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l Introduction* Let A be the automorphism group of a semi-sim-
ple Lie algebra 8 over an algebraically closed field of characteristic zero.
Let n(A{) denote the minimal multiplicity of 1 as characteristic root
for elements of a connected (algebraic) component A{ of A, and let
m(Ai) denote the minimal dimension of fixed point spaces for elements
of At. Jacobson showed in [3] that n(A^ = w(A<), and determined these
numbers. It is the purpose of this paper to extend these results to
automorphisms of classical Lie algebras over essentially arbitrary fields,
using the method of Chevalley [1], as extended by Steinberg [10], for
associating such algebras with semi-simple complex Lie algebras.

Throughout the paper fields of characteristics 2 and 3 will be ex-
cluded without further mention. The results obtained here are valid
in some cases in characteristics 2 and 3, but exclusion of these cases
permits considerable simplification of the exposition. All vector spaces
in this paper are finite dimensional.

2. Lie algebras and automorphism groups. Let 20 be a semi-
simple Lie algebra over the complex field C. Let ξ>0 be a Cartan
subalgebra of 2σ, and let eί9 fi9 h{ (1 ^ i S I) be a canonical set of
generators; i.e. the h{ form a basis for ξ}09 and

Λi] = 0 ,

, χ v

where (Ai:}) is the Cartan matrix of Sσ. Let a^hj) = AH for i, j =
1, 2, , I. Then π = {a19 a2, , at} is a fundamental system of roots
(of 20 with respect to fQ0), and the e{ (respectively, f{) are root vectors
for the α< (respectively, — a<).

For each (nonzero) root a, let 2a denote the root space of a, and
let ha be the unique element of [£U SLJ such that a(hΛ) = 2. In
particular, hΛi = hi9 1 ^ i ^ I.

THEOREM (Chevalley [1]). 2σ contains a complete set {eΛ} of root
vectors for the (nonzero) roots a such that
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( 2 ) [eae^a] = hω for all a

( 3 ) [eaeβ] = ±(r + l)eΛ+β,

for all roots α, β such that a + β is a root, where r is the largest
integer q such that β — qa is a root.

It is easily seen from Chevalley's proof of this theorem that the
set {ea} may be taken to contain the e{ and/;, 1 ^ i ^ I. Furthermore,
the hΛ are integral linear combinations of the hiy and the roots are
integral linear combinations of the aif so the set {hi | 1 ^ i ^ 1} (J {eω \ a
a nonzero root} is a basis for 20 with an integral multiplication table
contained in (l)-(3) and the relations

(4 ) [e Al - α(*X .

Such a basis {hif eω} (containing the β* and fi) will be called a Cheval-
ley basis for 80. Henceforth a particular Che valley basis will be
assumed fixed. When it is convenient to do so, linear transformations
in 20 will be identified with their matrices relative to this basis.

Let K be an arbitrary field, and form a Lie algebra 8 over K,
related to 20, as in [1]: 8 is the tensor product (over the integers) of
the additive group of K with the additive group generated by the
Chevalley basis {hif eω} of £>G; 8 is equipped with the multiplication
table (l)-(4) after identifying 1^ 0 ea with ea, etc. Thus the ha, eΛ,
etc., are now thought of as elements of S, but observe that the sub-
scripts still refer to roots of &G.

Let ξ> = Σ ί Kh{. ξ> is an abelian subalgebra of 8, and the roots
of 8 relative to ξ> are the linear functions a defined by a(hβ) = the
class modulo the characteristic of K of a(hβ).

We follow the approach of Steinberg [10] in relating the Lie alge-
bras 8 of Chevalley with the Lie algebras of classical type of Mills
and Seligman [4]. First let 20 be simple. Then we have [10, 2.6]:
( a ) No hΛ is in the center 3 of 8.
(b) & = {h e § I a(h) = 0 for all roots a of 8 }̂.

( c ) If 8=8/8, and §=φ/3> then 8 is simple and § is a Cartan sub-

algebra of 8.
More generally, if 20 is only semi-simple, then &a=%i,o(B ' @%r,c,

where the 2iy0 are (non-abelian) simple ideals in 20. Thus 8 = 8 2 φ
• 0 8r, where the 8* are the Lie algebras of Chevalley corresponding
to the 2i)C, and are non-abelian ideals in 8. The center 3; of 8̂  is as
described in (b), and the center 3 of 8 is 3 i Θ Θ 3 r Furthermore,
2/3 = (2JpΛ) 0 0 (2r/3r) Every such algebra 8 - 2/3 will be
called a classical Lie algebra. (These are essentially the Lie algebras
of classical type of Mills and Seligman, although some additional alge-
bras over fields of characteristic^ 2 and 3 c$n be obtained by the
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process described here.)
If 2G is simple, 3 =£ 0 if and only if 20 is of type Aι and the

characteristic p of K divides I + 1. In this case, 3 is one-dimensional
[8,§1]

Let AG denote the automorphism group of S>0. As an algebraic
group, AG has a decomposition

( 5 ) Λ = Λ U Λ U ••• U 4 - 1

into connected (algebraic) components, where Ao is the component of
the identity automorphism. (The terminology of algebraic groups will
be seen to be more natural here than that of topological groups.)

An automorphism of the Cartan matrix (Aid) of 2G is a permuta-
tion s of the numbers 1, 2, , I such that Ai3 = Asii)fS{j) for all i, j .
Associated with such a permutation s is a unique automorphism σ of
2G such that ej = es{i), ft - /.„>, i = 1, 2, . , I [2, p. 280]. Following
Steinberg, we call σ a graph automorphism of 2G. The set i*7 of graph
automorphisms is a finite group, and the elements of F = {1, σl9 •••,
σr^} form a system of coset representatives of Ao in AG [2, Chapter
IX; 3, Corollary to Theorem 6]:

( 6 ) A0 = A0\J a,A0 U U tfr-A .

This decomposition coincides with (5), and the number r of algebraic
components is also the order of F.

For each root a and each complex number t, let xa(t) denote the
automorphism exp(ί ad eΛ) of 20. The significance of the Chevalley
basis for automorphisms is that the matrix of every xjf) has entries
which are polynomials in t with integer coefficients [1]. Let xa(ξ)
denote the matrix obtained from xΛ(t) by replacing the complex para-
meter t by an indeterminate ξ. We can then replace ξ by an arbitrary
element t of K to obtain a matrix over K, again denoted xa(t). Con-
sidered as a linear transformation of S relative to the Chevalley basis,
xΛ(t) is an automorphism.

We also introduce certain diagonal (relative to the Chevalley basis)
automorphisms of 8. Let k be any homomorphism of the additive
group generated by the roots of 2G into the multiplicative group K*.
We associate with k the automorphism Ύ]{k) of 8 defined by hη{k) — h
for fee©, ej](k) = k(a)ea for α: a root of S .̂ In particular, we can
associate a homomorphism k with each te K* and each root α of 2G

by defining &(/3) = tβ{h^ for each root β. The corresponding auto-
morphism will be denoted za(t).

Next we associate automorphisms of S with the graph automor-
phisms of 2G. Let σ be a graph automorphism with associated
permutation β. We have fe? = [<,/f] = [es{i),fs{i)] = hs{i), so σ permutes
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the hi's. For an arbitrary root 7 — Σ&<α*ι let Y = Σ & A w 7' is a
root [2, p. 122, XVI] and one can show that e° = ± β r . This is done
by induction on the level (i.e. Σ I &« I) °f ?• Hence, relative to the
Chevalley basis, the matrix of σ has only the numbers 0, 1, — 1 as
entries (and in fact, exactly one nonzero entry in each row and column).
Thus the matrix of a defines an automorphism σ of 8 over K. These
automorphisms will also be called graph automorphisms.

The automorphism group of 8 is isomorphic to the automorphism
group of 8 [10, p. 1122]. We will therefore identify automorphisms
of 8 with their induced automorphisms in 8, but all references to
matrices will mean relative to the Chevalley basis in 8.

The group G of Chevalley is the group of automorphisms of 8 (or
8) generated by the xΛ(t) for all roots a and te K and the η(k) for
all homomorphisms k of the additive group generated by the roots into
K*.

THEOREM (Steinberg). // A is the automorphism group of 8 (or
8), G the Chevalley group, and F — {1, σ19 , σr_J the group of graph
automorphisms, then G is normal in A, and

(7) A = G U σfi U U σr^G

is the coset decomposition of A over G.

Steinberg proves this theorem in [10] only for the case of 8̂
simple, but the extension to the semi-simple case is straightforward if
one considers the action of A in 8. The analogy between equations
(7) and (6) is clear; in fact, they coincide if K is an algebraically
closed field of characteristic zero. However (7) is also analogous to
(5) by the following result.

THEOREM (Ono [5, Theorem 3]). If K is infinite, and the Killing
form of 8(7 is nondegenerate modulo the characteristic of K, then G
is the algebraic component of 1 in A, and (7) is the decomposition
of A into connected algebraic components.

3 Indices of automorphism groups* For each component (or
coset) At of Ac define the index n(A{) to be the minimal multiplicity
of the characteristic root 1 for elements of A{. For each ηeAc, let
x§(ή) denote the subspace of 8^ of -̂fixed points. Define another index
m(Ai) to be the minimal dim $()?), y}eA{. We have [3, Theorem 6
and Corollary, Theorem 10]:

THEOREM (Jacobson). Let σ{ be the unique element of F in Ai9
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and let s{ be the associated automorphism of the Cartan matrix.
Then n{Ai) = m(A^ = the number of cycles in the decomposition of
Si into disjoint cycles.

COROLLARY. n(A0) = I = dim φ σ , and 0 < n(A{) <l if i Φ 0.

In view of Steinberg's theorem in the previous section, it is rea-
sonable to ask for the relationship between n(A{) and both the minimal
multiplicity n(θiG) of 1 as characteristic root and the minimal dimen-
sion miOiG) of fixed point spaces for elements of σ{G in the automor-
phism group A of S. (Obviously a distinction between S and 8 must
be maintained here; we will consider S in § 4.)

In the sequel we will make use of the subgroup G' of G generated
by the automorphisms xΛ(t) for a a root of 20 and te K. For each
root a and each teK*, za(t)eG', and if K is algebraically closed,

THEOREM 1. Let 20, Ao, Aiy K, 8, A, (?, and σ{ be as defined
above. Then n(OiG) ̂  m{σiG) ^ n{Ax).

Proof. The first inequality is clear. We first assume K is alge-
braically closed, so that G is generated by the xa(t). We have seen
that an arbitrary element 7) of A can be written as a product of
exactly one σ { e i ^ a n d certain xJtjYs in some order. Thinking now
of matrices, rj is then a specialization of a corresponding product τ)(ξ)
of matrices σi9 xa(ξj), where the ξ's are indeterminates, one for each
£-type factor. Since the entries of xΛ{ξ3) are polynomials in ξ3- with
integer coefficients, η(ξ) is a matrix whose entries are polynomials in
certain indeterminates ξlf ξ2, •••,?» with integer coefficients.

The number m of indeterminates appearing in a matrix 7)(ξ) depends
not only on the automorphism 7) but on the choice of a representation
of 7) as a product of the generators; this number plays no special role
here, but it must not be assumed to be constant.

The integer coefficients of the polynomial entries of τj(ξ) may be
chosen so that specialization of the ξ3- to complex numbers t3 gives an
element rj(t) of Ao, and the choice of σ{ determines the component in
which 7]{t) lies.

Let σ{ be fixed, and let k = n{A,). The fact that h ^ dimity)
for 7] e Ai can be expressed as follows: for every specialization ξ3- —•
*i€ C, rank (η(t) — I) S n — lif where n = dim8 0 = dim 8. A similar
statement can be made for τj(ξ)f for if 37(1=) — / had a nonzero minor
of size > n — li9 that minor would be a polynomial and would remain
nonzero under some specialization ξ3 —> £y e C. Hence we see that for
every τ](ξ) corresponding to o{ (i.e. for every element TJ e afi and for
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every representation of rj as a product of Oi and certain of the other
generators) we have rank {~η(ξ) — I) ^ n — liΛ But then specializing
ξj —> tj e K, the rank of such a matrix certainly cannot increase. Hence
rank {η — I) ^ n — l{ for every ΎJ e afi, or in other words miσfi) ^ Z*.

Now drop the assumption of algebraic closure on K, and let Ω be
the algebraic closure of K. If yj is an arbitrary element of σfi, then
the extension of 7) to an automorphism of 2Ω is still in the component
of A(2Ω) corresponding to σ{. This is clear, because rj = σ τ, τ e G ,
and τ can be expressed as a product of the generators of G, whose
extensions to 2Ω are elements of G(8fl) Hence dim %(η) = dim g(%) ^
iί for rjeσiG. This completes the proof of Theorem 1.

THEOREM 2. Lei SOf Ac, Ai9 K, 8, A, G, and σ{ be as in Theo-
rem 1, and suppose further that K is infinite. Then m(σiG) — m{Ai).
For i = 0, %(G) = n(A0) — ϊ. //, in addition, the characteristic of
K does not divide the length of any cycle in the permutation as-
sociated with σi9 then nfoiG) = n(Ai). In particular, this is the case
if 20 is simple.

Proof. For the Chevalley group itself, we consider the diagonal
automorphisms (or matrices) za{t) — diag {1,1, , 1, , tβ{h<*\ •},
where each of the first I elements is 1, and the following entries are
of the form tm^ where β runs through all the roots of 8σ. For some
selection of tlf t2, , tι e K, to be determined presently, let η = Πί^ί**)-
The diagonal entries of η after the Zth one are of the form ΠUi ( Λ ΐ ) .
For each root β, some £(&*) Φ 0. Thus each of these entries is a
rational expression in the tι which is not identically 1. Since K is
infinite, we can choose tlf , tx so that none of the diagonal entries
of rj after the ϊth one is 1. (This can be expressed as a polynomial
condition of degree ^ S(n — I), where n = dim 8, since | β(hi) | ^ 3.)
Thus 7] is an element of G for which I = dim %{*η) = the multiplicity
of 1 as characteristic root.

Now consider an element σ Φ 1 in JP. σ maps ξ> into itself, and
also maps the subspace © spanned by the root vectors {eβ} into itself.
In ξ>, G acts as a permutation of the hif and in @ (as noted above)
the matrix of σ has only 0, ± 1 as entries, and exactly one nonzero
entry in each row and column. If η is chosen as in the previous
paragraph, we have ση \ ξ> — σ \ ξ> (where the bar denotes restriction),
and ση \ © has nonzero entries where σ \ © does and each of these
entries will be ± one of the entries of rj \ @. UK is infinite, then
the ti selected to define η can be chosen to satisfy not only the con-
ditions imposed above, but also the condition that 1 not be a charac-
teristic root of of] I ©.

Next consider the permutation matrix σ \ ξ>. For a suitable
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arrangement of the basis hlf , hι of ξ>, this matrix consists of
diagonal blocks, where each block is the matrix of a cyclic permuta-
tion. Let T be a linear transformation in a ^-dimensional space which
cyclically permutes a basis uu u2, * ,uk. Then the fixed point space
of T is spanned by uλ + u2 + + uk. The characteristic polynomial
of T (up to sign) is (λ - lXλ*-1 + λ*~2 + + λ + 1). lκ is a root
of the second factor if and only if k lκ = 0. Thus the multiplicity of
1 as characteristic root of T is 1 if and only if the characteristic of
K does not divide k.

We have demonstrated that each cycle of s contributes exactly
one dimension to the fixed point space of σ\!g, and, if the charac-
teristic does not divide the length of the cycle, exactly 1 to the multi-
plicity of 1 as characteristic root. If 20 is simple, only cycles of
lengths g 3 occur, which completes the proof of Theorem 2.

COROLLARY. Let 8 be a split semi-simple Lie algebra over an
arbitrary field of characteristic zero, and let A = G U σλG U U σr-iG
be the automorphism group of 8. Theft m(σiG) = n{ύiG) = the num-
ber l{ of cycles in the decomposition of the permutation s{. For G
itself, l0 — I, the dimension of a Cartan subalgebra, and for i Φ 0,

REMARKS. ( a ) The corollary extends the results of Jacobson [3]
beyond the algebraically closed case. Part of this is essentially con-
tained in [3] in remarks following Theorem 10.

( b ) The decomposition of A in the corollary is also the decom-
position into connected algebraic components, by Ono's theorem in § 2.

We will consider in the remaining sections the extent to which
the exclusion of small fields is necessary to obtain the conclusions of
Theorem 2. In particular, we will answer this explicity for the
Chevalley group for algebras of types A, B, C, and D.

There is also the question of how these results may be extended
to the algebras S, in the case where one or more components are of
type Au p\l + l. In the following section we will obtain explicit
results in the case where 2^ itself is simple of type Au p\ I + 1.

4. Algebras of type A. Let &0 be simple of type AlΛ Then S
can be taken to be the Lie algebra of all (I + 1) x (I + 1) matrices of
trace 0 over K. If A is any nonsingular (I + 1) x (ϊ + 1) matrix, then
the mapping X—> A~XXA is an automorphism η of 8. This automor-
phism is in G, by [9, §21 and the last paragraph of the proof of
Theorem 1.

THEOREM 3, If %o is °f type At and K is any field (of charao-
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teristic Φ 2, 3), then m(G) = I. If \ K | > I + 1, then n(G) = Z.

Proof. Let 37 be an automorphism given by conjugation by a
cyclic matrix A. The space of all matrices commuting with A (i.e.
all polynomials in A) has dimension I + 1, since the minimum poly-
nomial of A has degree I + 1. gθ?) is the intersection of this space
with 8, and has dimension £.

An alternate approach to selecting an Ύ] e G gives a slightly weaker
result, but also gives an automorphism having 1 as characteristic
root with multiplicity I. Let η : X—• A~*XA where A = diag {αx, α2, ,
aι+1}, the α̂  being all distinct and all different from 0. This requires
I K\ > I + 1. Take as basis for 8 the matrix units eίy, ΐ Φ 3, and the
diagonal matrices hi = ei+1>i+1 — eiif 1 ^ i ^ I. Then Λ? =feif and e?,- =
a^afiij. Since α^α,- ̂  1 for i ^ i, we have i = dim g(^) = the multi-
plicity of 1 as characteristic root, which completes the proof.

Now suppose the characteristic p of K divides I + 1. Then 8 has
one-dimensional center 3 consisting of scalar multiples of the identity
matrix. A more convenient basis than the one listed above is obtained
by replacing ht by I = lhλ + (I — ϊ)h2 + +2hι^1 + hu and taking
this to be the first basis vector. The cosets of the remaining basis
vectors then form a basis for 8 = 8/3.

Since I > 1, we have one nontrivial graph automorphism σ with
associated permutation (1, i)(2, I — 1) , in which the number of cycles
is [(I + l)/2]. We will denote by n(G) the minimal multiplicity of 1
as characteristic root for elements of G acting in 8, and similarly
define n(σG), m(G), m(σG).

THEOREM 4. Let 8 be a (simple) classical Lie algebra of type At

over a field K of characteristic p, where p \ I + 1. Let A = G U oG
be the automorphism group of 8. Then n(G) ̂  m(G) ̂  I — 1, and
n(σG) ^ m(σG) ̂  [(I + l)/2]. If\K\>l + l, then ή(G) = m(G) - I - 1,
and if K is infinite, then n(σG) = m(σG) = [(I + l)/2]

Proof. We observe first that I* = (lhx + (I - 1) h2 H h 2/^_! +
/&,)"• = Zftj + (I - Vjh^ + +2h2 + K= -I. Every element of the
subgroup G' of G acts by a conjugation in 8 [6, (3.5)], so / is a fixed
point of every element of G'. G is generated by G' and certain auto-
morphisms leaving © = Σ K^i pointwise fixed, so / is fixed under
every element of G. On the other hand, if rj = στ, τ e G, then I77 =
( — J) τ — — J, so / is not fixed under ΎJ.

Relative to the bases chosen above for 8 and 8, every automor-
phism 7] of 8 has a matrix of the form
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( 8 ) Λ =

where i? is the matrix of the induced automorphism η in 8. We
have just seen that a1 = 1 if ??eG and ê  = —1 if ηeσG. For any
17, the characteristic polynomial of A is

where /(λ 37) is the characteristic polynomial of B. Thus for η e G,
the multiplicity of 1 as characteristic root of rj is exactly 1 less than
that for η. In particular, if \K\> I + I, n(G) g ί - 1 .

Now for r? e G, 3 £ ??0?), hence dim g(^) = dim g(^) - 1 (where
the bar denotes image under 8-^8) . Clearly g()?) gΞ g(o?), so I — 1 g
m(G) ^ w(G). Again, if | K \ > ί + 1, w(G) = i - 1.

On the other hand, if η e σG, 3 Π S(̂ ?) = 0, so dimg(^) = dimg(^) ^
dimg(^), and m(σG) ^ [(ί + l)/2]. By (9), the multiplicity of 1 as
characteristic root must be the same for η and rj. Hence if K is in-
finite, then n(σG) - m(σG) = [(I + l)/2].

5. Simple algebras of types B, C, D. Let 8^ be simple of type
Bt9 Cu or Dt. Then 8 can be taken to be the Lie algebra of n x n
matrices X over K (n - 21 or 21 + 1) such that X - -S^X'S, where
X ' is the transpose of X, and S is

1 0 0

0 0 7,

0 /, 0J

0
or

0

0.

in the respective cases J5, C, or J). If A is any matrix such that
ASA' = S, then X—> A~XXA is an automorphism of S, and, as for type
Au is in the Chevalley group. We will select in each case a diagonal
matrix A which defines an automorphism of 8 having ί-dimensional
fixed point space, after discarding a suitable number of small fields.
The orthogonality condition requires that A be of the form diag {au

α2, , au aϊ1, aΐ1, , aj1} in cases C and D and of the form diag {1,
α2, α3, , aι+lf ai\ , af^} in case B.

THEOREM 5. Let 2 be a simple classical Lie algebra of type Bu

Cu or Dι over a field K, and let G be its Chevalley group. Then

n(G) = m(G) = I if \K\ > 21, 21 + 1, or 21 — 1 in the respective cases

Bu Cu A
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Proof. First consider case C. Denoting matrix units by eij9 a
basis for £ [7, § XVII] is

"*% — &ii ei+l,i+l \

e(-i>3) ~ eίj &j+l,i + lf > 1 Φ 3 \

e(-i,-j) = βi,j+ι + ej,i+ι , i <j

eu, j) = β i + I, j + ej+h i , i < i

e(2i) —

where in all cases ί,j = 1, 2, •••, I. If we choose A as above, then
conjugation by A acts diagonally, leaving the ht fixed, and the re-
maining diagonal elements have the forms aτxai9 a^aj1, a^j (i Φ j),
aγ2, a\. Hence we wish to choose the a{ so that no a{ is 0, 1, — 1 , or
af1 for j Φ i; in other words, so that

The left-hand side of this inequality is a polynomial of degree 21 + 1
in each of the aim Thus there exist such elements in K if | K | > 21 + 1.

The details for types B and D are similar, and appropriate bases
are given in [7, § XVII], For type B the same conditions are obtained
except that some a{ may be — 1 . Hence \K\> 21 suffices. For type
D, both 1 and —1 are allowed, so \K\ > 21 — 1 suffices.

REMARK. Professor G. B. Seligman has communicated to the
author a proof that m(G) = I when 2 is of type Bι? Cu or Dlf over
any field K of characteristic Φ 2 or 3. His proof is a natural analog
of the first part of the proof of Theorem 3, although the details are
naturally more complicated. As in Theorem 3, this approach does not
yield n(G) = I.
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