eiVlifz^€ for all real u, and every such subspace consists precisely
of all functions in L\dt) which vanish on a fixed measurable subset
E of the line. In either case—the circle or the line—^f determines E
uniquely. We shall refer to either of these cases as the scalar case.

Wiener's theorem extends to L2 spaces of vector valued functions
on the circle or the line. Let gίf be any separable Hubert space and
L^ denote the set of all functions on | z \ — 1 with values in £$f which
are weakly measurable and whose norms are square integrable. L\%
is a Hubert space for the inner product

(/, g) = Γ W ) , g(e* ))dσ
J-JΓ

where the inner product on the right is the one in β^ and dσ =
(l/2π)dx. The doubly invariant subspaces of L\e are defined exactly
as before. An example of such a subspace in this case can be given
as follows:

Let J? be a range function meaning a function on | z | = 1 to
the family of closed subspaces of §ίf, defined a.e. Two range functions
which agree a.e. are regarded as the same function. Let P(eίx) be
the self adjoint projection on ^f{eix). Say that that ^ is "measur-
able" if P is weakly measurable. Given ^f measurable, let ^^ be
the set of all functions feL2% for which f(eix) e ^(eίx) a.e. Then
^j? is a doubly invariant subspace of L2^. The version of Wiener's
theorem in this case will be that every doubly invariant subspace of
L^ is obtained as above from a measurable range function ^f and
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β determines ^ uniquely. The scalar case corresponds to one
dimensional £ίf in which case ^{eix) can have only one of two values,
either {0} or the whole space, so that specifying ^{eix) is merely
prescribing the set on which all functions in ^€β vanish. Thus the
above indeed generalizes the scalar case for the circle. The general-
ization of the line case to the vector context is now obvious.

In both the scalar and vector cases, the circle or the line and the
associated Lebesgue measure are inessential. Let X be any locally
compact space and m a regular Borel measure on X and let P be
any subspace of L^dm) which is weak* dense. Say that a closed
subspace ^/ί oί. L\dm) or Ll%(dm) is doubly invariant if it is invariant
for multiplication by functions in P. Then the doubly invariant
subspaces of If {dm) or L2^(dm) have precisely the same structure as
in the circle or the line case. The circle corresponds to the situation
'm(X) < oo' and the line to 'm(X) = co'; the subspace P corresponds
in either case to the set of all trignometric polynomials.

In this paper we first give a proof of Wiener's theorem for the
scalar circle case and show that essentially the same proof applies to
the line case too. We then generalize our proof to yield the vector
case. Our proof for the (scalar and vector) circle case applies word
for word (with obvious changes) to the context of finite regular measure
spaces mentioned above; our proof of the line case could be adapted
to the context of infinite measure spaces. By modifying our proof
for the vector case we obtain a theorem (Theorem 5) on range functions
of constant dimension which incidentally gives a characterization of
range functions associated with simply invariant subspaces with no
remote past (Theorem 6). Finally we show that in the scalar case
the L\dm) theorem implies a corresponding Lp(dm) theorem (Theorem
7), 1 g p g co1.

The Wiener L2 theorem is known. In the scalar case, direct proofs
are also known; our proof seems to be simpler. In the vector case
our version of the theorem was suggested by Professors Helson and
Lowdenslager; we have not seen in the literature a direct proof of
the theorem in this case. It could be derived as a corollary from
the following general theorem in the theory of 'rings of operators':

Any bounded operator T: L2^ —> L2^ which commutes with multi-
plication by bounded scalar functions is multiplication by a bounded
operator valued function, [cf: 1, p. 167, Theorem 1; 3, p. 301, Lemma 1]
The proof this way would be more involved. Our Lp theorem and
Theorem 6, we believe, are new.

We may point out in passing that the general theorem on multi-
plication operators quoted above can itself derived from Wiener's

1 The Lp(dm) theorem for pΦ2 is of interest as it exhibits a class of subspaces of
Lp(dm) which admit bounded projections.
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theorem by an application of the spectral theorem for self adjoint
operators. We omit the proof of this.

We have beneίitted considerably by our discussion with Professor
Helson in the course of preparation of this paper and our thanks are
due to him.

2. THEOREM 1. Let ^ be a doubly invariant subspace of L\eix).
Then Λ€ — CEL\eix) for some measurable sebset E (where CE denotes
the characteristic function of E).

Proof. Let ^fL be the orthogonal complement of ^€ in L2(eix)
and let q be the orthogonal projection on ^€ of the constant function
1. Then 1 — q^^£L, and because of double invariance of ^ and
hence of ^/έ1-, Xn(l - q) e ^ L for all n. So \(q - | q \2)e~nixdσ = 0

for all n so that | q |2 — q a.e. Hence q — CE for some measurable
subset E.

Trivially qL\eix) c ^£. This inclusion is in fact an equality. For
if g e ^?OqU(eix) then g _L Xnq for all n, also g 1 Xn(l - q) (which lies
in ^f1), so g _L λ% for all n and hence g = 0 a.e. Thus ^ = qU(eix) =
CEL\eix). We pass now to the line case:

THEOREM 2. Let ^y£ be a doubly invariant subspace of L2(dt),
— oo < t < CΌ . Then Λ€ = CEL\dt) for some measurable subset E
of the line.

Proof. Let U = (1 - it)L\dt) and Λ€ = (1 - it)^. U is a
Hubert space for the inner product

(/, 9) - Γ -dt

and ^ ^ is a closed subspace of L2 invariant under multiplication by
all eiut. Let ^£"'L be the orthogonal complement of ^£ in L2 and let
g be the projection of the constant function 1 (which belongs to U)
on ^ . Now the arguments are the same as in the circle case:

(1 - q)eiut e ^ - 1 for all u and hence q ± (1 - q)eiut for all u.
That is

{°° (Q - \Q I2) e~iutdt = 0 for all u.
J-°° 1 + ί

Hence (q - \ q |2)(1/(1 + t2)) - 0 a.e. Thus | q \2 = q a.e. and q = CE for
some E. Then as in the circle case, ^£ — qL2 == C^L2, i.e. (1 — it)^£ —
(1 — it)CEL2. Hence ^// = C^L2. The uniqueness of E' is trivial in
both the cases.
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3.1. We deal with the vector case for the circle. Let £$f be a
separable Hilbert-space and L\% be defined as in § 1. Then we have

THEOREM 3. For every doubly invariant subspace ^€ of Ll% there
exists a unique measurable range function ^J? such that ^ = ^£^.

Proof. Let {ek} k = 1,2, be an orthonormal basis for 3(f and
let qk be the projection of the constant function ek on ^/ί. Then
qk e L2%* and of course is measurable. Each qk is defined a.e. on the
circle and hence also all qk's together. Let ^(eίx) be the closed
subspace of ^f spanned by {qk(eix)}k. Then ^(eix) is defined a.e. We
shall show that

(a) J^ is measurable
(b) ^£

Proof of (a). Let P(eix) be the orthogonal projection on ^
We have only to show that P(eix)ek is measurable for all k. We shall
actually show that P(eix)ek = qk(eίx) a.e. Let ^ L = Ll% Q ^f. Now
qk£ ^€ and ek — qke^L. Because of double invariance then,
Xnqre^f for all n, and is J_ek — qk for all k. Thus \(ek — qk(eίx),
qr(eίx))e~nixdσ = 0 for all n and hence ek — qk{eix) _L qr(βix) a.e. for every
r so that ek — qk(eίx) _L qr(eix) for all r, a.e. This means ek —
qk(eix) 1 ^(eίx) a.e. Since qk(eix) e ^{eix) it follows that P(eίx)ek =
qk(eίx) a.e.

Proof of (b). Let ^V be the closed span of {Xnqk} in L2

χ, k^l,
n = 0, ± 1 , ± 2 , •••. Then Λ" is doubly invariant and ^V* c:^//. If
^yjr φ ^ let flre^^θ-^ Then, using the invariance, we have

(i) flflλ ίk for all fc, w
(ii) Xng ±ek — qk for all fc, n.

It follows as in the proof of (a) that
( i ) g(eix)±qk(eίx) a.e.

(ii) g(eix) ±ek- qk(eix) a.e.

Hence g{eix) _L ek a.e. for every k so that #(eί&) J. ek for all fc, a.e.
Hence g(eix) = 0 a.e. This shows that ^Jt = ^//*.

If / e ^ ^ then f(eix)e ^(eίx) a.e. Hence ^ T c ^ . Let now
flr e ^^ © ^ C Then g ± Xnqk for all k, n, so sr(βiίC) J_ qk(eix) a.e. for
every fc and hence g(eίx) _L ̂ (eίx) a.e. But g(βί:c) 6 ^(eix) a.e. as
# e ^ ζ ^ . Hence # = 0. Thus ^ = ^ β .

Only the uniqueness part of the theorem remains to be proved.
This we prove independently as a lemma.

LEMMA. If ^f and 3ίΓ are measurable range functions and
then ^ = SΓ a.e.
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Proof. Let as before P(eίx) be the orthogonal projection on ^(eix)
and let qk(eix) = P(eix)ek, k = 1, 2 where {eJ is an o.n. basis for

qk is measurable as ^ is and || qk{eix) ||2 ^ | |βΛ ||
2 — 1 so that

^. Also {?*(£**)}* generate ^(eix) as {ej generate Jg^. Now
G ̂ f^ = ^f% so that ^(β**) e ^T(β ί a ;) a.e. for all k. It follows that

r ί e ^ ) a.e. Interchanging ^ and ^ we conclude that
a.e.

3.2. The functions {gJ defined in § 3.1 provide a measurable basis
pointwise a.e. for ^ . We shall show that we can secure the {qk} to
be orthogonal a.e. The usual orthogonalization process can be applied
at every point but the measurability of the resulting functions needs
to be proved. This can be avoided by a slight modification of our
construction of the qk's which while preserving their other properties
also ensures their pointwise orthogonality. The modification is the
following:

Let QΊ be the orthogonal projection of ex on ^/ί and let ^V[ be
the closed span of {λngχ}Λ. Then <Λ^ is doubly invariant and so is

^ θ >^ί Let now q2 be the projection of e2 on ^/ίγ and let
c ^#1 be the closed span of {Xnq2}. Having obtained qu q2, , qk-λ

and <yVl, ^ ί , ~ ^ - i as above, define qk as the projection of ek on
^Jt θ Σ<=ί - ^ T^16 f̂c's are easily seen to be mutually orthogonal
a.e. If ^{eix) is defined to be the closed span of {qk(βix)}k, the
arguments in §3.1 which trivial modifications will show that ^ = ^ € ^ .
We have thus proved

THEOREM 4. Corresponding to every measurable range function
there exist functions qk e U<%, k — l,2, such that the qk(eίxYs are
mutually orthogonal and span ^(eix) a.e.

The question that arises next is: when does ^f(eix) have a measur-
able o.n. basis a.e.? If {qk(eix)}k is an o.n. basis a.e. for ^{eix) then
the dimension of ^(eix) is a constant a.e., being equal to the cardi-
nality of the indexing fc's (finite or not). Conversely also we have

THEOREM 5. If ^ is a measurable range function of constant
dimension a.e., there exist functions q'k, k = 1, 2, in Lf̂  such that
{qk(eix)} is an o.n. basis for ^(eix) a.e.

Proof. By our construction in the proof of Theorem 4 we can
assume that there exist qk e L^, k = 1, 2, such that || qk(eix) || = 1
or 0 a.e. and {qk(eix)}k is orthogonal and generates ^(eix). For a given
x let q[(eix) = qh{eix) where ix is the smallest index such that q^eix) Φ 0;
having obtained q[{eix), , q'n-ι{eix), let q'n{eix) = qin(eix) where in is the
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smallest index ^ in-x + 1 such that qin{eix) Φ 0.1 If dimension ^(eix) =
co a.e., this construction defines qr

n for every n; if dimension ^{eix) —
N < co a.e., the construction proceeds exactly iV steps and defines
Qu Qf2, , ̂  a.e. The verification that the g'/s satisfy the requirements
of the theorem is not hard.

The above theorem has an interesting corollary. Say that a closed
subspace ^// c L\e is "simply invariant" if \n^f c ^ήf for all n ^ 0
but not for all n < 0. The range function ^ associated with the
smallest doubly invariant subspace containing ^//, we shall call the
"range function of ^/έ". The subspace ^ C = Π^o λ%^€^ we shall
call the "remote past" of ^C If ^ C = {0} (when ^ is said to be
without remote past) it can be shown from the L\e version of a theorem
of Lax [3, p. 300] that the associated range function is of constant
dimension a.e. (meaning finite and equal or infinite a.e.). Conversely,
if ^ is any measurable range function of constant dimension, by
Theorem 5 it has a pointwise o.n. basis {qk(e

ix)}k, q
r
k e L\%. Then {λ>nqk}k,n

is an o.n. set in L\e. If ^V^ is the closed span of {Xmqk}k, the ^Js
are mutually orthogonal in L%> for m = 0, ± 1 , ±2, and the or-
thogonal sum ^f = Σmέo -^m is a simply invariant subspace of L2^
without remote past whose range function is the given ^f. Thus
we have

THEOREM 6. A measurable range function is of constant di-
mension a.e. if and only if it is the range function of a simply
invariant subspace without remote past.

4. The modification employed in § 2 for discussing the line case
in the scalar context carries over without change to the vector situation
and extends Theorems 3-5 to L\% over the line. Theorem 6 remains
true but needs to be discussed anew; we omit the details.

5. Let m be a regular Baire measure on a locally compact space
X and P a subspace of L°°(dm) which is weak* dense. The reasoning
given in § 2-3 shows that the doubly invariant subspaces ^ of L\dm)
are the subspaces of the form CEL2(dm), EaX measurable. Using
this we wish to prove the following

THEOREM 7. Let Λr be a subspace of Lp(dm) which is invariant
under multiplication by functions in P and which is closed if 1 ^
p < co and weak* closed if p = co. Then ^ " = CELp(dm) for some
measurable subset E of X.

1 This construction resulted from a discussion with Professor Ju-kwei Wang.
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Proof.
Case (i) 1 ^ p < 2:

Let ^f = Λ^ Π L\dm). Then ^€" is a doubly invariant subspace
of L2(dm) and so ^€" = CEL2(dm) for some measurable subset E. We
shall show that %Ar = CELp(dm).

Let / e ĉ /̂  and / = ./Ί/a be any factorization for / as a product
of an Lμ function and L2 function where (l/μ) + (l/2) = (l/p), for instance
Λ = \f\Pl2 and Λ - (sgn./) |/Γ~(W2). Let Pα be the subalgebra generated
by P and constants in L°°(dm). The closed subspace [/2-PJ2 generated
by f2Pa in L\dm) is doubly invariant and hence [Λ-PαL = CE2L

2(dm)
for some E2aX. Now

Trivially ΛC^ e Lμ(dm) c L\dm). Hence

/iCΛί e ^ T n L2(ώm) = ^ f - CEL\dm) .

Let ΛC^ = C^ ,̂ ff e L2(dm). Then ff e Lμ(dm). So

/ = /1/2 - fiCE/, g' e L\dm) - CEg ^' e CEL%dm) .

This shows oΛ̂  c CELp(dm). The reverse inclusion is immediate from
the invariance of Λ^. Hence Λ* = CELp(dm) in this case.

Case (ii). 2 < p g c o ;
Let ^ T ' - {/|/e I/\ / ± ^^} where (1/p') + (1/p) - 1. Then

is a doubly invariant subspace of Lp/ and 1 ^ p' < 2. Hence
CE.Lpt for some £" c X. Then ^ T - C^L^ where E = X - E'.

REFERENCES

1. J. Dixmier, Les Algebres D'operateurs Dans L'espace Hilbertίen (Algebres De Von
Neumann) Gauthier Villars, Paris, 1957.
2. H. Helson and D. Lowdenslager, Invariant subspaces, Proc. Int. Symp. on linear
spaces, Jerusalem, I960, 251-262.
3. P. D. Lax, Translation Invariant spaces, Proc. Int. Symp. on linear spaces, Jerusalem,
1960, 299-306.

PANJAB UNIVERSITY, CHANDIGARH, INDIA

UNIVERSITY OF CALIFORNIA, BERKELEY U.S.A.






