INVERSION AND REPRESENTATION THEOREMS FOR A GENERALIZED LAPLACE TRANSFORM

J. M. C. Joshi

1. Introduction. In a series of recent papers I have discussed various properties and inversion theorems etc. for the transform

$$
\begin{align*}
& F(x)=\frac{\Gamma(\beta+\eta+1)}{\Gamma(\alpha+\beta+\eta+1} \int_{0}^{\infty}(x y)_{1}^{\beta} F_{1}(\beta+\eta+1 ; \tag{1.1}\\
&\alpha+\beta+\eta+1 ;-x y) f(y) d y .
\end{align*}
$$

where $f(y) \in L 0, \infty), \beta \geqq 0, \eta>0$.

$$
=A \int_{0}^{\infty}(x y)^{\beta} \psi(x, y) f(y) d y
$$

where for convenience we denote $\Gamma(\beta+\eta+1) / \Gamma(\alpha+\beta+\eta+1)$ by A and ${ }_{1} F_{1}(a ; b ;-x y)$ by $\psi(x y) ; a$ and b standing respectively for $\beta+$ $\eta+1$ and $a+\alpha$. For $\alpha=\beta=0$ (1.1) reduces to the wellknown Laplace transform

$$
\begin{equation*}
F(x)=\int_{0}^{\infty} e^{-x y} f(y) d y . \tag{1.2}
\end{equation*}
$$

The transform (1.1), which may be called a generalization of the Laplace transform, arises if we apply Kober's operators of fractional integration [2] to the function $x^{\beta} e^{-x}[1]$.

The object of the present paper is to obtain an inversion and a representation theorem for the transform (1.1) by using properties of Kober's operators defined below.
2. Definition of operations. The operators given by Kober are defined as follows.

$$
\begin{aligned}
I_{n, \alpha}^{+}[f(x)] & =\frac{1}{\Gamma(\alpha)} x^{-\eta-\alpha} \int_{0}^{x}(x-u)^{\alpha-1} u^{\eta} f(u) d u \\
K_{\bar{\zeta} a}^{-a}[f(x)] & =\frac{1}{\Gamma(\alpha)} x^{\zeta} \int_{n}^{\infty}(u-x)^{\alpha-1} u^{-\zeta-\alpha} f(u) d u
\end{aligned}
$$

where $f(x) \in L_{p}(0, \infty), 1 / p+1 / q=1$, if $1<p<\infty$ and $1 / p$ or $1 / q 0$ if p or $q=1, \alpha>0, \zeta>-(1 / p), \eta>-(1 / q)$.

The Mellin transform $\bar{M} f(x)$ of a function $f(x) \in L_{p}(0, \infty)$ is defined as

Received November 4, 1963.

$$
\bar{M} f(x)=\int_{0}^{\infty} f(x) x^{i t} d u \quad(p=1)
$$

and

$$
=\lim _{x \rightarrow \infty}^{\text {index } V} \int_{1 / x}^{x} f(x)^{i t-1 / q} d n \quad(p>1)
$$

The inverse Mellin transform $M^{-1} \phi(t)$ of a function $\phi(t) \in L_{q}(-\infty, \infty)$ is defined by

$$
\begin{equation*}
M^{-1} \phi(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \phi(t) x^{-i t} d t \quad(q=1) \tag{2.1}
\end{equation*}
$$

and

$$
=\frac{1}{2 \pi} \lim _{T \rightarrow \infty}^{\text {indexp }} \int_{-T}^{T} \phi(t) x^{-i t-1 / p} d t \quad(q>1)
$$

If Mellin transform is applied to Kober's operators and the orders of integrations are interchanged we obtain, under certain conditions

$$
\bar{M}\left\{I_{\eta \alpha}^{+} f(x)\right\}=\frac{\Gamma\left(\eta+\frac{1}{q}-i t\right)}{\Gamma\left(\alpha+\left\{\eta+\frac{1}{q}-i t\right\}\right]} \bar{M} f(x)
$$

and

$$
\bar{M}\left\{K_{\bar{\zeta} \alpha} f(x)\right\}=\frac{\Gamma\left(\zeta+\frac{1}{p}+i t\right)}{\Gamma\left[\alpha+\left(\zeta+\frac{1}{p}+i t\right)\right]} \bar{M} f(x)
$$

But

$$
\bar{M}\left(e^{-x} \cdot x^{\beta}\right)=\int_{0}^{\infty} e^{-x} x^{\beta+i t-1 / q} d x=\Gamma\left(\beta+i t+\frac{1}{p}\right), \quad \text { if } \operatorname{Re}\left(\beta+\frac{1}{p}\right)>0
$$

Therefore

$$
\bar{M}\left\{I_{\eta, \boldsymbol{\alpha}}^{+}\left(x^{\beta} e^{-x}\right)\right\}=\frac{\Gamma\left[\left(\eta+\frac{1}{q}-i t\right)\right] \Gamma\left(\beta+\frac{1}{p}+i t\right)}{\Gamma\left[\alpha+\left\{\eta+\frac{1}{q}-i t\right\}\right]}
$$

and

$$
\bar{M}\left\{K_{\bar{\zeta}, \alpha}\left(x^{\beta} e^{-x}\right)\right\}=\frac{\Gamma\left(\beta+i t+\frac{1}{p}\right) P\left(\zeta+i t+\frac{1}{p}\right)}{\Gamma\left[\alpha+\left\{\zeta+\frac{1}{p}+i t\right\}\right]} .
$$

By (2.1) we then have
(2.2) $\quad I_{\eta, \alpha}^{+}\left(x^{\beta} e^{-x}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{\Gamma\left(\eta+\frac{1}{q}-i t\right) \Gamma\left(\beta+\frac{1}{p}+i t\right)}{\Gamma\left[\alpha+\left(\eta+\frac{1}{q}-i t\right)\right]} x^{-i t-1 / p} d t$
and

$$
K_{\zeta, \alpha}^{-}\left(x^{\beta} e^{-x}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{\Gamma\left(\zeta+\frac{1}{p}+i t\right) \Gamma\left(\beta+\frac{1}{p}+i t\right)}{\Gamma\left[\alpha+\left(\zeta+\frac{1}{p}+i t\right)\right]} x^{-i t-1 / p} d t
$$

provided that $1 / p>0, \eta+1 / q>0$ and $\zeta+1 / p>0$.
3. Inversion theorem. We now define an inversion operator which will serve to invert (1.1).

An operator is defined for integral values of n by the relations

$$
\begin{aligned}
W_{0}[G(x)] & =G(x) \\
W_{n}[G(x)] & =(-)^{n} n^{\beta+n+1}\left(\frac{d}{d x}\right)^{n}\left[x^{-\beta} G(x)\right],(n=1,2, \cdots) \\
Q_{n, t}[G(x)] & =\frac{1}{\Gamma(n+1+\beta-\alpha)}\left[W_{n}[G(x)]\right]_{n=n / t}(n=1,2, \cdots)
\end{aligned}
$$

Theorem 3.1. If $f(t)$ is bounded in $(0<t<\infty)$ then, provided that the integral (1.1) converges, $\eta>0, \beta \geqq 0$

$$
f(t)=\lim _{n \rightarrow \infty} Q_{n, t}[F(x)]
$$

for almost all positive t.
Proof. Let x be any number greater than zero. Then, since the integral (1.1) converges, we can differentiate under the integral sign. Also (2.2) gives

$$
\begin{equation*}
\left(\frac{d}{d x}\right)\left[x^{-\beta} I_{n, \alpha}\left(x^{\beta} e^{-x}\right)\right]=-x^{-\beta} I_{\eta+1, \alpha}\left[x^{\beta} e^{-x}\right] . \tag{3.1}
\end{equation*}
$$

Using this relation we get

$$
\begin{aligned}
W_{n}[F(n)]= & (-)^{n} n^{\beta+n+1} \int_{0}^{\infty} x^{-\beta} y^{n} I_{\eta+n, \alpha}\left((x y)^{\beta} e^{-x y}\right\} f(y) d y \\
= & \frac{\Gamma(\beta+\eta+n+1)}{\Gamma(\alpha+\beta+\eta+n+1)} \int_{0}^{\infty} y^{\beta+n}{ }_{1} F_{1}(\beta+\eta+n+1 ; \\
& \alpha+\beta+\eta+n+1-x y) f(y) d y .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
Q_{n, t}\{ & F(x)\} \\
= & \frac{\Gamma(\beta+\eta+1)}{\Gamma(\alpha+\beta+\eta+1)}\left(\frac{n}{t}\right)^{\beta+n+1} \frac{1}{\Gamma(n+\beta+1-\alpha)} \\
& \times \int_{0}^{\infty} y^{\beta+n}{ }_{1} F_{1}(n+\beta+\eta+1 ; \alpha+\beta+\eta+1+n ;-x y) f(y) d y \\
= & \frac{1}{\Gamma(n+\beta+1-\alpha)}\left(\frac{n}{t}\right)^{\beta+n+1} \frac{\Gamma(a)}{\Gamma(b)} \\
& \times \int_{0}^{\infty} y^{\beta+n}{ }_{1} F_{1}(\alpha+n ; b+n ;-x y) f(y) d y
\end{aligned}
$$

in the notation of $\S 1$.

$$
\begin{aligned}
= & \frac{\Gamma(\alpha+n)}{\Gamma(b+n) \Gamma(n+\beta+1-\alpha)}\left(\frac{n}{t}\right)^{n+\beta+1} \\
& \times \int_{0}^{\infty}(t v)^{n+\beta}{ }_{1} F_{1}(\alpha+n ; b+n ;-n v) f(t v) d t \\
= & \frac{\Gamma(\alpha+n)}{\Gamma(b+n) \Gamma(n+\beta+1-\alpha)}\left(\frac{n}{t}\right)^{n+\beta+1} \\
& \times \int_{0}^{\infty} v^{n+\beta}{ }_{1} F_{1}(\beta+\eta+n+1 ; \alpha+\beta+\eta+n+1 ;-n v) f(t v) d t
\end{aligned}
$$

by a simple change of variable. Now by using a result of Slater [4] we have

$$
\frac{\Gamma(a+n)}{\Gamma(b+n)} F_{1}(a+n ; b+n ;-v) \sim(n v)^{a-b} e^{-n v} \quad(n \rightarrow \infty)
$$

Therefore

$$
\lim _{n \rightarrow \infty} Q_{n, t}\{F(n)\}=\lim _{n \rightarrow \infty} \frac{n^{\beta+n+1-\alpha}}{\Gamma(n+\beta+1-\alpha)} \int_{0}^{\infty} v^{n+\beta-\alpha} e^{-n v} f(t v) d v
$$

But [3] we have for almost all positive t

$$
\lim _{n \rightarrow \infty} \frac{n^{\beta+n+1-\alpha}}{\Gamma(n+\beta+1-\alpha)} \int_{0}^{\infty} y^{n+\beta-\alpha} e^{-n y}\{f(t y)-f(t)\} d y=0
$$

and so we have our theorem.
5. Representation theorem. In this section we propose to give a set of necessary and sufficient conditions for the representation of a function as an integral of the form (1.1). We shall need a lemma which we now prove.

Lemma 4.1. If n is a positive integer and x and t are positive variables then

$$
\left(\frac{\partial}{\partial t}\right)^{n}\left[t^{\beta+n-1} I_{\eta, \alpha}\left\{\left(\frac{x}{t}\right)^{\beta} e^{-x / t}\right\}=\frac{n^{n}}{t^{n+1-\beta}} I_{\eta+n, \alpha}\left\{\left(\frac{x}{t}\right)^{\beta} e^{-x / t}\right\} .\right.
$$

Proof. It is plain that

$$
\left(\frac{t}{x}\right)^{\beta+n-1} I_{\eta, \infty}\left\{\left(\frac{x}{t}\right)^{\beta} e^{-x / t}\right\}
$$

is a homogeneous function of zero order. Therefore applying Euler's theorem we get
$t\left(\frac{\partial}{\partial t}\right)\left[\left(\frac{t}{x}\right)^{\beta+n-1} I_{\eta, \alpha}\left\{\left(\frac{x}{t}\right)^{\beta} e^{-x / t}\right\}\right]+n\left(\frac{\partial}{\partial x}\right)\left[\left(\frac{t}{x}\right)^{\beta+n-1} I_{\eta, \alpha}\left\{\left(\frac{x}{t}\right)^{\beta} e^{-x / t}\right\}\right]=0$
or

$$
\left(\frac{\partial}{\partial t}\right)\left[\frac{t^{\beta+n-1}}{x^{\beta+n}} I_{\eta, \alpha}\left\{\left(\frac{x}{t}\right)^{\beta} e^{-x / t}\right\}=-\left(\frac{\partial}{\partial x}\right)\left[\frac{t^{\beta+n-2}}{x^{\beta+n-1}} I_{\eta, \alpha}\left\{\left(\frac{x}{t}\right)^{\beta} e^{-x / t}\right\}\right]\right.
$$

or

$$
\begin{aligned}
\frac{\partial^{2}}{\partial t^{2}}\left[\frac{t^{\beta+n-1}}{x^{\beta+n}} I_{\eta, \alpha}\left\{\left(\frac{x}{t}\right)^{\beta} e^{-x / t}\right\}\right] & =-\frac{\partial^{2}}{\partial t \partial x}\left[\frac{t^{\beta+n-2}}{x^{\beta+n-1}} I_{\eta, \alpha}\left\{\left(\frac{x}{t}\right)^{\beta} e^{-x / t}\right\}\right] \\
& =-\left(\frac{\partial}{\partial x}\right)\left[\frac{\partial}{\partial t}\left\{\frac{t^{\beta+n-2}}{x^{\beta+n-1}} I_{n, \alpha}\left\{\left(\frac{x}{t}\right)^{\beta} e^{-x / t}\right\}\right\}\right] \\
& =(-)^{2} \frac{\partial^{2}}{\partial x^{2}}\left[\frac{t^{\beta+n-3}}{x^{\beta+n-2}} I_{\eta, \alpha}\left\{\left(\frac{x}{t}\right)^{\beta} e^{-x / t}\right\}\right]
\end{aligned}
$$

Proceeding in the same manner we have

$$
\left.\frac{\partial^{n}}{\partial t^{n}}\left[\frac{t^{\beta+n-1}}{x^{\beta+n}} I_{n, \alpha}\left\{\left(\frac{x}{t}\right)^{\beta} e^{-n / t}\right\}\right]=\frac{t^{\beta-n-1}}{x^{\beta}} I_{\eta+n, \alpha}\left\{\left(\frac{x}{t}\right)^{\beta} e^{-x / t}\right\}\right]
$$

using (3.1).
Theorem 4.1. The necessary and sufficient conditions that a given function $F(x)$ may have the representation (1.1) with $f(y)$ bounded and Re $\eta>0$ Re $\beta \geqq 0$ are that
(i) $F(x)$ has derivatives of all orders in $0<x<\infty$.
(ii) $F(x)$ tends to zero as x tends to infinity and
(iii) $\left|Q_{n, t}\{F(x)\}\right|<M$ for all integral $n(0<t<\infty)$.

Proof. First let us suppose that $F(x)$ has the representation (1.1). Under the conditions of the theorem it is obvious that all the derivatives of $F(x)$ exist. Also

$$
\begin{aligned}
F(x) \leqq & M^{\prime} \frac{\Gamma(\beta+\eta+1)}{\Gamma(\alpha+\beta+\eta+1)} \\
& \times \int_{0}^{\infty}(x y)^{\beta}{ }_{1} F_{1}(\beta+\eta+1 ; \alpha+\beta+\eta+1 ;-x y) d y \\
= & \frac{M^{\prime} \Gamma(\eta) \Gamma(\beta+1)}{x \Gamma(\alpha+\eta)}
\end{aligned}
$$

since $f(y)$ is bounded. So $F(x)$ tends to zero as x tends to infinity. To prove the necessity of (iii) we see, as in Theorem 3.1, that

$$
\left|Q_{n, t}\{F(x)\}\right| \leqq\left\{\frac{n^{\beta+n+1-\alpha}}{\Gamma(n+\beta+1-\alpha)} \int_{0}^{\infty} v^{n+\beta-\alpha} e^{-n v} d v\right\}\left\{\operatorname{lub}_{0 \leq t<\infty}|f(t v)|\right\}=M .
$$

To prove the sufficiency let us suppose that the conditions are satisfied. If we now set

$$
J_{n}=\int_{0}^{\infty} I_{\eta, a}\left\{(x y)^{\beta} e^{-x y}\right\} Q_{n, y}\{F(x)\} d y
$$

we have

$$
\begin{aligned}
J_{n} & =\frac{1}{\Gamma(n+1+\beta-\alpha)} \int_{0}^{\infty} \frac{n}{t^{2}} I_{n, \alpha}\left\{\left(\frac{n x}{t}\right)^{\beta} e^{-n x / t}\right\} W_{n}\{F(x)\} d n \\
& =(-)^{n} \int_{0}^{\infty} n t^{n+\beta-1} I_{n, \alpha}\left\{\left(\frac{n x}{t}\right)^{\beta} e^{-n x / t}\right\}\left(\frac{d}{d t}\right)^{n}\left\{t^{-\beta} F(t)\right\} d t
\end{aligned}
$$

It will be seen in the course of the arguement that this integral exists. Integrating by parts we have

$$
\begin{aligned}
J_{n}= & \frac{(-)^{n} n}{\Gamma(n+\beta+1-\alpha)}\left[t^{n+\beta-1} I_{n, \alpha}\left\{\left(\frac{n n}{t}\right)^{\beta} e^{-n n / t}\right\}\left(\frac{d}{d t}\right)^{n-1}\left\{t^{-\beta} F(t)\right\}\right]_{0}^{\infty} \\
& +\frac{(-)^{n-1} n}{\Gamma(n+1+\beta-\alpha)} \int_{0}^{\infty}\left(\frac{d}{d t}\right)^{n-1}\left\{t^{-\beta} F(t)\right\}\left(\frac{\partial}{\partial t}\right)\left\{t^{n+\kappa-1} I_{n, \alpha} \phi\right\} d t
\end{aligned}
$$

where

$$
\phi \equiv\left(\frac{n x}{t}\right)^{\beta} e^{-n x / t}
$$

Now

$$
\begin{aligned}
I_{\eta \alpha} \phi & =0\left(t^{\eta+1}\right) \quad(t \rightarrow 0) \\
& =0(1) \quad \beta=0(t \rightarrow \infty) \\
& =0(1) \quad \beta>0(t \rightarrow \infty)
\end{aligned}
$$

for [1]

$$
I_{\eta, \alpha}(\phi)=\frac{\Gamma(\beta+\eta+1)}{\Gamma(\alpha+\beta+\eta+1)}\left(\frac{n x}{t}\right)^{\beta}{ }_{1} F_{1}\left(\beta+\eta+1 ; \alpha+\beta+\eta+1 ;-\frac{n x}{t}\right)
$$

Also the hypotheses of the theorem by implications mean that

$$
F(x)=0\left(x^{-1}\right)
$$

and in general

$$
F^{(n)}(x)=0\left(x^{-n-1}\right)
$$

and

$$
\begin{aligned}
& \left(\frac{d}{d t}\right)^{n-1}\left[t^{-\beta} F(t)\right] \\
& \quad=\left\{(-)^{n-1} \beta(\beta+1) \cdots(\beta+n-2) t^{-\beta-n+1} F(t)+\cdots t^{-\beta} F^{(n-1)}(t)\right\}
\end{aligned}
$$

Therefore the integrated part

$$
=0\left[t^{\eta+1}\left\{A_{1} F(t)+\cdots t^{n-1} F^{(n-)}(t)\right\}\right] \rightarrow 0 \quad \text { as } \quad t \rightarrow 0 .
$$

Also it is

$$
=0\left[A_{1} F(t)+\cdots t F^{(n-1)}(t)\right] \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty
$$

'Therefore the integrated part is zero and integrating by parts again

$$
\begin{aligned}
J_{n}= & \frac{(-)^{n-1} n}{\Gamma(n+\beta+1-\alpha)}\left[\frac{\partial}{\partial t}\left(t^{n+\beta-1} I_{n \alpha} \phi\right)\left(\frac{d}{d t}\right)^{n-2}\left\{t^{-\beta} F(t)\right\}\right]_{0}^{\infty} \\
& +\frac{(-)^{n-2} n}{\Gamma(n+\beta+1-\alpha)} \int_{0}^{\infty}\left(\frac{d}{d t}\right)^{n-2}\left\{t^{-\beta} F(t)\right\} \frac{\partial^{2}}{\partial t^{2}}\left(t^{n+\beta-1} I_{n, \alpha} \phi\right) d t
\end{aligned}
$$

Now

$$
\left(\frac{\partial}{\partial t}\right)\left\{t^{\beta+n-1} I_{n, \alpha} \phi\right\}=\left[(n-1) t^{\beta+n-2} I_{n, \alpha} \phi+\cdots+n n t^{\beta+n-3} I_{\eta+1, \alpha(\varphi)}\right]
$$

and

$$
\begin{aligned}
&\left(\frac{d}{d t}\right)^{n-2}\left\{t^{-\beta} F(t)\right\} \\
&=\left\{(-)^{n-2} \beta(\beta+1) \cdots(\beta+n-3) t^{-\beta-n+2} F(t)+\cdots t^{-\beta} F^{(n-2)}(t)\right\}
\end{aligned}
$$

Therefore as before the integrated part again approaches zero when t tends to zero and t tends to infinity. Proceeding in the same manner we obtain

$$
\begin{aligned}
J_{n} & =\frac{n}{\Gamma(n+\beta+1-\alpha)} \int_{0}^{\infty} t^{-\beta} F(t) \frac{\partial^{n}}{\partial t^{n}}\left\{t^{\beta+n-1} I_{n, \alpha} \phi\right\} d t \\
& =\frac{n}{\Gamma(n+\beta+1-\alpha)} \int_{0}^{\infty} t^{-\beta} F(t) \frac{(n x)^{n}}{t^{n+1}} t^{\beta} I_{n+n, \alpha}(\phi) d t
\end{aligned}
$$

by the Lemma 4.1. Hence

$$
J_{n}=\frac{n^{n+\beta+1} n^{n+\beta} \Gamma(a)}{\Gamma(n+\beta+1-\alpha) \Gamma(b)} \int_{0}^{\infty} t^{-\beta-n-1}{ }_{1} F_{1}\left(a ; b ;-\frac{n x}{t}\right) F(t) d t
$$

It is clear that this integral exists under the hypotheses of the theorem and therefore all the previous integrals exist. By a simple substitution this gives on using the asymptotic expansion of ${ }_{1} F_{1}(a ; b ; x)$ [4]

$$
J_{n} \sim \frac{n^{\beta+n+1} n^{n+\beta}}{\Gamma(n+\beta+1-\alpha)} \int_{0}^{\infty} u^{\beta+n-1} e^{-n x u} F\left(\frac{1}{u}\right) d u
$$

Let

$$
(1 / u) F\left(\frac{1}{u}\right) \equiv \psi(u)
$$

Now

$$
(1 / u) F(1 / u)=0(1) \quad(u \rightarrow \infty) \quad \text { and } \quad F\left(\frac{1}{u}\right)=0(1) \quad(u \rightarrow 0)
$$

Hence it is easily seen
(i) $\psi(u) \in L(1 / R \leqq t<R)$ for every $R>1$.
(ii) $\int_{-1}^{\infty} \psi(u) e^{-c u} d u$ converges for any fixed $c>0$, and
(iii) $\int_{0}^{\frac{1}{1}} u \psi(u) d u$ also converges. Therefore [3]

$$
\lim _{n \rightarrow \infty} J_{n}=\frac{1}{u} \psi\left(\frac{1}{u}\right)=F(u)
$$

Now if

$$
\chi(x, y)=\frac{\Gamma(a)}{\Gamma(b)}(x y)^{\beta}{ }_{1} F_{1}(a ; b ;-x y) .
$$

Then $\chi(x y) \in L$ in $0 \leqq y<\infty$ under the conditions assumed for the convergence of (1.1). Therefore by a theorem on weak compactness of a set of functions [5] the inequalities in the hypothesis (iii) of the theorem imply the existence of a subset $\left\{n_{i}\right\}$ of the positive integers
and a bounded function $f(y)$ such that

$$
\lim _{i \rightarrow \infty} \int_{0}^{\infty}\left[Q_{n_{i}, y}\{F(x)\}\right] \chi(x, y)=\int_{0}^{\infty} \chi(x, y) f(y) d y .
$$

Hence

$$
F(x)=\int_{0}^{\infty} \chi(x, y) f(y) d y
$$

and the theorem is established.
I am indebted to Dr. K. M. Saksena for guidance and help in the preparation of the paper.

References

1. A. Erdelyi, On some functional transformations, Rend. del Semin. Matematico. 10 (1950-51), 217-234.
2. H. Kober, On fractional integrals and derivatives, Quart. Jour. Math. 11 (1940), 193-211.
3. J. M. C. Joshi, A singular integral and a real inversion theorem for a generalized Laplace transform, to appear.
4. L. J. Slater, Confluent Hypergeometric Functions, Cambridge University Press, 1960.
5. D. V. Widder, The Laplace Transform, Princeton University Press 1946.
