
INTRINSIC EXTENSIONS OF RINGS

CARL FAITH AND YUZO UTUMI

A module M is an essential extension of a submodule N in case
K Π N Φ 0 for each nonzero submodule K of M. If S is a subring
of a ring JB, and if SR, sS denote the left S-modules naturally defined
by the ring operations of R, then R is a left quotient ring of S in
case SR is an essential extension of SS.

We shall discuss the following problem: (1) Characterize the con-
dition that a ring extension R of S is a left quotient ring of S
wholly in terms of the relative left ideal structures of R and S.

A ring extension R of S is left intrinsic over S in case K n S Φ 0
for each nonzero left ideal K of R. Evidently each left quotient
ring R of S is left intrinsic over S but an obvious example (when R
is a field and S a subfield =£ iϋ) shows that the converse fails. Never-
theless, we ask: (2) When is the condition R is left intrinsic over S
a solution to (1)?

We now specialize S by requiring that:
( i ) S possesses a left quotient ring which is a (von Neumann)

regular ring, or equivalently (R. E. Johnson [2]) by requiring that
the left singular ideal of S vanishes. For such a ring there exists a
maximal left quotient ring S which is unique up to isomorphism over
S, and which is itself a regular ring ([2]). To eliminate the field
example we require that:

(ii) S possesses no strongly regular ideals φ 0. Under these
hypotheses we present the following solution to (1).

A. THEOREM (2.6). Let S satisfy (i) and (ii). Then an exten-
sion ring R of S is a left quotient ring of S if and only if R is a
left intrinsic extension of S such that for each closed left ideal A
of S there corresponds a left ideal B of R such that B (Ί S = A.

(See § 1 for definitions.)
Regarding (2) we add a rather dubious final hypothesis:
(iii) S is right intrinsic over S.

B. THEOREM (3.1). If S satisfies (i )-(iii), then an extension
ring R of S is a left quotient ring of S if and only if R is left
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intrinsic over S. (Then there exists a ring monomorphism of R into
S which is the identity on S.)

Combining B with a theorem of Goldie [1] we obtain:

C. THEOREM (3.2). Let S be a prime ring which is both left
and right noetherian, and assume that S is not an integral domain.
Let Q denote the classical quotient ring of S ([1]). Then an exten-
sion ring R of S is left intrinsic over S if and only if there exists
a ring monomorphism of R into Q which is the identity on S.

l A ring S is strongly regular (resp. regular) if for any xe S
there exists yeS such that x2y = x (resp. xyx = x); an ideal / of
S is strongly regular if / is a strongly regular ring.

Let S be a ring. Then SM will denote that M is a left S-module,
and SS denotes the left S-module defined naturally by the ring opera-
tions in S. SM is an essential extension of a submodule N in case
K n N Φ 0 for each submodule K Φ 0 of M. Then, N is said to be
an essential submodule of M. An essential left ideal of S is a left
ideal of S which is an essential submodule of 8S. (Thus a left ideal
/ of S is essential if and only if S is a left intrinsic extension of I.)

An element x e SM is singular in case the annihilator of x in S
is an essential left ideal of S. It is known that the set Z(SM) of
singular elements of SM is a submodule of SM, called the singular
submodule of SM; Z(8S) is an ideal of S called the left singular ideal
of S.

If Z(SS) — 0, then S is said to be a Jι-ring, and S denotes its
maximal left quotient ring; S is a regular ring with identity, and is
left self-injective. If R is any left self-injective ring with identity,
then it is known (Utumi [4], Lemma 8) that Z{RR) coincides with the
Jacobson radical J(R) of R, and that the difference R — J(R) is a regular
ring.

A left ideal A of a ring S is closed if there is no left ideal of S
which is a proper essential extension of A.

In case S is a Jι-ring it is known that the set of closed left ideals
of S forms a complete complemented modular lattice L(S). If R is a
left quotient ring of S, R is also a JΓring, and L(R) is isomorphic
to L(S) by the correspondence A( e L{R)) -+ Aft S. Thus, in this case,
the following condition is satisfied:

(1.1) Condition. Let R be an extension ring of a ring S. For
any closed left ideal A of S there is a left ideal B of R such that
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We call an extension ring R of S left strongly intrinsic if R is
a left intrinsic extension of S, and if Condition 1.1 is fulfilled.

(1.2) LEMMA. Let R be a left intrinsic extension of a Jrring
S. Suppose that the maximal left quotient ring of S is right intrin-
sic over S. Then R is a left strongly intrinsic extension of S.

Proof. Let A be a closed left ideal of S. By [5, Theorem 2.2]
A is an annihilator left ideal of S. Hence B n S = A for some an-
nihilator left ideal B of R, as desired.

It is evident that Condition 1.1 is equivalent to the following:

(1.3) If A and B are left ideals of S such that A n B = 0, then
there exists a left ideal C of R such that C'DA and C Π B = 0.

Let R be a left strongly intrinsic extension of a ring S. Then
the following three properties are easily seen:

(1.4) If A Π B = 0 for a left ideal A of R and a left ideal B of
S, there is a left ideal C of R such that A Π C = 0.

(1.5) If the sum of left ideals {A{} of £ is direct, so is the sum
of {A, + RA%).

(1.6) If A is an essential left ideal of S, then A + RA is an
essential left ideal of R. If C is an essential left ideal of R, C Π S
is also an essential left ideal of S.

(1.7) LEMMA. Le£ R be a left strongly intrinsic extension of a
ring S. Then the following properties are equivalent:

( i ) S is a Jrring;
(ii) R is a Jx-ring\
(iii) the singular submodule Z(SR) of the left S-module R is

zero.

Proof. By (1.6) it is obvious that Z(SR) cZ(BR)czZ(sR). Hence
Z(SR) = Z(RR). This shows the equivalence of (ii) and (iii). Now
Z(SS) = Z(SR) n S , = Z(RR) n S. Since Z{RR) is an ideal of R,
Z{RR) = 0 if and only if Z{RR) f) S = 0. Therefore (i) is equivalent
to (ii), as desired.

The following proposition is known:

(1.8) Let S be a Ji-ring. A left ideal A of S is closed if and
only if Bxc A for xe S and an essential left ideal B of S implies that
xe A.
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(1.9) LEMMA. Let R be a left strongly intrinsic extension of a
Ji-ring S. Then the lattice L(R) of closed left ideals of R is iso-
morphic to the lattice L(S) of closed left ideals of S under contrac-
tion A-+Af)S.

Proof. It is direct from (1.6) and (1.8) that A Π S is closed for
any closed A. Suppose that Ax ΓΊ S = A2 Π S for Au A2e L{R). It is
known that any intersection of closed left ideals of a Jz-ring is closed.
Thus, (A3 =) A1f)A2eL(R). Let B be a left ideal of R such that
BcAu ΰ f l i s - 0 . It follows then that B Π S = 0. Hence B = 0,
which shows that Aλ = A3, since A3 is closed. Similarly A2 — A8, and
therefore Aλ = A2. Finally we shall show that the correspondence is
onto. Let CeL(S). By (1.1), C = Df] S for some left ideal D of R.
By Zorn's lemma there exists a maximal left ideal E of R such that
E n S — C. Let F be a left ideal of R which contains E properly.
Then F f] S Φ C. Since C is closed, we can find a nonzero left ideal
G of S such that G c F n S and G (Ί C = 0. By (1.1) there is a left
ideal H oί R such that i ί Π S is an essential extension of G. Then
0 = (HΓ\ S) Π C = ((H n ί7) n E) Π S. Since i2 is left intrinsic over
S, we have that (HΓi F) Π E = 0. This implies that î 7 is not an es-
sential extension of E. Therefore EeL(R), completing the proof.

2. The following proposition is easily verified:

(2.1) Let M be a left S-module with zero singular submodule..
Suppose that a left ideal A of S is an essential extension of a left,
ideal B of £. Let v and w be left 5-homomorphisms of A into Λί.
If (v — w)B = 0, then v = w.

In fact, v — w induces a homomorphism of A/J5 into M. By as-
sumption Z(A/B) = A/£. Hence (v - w)A = Z((v - w)A) c Z(M) = 0,
as desired.

A left S-module M is called injective if for any left ideal A of"
S, and for any left S-homomorphism v of A into M there exists an
element x such that v(α) = ax for every α e A. A ring S is called
left self injective if the left S-module S is injective, and S has a
unit element. Any left self injective ring which is semisimple (in
the sense of Jacobson) is regular (in the sense of von Neumann). As.
is known, the maximal left quotient ring of a J r ring is semisimple,
in the sense of Jacobson, and left self injective.

We denote by l(P, Q) the set oΐ xeP with xQ = 0. Similarly
r(P, Q) denotes the right annihilator, in P, of Q.

(2.2) LEMMA. Let R be a semisimple left self injective ring,
and suppose that it is a left strongly intrinsic extension of a ring"
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S. Then the left S-module R is an injective module with zero sin-
gular submodule.

Proof. Since R is regular, it is a Jrγing. By Lemma (1.7),
Z(SR) = 0. Let A be a left ideal of S, and v a left S-homomorphism
of A into R. Denote the left ideal of S generated by an element x
by (x)ι. By Zorn's lemma there is a maximal subset {α̂ } of A such
that the sum B of (x^t is direct. Evidently A is an essential exten-
sion of B. By (1.5), the sum of {SXi} is also direct. Now
l(S, xd c l(S, v(Xi)), that is, l(R, x{) Π S c i(i2, v(a)) Π S. Since any an-
nihilator left ideal of the Ji-nng R is closed, it follows by Lemma 1.9
that l(R, xt) c l(R, v{x^)). This shows that xi—^v(x^) generates a left
ϋί-homomorphism w of Σ* -^i ^° ^ By the injectivity of RR there
exists an element a e R such that v(x{) = α̂ α for every i. Thus the
homomorphism v and the right multiplication of a coincide on B.
Since A is essential over B, it follows by (2.1) that v is given by the
right multiplication of α, completing the proof.

(2.3) THEOREM. Let R be an extension ring of a ring S, and
suppose that the left S-module R is an injective module with zero
singular submodule. Then S is a JΓring. Let T be the maximal
one among such submodules of the left S-module R that are essential
over the left S-module S. Then T forms a subring of R, and in
fact it is the maximal left quotient ring of S.

Proof. Since Z(SS) = Z(SR) Π S = 0, S is a JΓring. Let E be
the endomorphism ring of SR, and let ve E. In case SR is essential
over Ker v, Z(SR/Keτ v) = iί/Ker v, and so Imv = Z(Im v) c Z(R) =
0, whence v = 0. In view of [4, Lemma 8] it follows from this that
E is semisimple, and T is uniquely determined. Since ST is essential
over SS, it is easy to see that the set D(x) of elements y of S such
that yxe S is an essential left ideal of S for each xe T. Now we
denote by U the set of xe R such that JD(#) is an essential left ideal
of S. Clearly Tc U. It is not difficult to show that U is a subring
of R. Since Z{SR) — 0, SU is essential over #S. Hence UcT, there-
fore T = U. Thus, T forms a subring of R. T is the maximal left
quotient ring of S because ST is the maximal essential extension of SS.

(2.4) LEMMA. Let R be a ring with unit, and suppose that it
is a left strongly intrinsic extension of a semisimple left self infec-
tive ring S. Then every idempotent of R belongs to S.

Proof. Let e = e2 e R. Then Re e L(R), the lattice of closed left
ideals of R. Hence Re Γ) S e L(S), the lattice of closed left ideals of
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S, by Lemma 1.9. Since every closed left ideal of S is a principal
left ideal generated by an idempotent, S Π Re = Sf for some / =
ΓeS. Evidently Rf Π S = Sf = Re n S, and hence Re = Rf by
Lemma 1.9. Similarly we can find an idempotent geS such that
R(l - e) = Rg. Since S is regular, Sf + Sg = Sh for some h = h2eS.
Then iϋ/& = R, and & = 1. Hence 1 = xf + yg for some x,yeS. Also,

β - xf = e - (1 - yg) = yg - (1 - e) e Rg + jβ(l - β) - R(l - e) .

Hence e — xfe Re f) B(X — β) = 0, and therefore e = xfe S, completing
the proof.

By virtue of [5, Corollary to Theorem 4], any semisimple left self
injective ring R is decomposed into the direct sum of two ideals R±

jand R2 in such a way that Rx is strongly regular, and R2 does not
contain any nonzero strongly regular ideals. The decomposition is
unique. By [5, Theorem 2], R2 is generated by idempotents.

(2.5) THEOREM. Let R be semisimple left self injective ring,
and let R = JSi φ R2 be the decomposition into ideals mentioned above.
Suppose that R is a left strongly intrinsic extension of a ring S.
Then there is a subring T of Rλ with the following properties:

( i ) T contains every idempotent of R19

(ii) T is a strongly regular, (left) self injective ring and
(iii) T φ R2 is the maximal left quotient ring of S.

Proof. By Lemma 2.2, SR is injective and Z(SR) = 0. Thus, by
Lemma 2.3, R contains as a subring the maximal left quotient ring
Q of S. Since R is left intrinsic over S, and RΊ)QZD S, it is evident
that R is left intrinsic over Q. Let A be a closed left ideal of Q.
Then A = Qe, e = e2 e Q, and hence A = Re n Q. This shows that R
is left strongly intrinsic over Q. Thus, by Lemma 2.4 every idem-
potent of R belongs to Q. Since R2 is generated by idempotents,
R2 c Q, and so Q = (Q Π Rx) φ R2. Set T = Q Π Ri. Since Q is regular,
so is its ideal T. Thus, the strong regularity of T follows from the
fact that a regular ring is strongly regular if and only if it has no
nonzero nilpotent elements, completing the proof.

(2.6) THEOREM. Let S be a Jrring. Suppose that the maximal
left quotient ring of S does not contain any nonzero strongly regular
ideals. Then any left strongly intrinsic extension of S is a left
quotient ring of S.

Proof. Let R be a left strongly intrinsic extension of S, and
denote by Q the maximal left quotient ring of R. By Lemma 1.9,
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Q is a left strongly intrinsic extension of S. Let Q = Qi Θ Q2 where
Qi is a strongly regular ideal of Q, and Q2 is an ideal of Q which
does not contain any nonzero strongly regular ideals. By Theorem 2.5
there is a strongly regular subring T of Qx such that Γ © Q 2 is the
maximal left quotient ring of S. T contains every idempotent of Qί9

especially the unit element of Qlm Since T = 0 by assumption, it
follows that ζ>! = 0. Thus, Q = Q2 is the maximal left quotient ring
of S. Since QZD RZD S, R is a left quotient ring of S, as desired.

3. The following is the main theorem.

(3.1) THEOREM. Let S be a Jrrίng. Suppose that the maximal
left quotient ring of S is right intrinsic, and does not contain any
nonzero strongly regular ideals. Then any left intrinsic extension
of S is a left quotient ring.

Proof. By Lemma 1.2 any left intrinsic extension of S is left
strongly intrinsic over S, and hence it is a left quotient ring of <S
by Theorem 2.6, as desired.

Goldie proved in [1; Theorem 13] that if a prime ring S satisfies
the maximum conditions for left and right ideals, then S may be im-
bedded into a simple ring R with minimum condition in such a way
that R is the classical quotient ring of S in the following sense:

( i ) Every non-zero-divisor of S has the inverse in R;
(ii) every element x of R is of the forms a~λb and cd*1 for some

α, b, c and d e S. In this case S is a Ji-τing, and R is the maximal
left quotient ring of S. Since R is a right quotient ring of S, it is
right intrinsic over S. R contains a nonzero strongly regular ideal
if and only if R is a division ring, that is, S is an Ore domain. Thus,
by Theorem 3.1 we obtain the following.

3.2. THEOREM. Let S be a prime ring with maximum condi-
tions for left and right ideals, and suppose that it is not an Ore
domain. Then an extension ring of S is left (or right) intrinsic
over S if and only if it is isomorphic, over S, to a between ring of
S and the classical quotient ring of S.
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