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1. Introduction* In this paper we are concerned with the
existence of minimal surfaces with respect to the J?-area (see §4)
and related problems in a bounded domain D in the space C2 of two
complex variables zlf z2.

Let KD(z, z), z = (zlf , zn), be the Bergman kernel function of a
bounded domain D in the space Cn of n complex variables. Through-
out this paper, we assume KD{z, z) has the boundary value infinity at
every point on the boundary of D. The kernel KD(z, z) enables us
to define the Bergman metric

(1.1) dsl{z) = Σ T^zf z)dz4zVJ T& = d^°lKl) ,
i OZβZ

which is invariant with respect to pseudo-conformal mappings [4,
pp. 51-53]. Using (1.1) we construct (see §2) the complete Bergman
metric space {D, d) over D and state a theorem for complete Riemannian
spaces that for any two points in D, there exists a minimal curve
with respect to d which connects the two points.

In § 3 we show that, if D is a plane domain bounded by finitely
many boundary components blf b2, •••, bn, then there exists a minimal
closed curve with respect to d among those curves which are homotopic
to a fixed inner boundary component, say blf in Dφ^ (see §3 for
notation). If D is doubly connected, there exists a unique minimal
closed curve in D. Furthermore, we prove a distortion theorem which
gives bounds for the Bergman lengths of the minimal closed curves.

Analogous results are obtained in the case of two complex variables
replacing the length by the J5-area.

For a closed Jordan curve Γ in a complete metric space (D, d),
we ask whether there exists a minimal surface with respect to the
jB-area which spans Γ. Answers to this question which constitute
the main result of this paper are given in §4.

As a generalization of § 3, we consider a domain D which is
topologically equivalent to a product domain of the form Όx x Dif
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where Dk is a bounded domain as considered in § 3. When does there
exist a minimal closed surface with respect to the i?-area among
those surfaces which are homotopic to Tx in D( Tλ) (see § 5 for nota-
tion)?

Answers are given in § 5. Distortion theorems for the minimal
surfaces are given in § 6.

2 The Bergman metric space. A (continuous) curve c in D is
said to be regular if it admits a regular (parametric) representation,
i.e., there exists a continuously differentiable representation

(2.1) G\I:zk = Gk{t), fc == 1, 2, , n, t e I = [α, δ] ,

and dGJdt never vanish simultaneously at any t e I. A curve c in ΰ
is said to be pίecewise regular if it admits a piecewise regular re-
presentation, i.e., there exists a partition A: a = t0 < tx < tm-.± <tm —
b such that G \ [tk-u tk] is regular for k = 1, 2, , m.

For a piecewise regular curve c given by (2.1), we define

(2.2) LM = (T Σ Tμ-iG(t),
at

LD(c) is independent of the choice of piecewise regular representa-
tions of c. LD(c) will be called the Bergman length of c.

For any two points z1 and z2 in D, we define a distance function
d by

(2.3) d(z\ z2) - inf LD(c) ,
c

where c runs over all piecewise regular curves which connect z1 and
z2. Then the following theorem holds [15, §16].

THEOREM 2.1. d satisfies all the axioms for a metric and the
metric space (Z>, d) is topologically equivalent to the metric space
(D, p) with the Euclidean metric p. Moreover, the metric space
(D, d) is finitely connected in the sense that every pair of points in
D can be connected by a curve of finite Bergman length.

The metric space (D, d) will be called the Bergman metric space
over Ό. The significance of this metric space is that all metric
properties are invariant under pseudo-conformal mappings.

We define the length (generalized) of a continuous curve c in
D in the following way: For a partition Δ{I) = {I1912, , Im}, Ik =
[**-i> tk], k = 1, 2, , m, of 7, we define
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σ(G; Δ{I)) = ± σ(G; Ik), σ(G; Ik) = d(G(tk),
k = l

Further, we define

where Δ runs over all possible partitions of /. Then -S#(c) is in-
dependent of the choice of continuous representations of c. Clearly,
the functional £?D is lower semi-continuous, i.e.,

^ lim inf £fD(ck), if ck —> c .

Further, for every piecewise regular curve c, LD(c) = ^fD{c) [15, § 16].
If j£fD(c) < co, c is said to be rectifiable. A curve is said to be

completely degenerated if there is a representation G 11 such that G
is constant on /. A representation G | / is said to be normal if
J^D(G; [t, t ']) - V - t, for t,t'elyt< tf.

Let c be a rectifiable curve which is not completely degenerated.
Then c admits a normal representation G \ [0, ^fD(c)], If we set F(t) —
G(tjSfD(c)), t e Io, Io = [0, 1], then F\I0 is also a representation of c.
Such a representation F \ Io is called a reduced representation of c.
For a closed curve, F is defined on (-co, oo) and is periodic of period
1. It is, therefore, enough to consider F on /0. If F\ Io is a reduced
representation of a curve c, then the inequality

(2.4) d(F(t), F(t')) S j£fD(c) 11 - t' I

holds for every £, V e /0.
A metric space is called complete if every bounded infinite subset

contains a limit point in the metric space. If D is homogeneous,
(D, cϊ) is always complete. Further, for every bounded generalized
analytic polyhedron Ό, (D, d) is complete. This is a result of
S. Kobayashi (see [11] for details). For domains D in the space Cn,
n ^ 2, Bergman has shown that the distance from a point in D to
the boundary becomes infinite under certain hypothesis on the
boundary of D [1], [6, Chap. III]. It is clear, in this case, that the
metric space (D, d) is complete. Without going into great details in
this direction, we shall assume in the sequel that the metric space
{D, d) is always complete.

A curve K in (D, d) which connects z1 and zλ in D is called a
minimal curve between z1 and z2 if j5fD(K) ^ JzfD(c) for all curves c
connecting z1 and z2.

THEOREM 2.2. For any two points z1 and z2, z1 Φ z2y in (D, d),
there exists a minimal curve K between zL and z2. Further, the
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minimal curves are analytic (see [10] or [15, §17]).

3» The existence of a minimal closed curve in a plane domain
and its distortion theorem* We consider a multiply connected bounded
domain D in the space C1 bounded by N Jordan closed curves
bit b2, -",bn, where bn is the outer boundary component. Let (D, d)
be the Bergman metric space derived from the Bergman metric

(3.1) dsl{z) = KD(z, z) \dz\2 .

It is assumed that {D, d) is complete. Then all the previous con-
siderations, lemmas and theorems can be carried over to this case.
We fix an inner boundary component of D, say bλ. Without loss of
generality, we may assume b± to be a circle.

Let ®(D; bx) be the class of all closed continuous curves c in ΰ
which are homotopic to bλ in D{b^), where D{b^) is a ring domain
bounded by bx and bn which contains the domain D, and D{b^ is the
closure of D(b^). A curve K(D; b±) in &(D; b±) which satisfies the
condition ^fD(K(D; b,)) ̂  SfD{c) for all c e B(D; bλ), will be called a
minimal closed curve of D with respect to blm Due to the complete-
ness of (D; d) and the behavior of KD{z, z) (described on page 943) on
the boundary of D, we have

THEOREM 3.1. There exists a minimal closed curve K(D; 6X) of
the domain D with respect to blm Further, it is analytic.

Proof. Let 7 = infc J2^(c), where c runs over the class &(D; b±).
Then 0 < 7 < oo. There exists a minimizing sequence {ck} of rectifiable
curves in Sΐ(D; bλ). Let Gk \ IQ be the reduced representation of ck.
By (2.4), we have

d{Gk(t), Gk{tf)) ^ J2fD(ck) \t-t'\ for each k ,

and {^fD{ck)} has an upper bound δ which is finite. We choose an M
such that Mm > d/lfa), l(b±) is the Euclidean length of bx. Then no
ck lies completely in D — DM, DM = [z \ KD(z, z) < M]. Let

p = max d(zlf z2) ,

then for every pair of positive integers p and q, we have
d(Gp(t), Gq{t)) < p + 2δ, O ^ ί ^ l . Hence, we can select a sub-
sequence {Gki} of {Gk} which converges uniformly to a continuous
function G° on Io. Let K be the closed curve whose representation is
given by GQ\I0. Since ck% —> K, and by the lower semi-continuity of

we obtain jSfD(K) = 7. The analyticity of K is obvious.
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THEOREM 3.2. Every doubly connected domain has a unique
minimal closed curve. It is analytic.

Proof. We shall show first that annulus Q = [z \ r < \ z \ < 1] ha&
a unique minimal closed curve given by c0 = [z | | z | = r 1 / 2]. Let P2 =
[z\r<\z\< r1 / 2], P2 = [z \ r112 < \ z \ < 1]. If c n Pi = 0, it is immediate
that LQ(cQ) ^ LQ(c), since the kernel function KQ(z, zf assumes its
minimum on c0. If c f] P2 = φ, by the conformal mapping ζ = r/z, we-
have c Π P! = Φ, where c is the image curve of c under ζ = r/z..
Since Lρ(c) = LQ(c), LQ(c0) ^ Lρ(c) follows. If c f] Pi ^ Φ and c f ] P 2 ^ λ
we obtain two closed curves clf c2 consisting of the subarcs of c and
c0 and such that cx Π P2 = <£, c2 Π Pi = Φ- By the previous arguments,
LQ(Ci) ^ LQ(c0), i = 1, 2. Since L Q ^ ) + LQ(c2) = Lρ(c) + LQ(c0)9 we
have ί/ρ(c0) ^ ί/ρ(c). Let ΰ be a doubly connected domain. Then D
can be mapped by a univalent analytic function f(z) onto Q. It is
clear that f~\c0) is the unique minimal closed curve of D with respect-
to the inner boundary component by the univalency of f{z).

We consider a domain D in the z-plane which is bounded by
h = [z I I z I = r], 6^ = [z I | z \ = 1], and (iV — 2) closed Jordan curves.
62, •• ,δ i^_1. The curves 62, •• ,6W_1 lie in the domain bounded by bt

and bN.
Let Ax = [z I r < | z \ < 1], A2 = [2; | | 2 — α | < p, \ z \ > r] 2, be exterior

and interior domains of comparison for D, respectively, i.e., A1ZDDZ^A2.

Then

(3.2) LΛl(K(Ad) ^ L»(K(D)) £ LA2(K(A2)) ,

where K(Aλ), K(A2) and K(D) are minimal closed curves of Alf A2 and
i) with respect to blf respectively. It is an immediate consequence
of the fact that if B(zA, then KB{z, z) ^ KA(z, z) for zeB. The
linear transformation

(3.3)
w o

p — d(z — α)

maps A onto Q^ = [z \ R < | z \ < 1], where R is given by

1 A simple computation shows that the kernel function of Q,

(see [9], [18]), where $ and £ are the Weierstrass elliptic functions, assumes its*,
minimum on Co.

2 Here we choose a and p in such a way that \z — a\ < p contains 61 but no other
bicy k = 2, , N, and A2 to be the largest among such domains.
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R „ Γ r* - (α + pdf

<3.4) l(p

d = r2 - α 2 - p 2 + [(r 2 - α 2 - p 2 ) 2 - 4αV>2]1/2

2aρ

Since LA2(K(A^) = LgΛ(X"(QΛ)), using (3.2), we obtain

THEOREM 3.3. E(r) ^ (l/2)LJ9(i?:(D)) g E(R),
where R is given by (3.4) and

E(r) = [πφ (log r; - 2 log r, 2ττί) - iζ(πi; - 2 log r, 2τα)]1/2 ,

1β ami ζ are ίfee Weierstrass elliptic functions.

The estimation of the bounds for the Bergman lengths of the
minimal closed curves in Theorem 3.3 seems to be done only for a
special domain. However, every multiply connected domain can always
be mapped onto such a domain by a conformal mapping. Therefore,
if we know the geometry of a given domain D, combining the various
distortion theorems in the theory of conformal mappings and the
result in Theorem 3.3, we can obtain various bounds for the Bergman
lengths of the minimal curves for quite general domains.

4* The existence of a minimal surface which spans a given closed
curve in (D, d). A surface S in the space C2 is said to be continuously
differentiable if it admits a continuously differentiable representation

G I ζ>0: s* = Gk(ulf u2), k = 1, 2, (ul9 u2) e Qo =.[0 ^ ul9 u2 ^ 1] .

A surface S is said to be piecewise continuously differentiable if it
admits a piecewise continuously differentiable representation G | Q09 i.e.,
there exists a partition Δ = {Δ19 Δ2, , Δm} of Qo by rectilinear triangles
Δk such that G\Δk is continuously differentiable, k = 1, 2, , m.
The ordinary B-area element at a point (^, £2) on a piecewise con-
tinuously differentiable surface S is defined by the equation [6,
Chap. XI]

(4.1) dbs(z) —
d(ulf u2)

The ordinary area element of S is given by the equation

das(z) == [gng22 - (Re g^

Further (4.1) can also be written in the following form,
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(4.1)' dbs(z) = [gng22 — \ g121
2]1/2 duλdu2 .

Therefore, das(z) >̂ dbs(z) at every point z e S; the equality holds if
and only if Im g12 = 0.

For a piecewise continuously differentiable surface S, the ordinary
5-area is defined and given by the equation

(4.3)
θ(ul9 u2)

duxdu2 .

b(S) is independent of the choice of piecewise continuously differenti-
able representations G \ Qo of S. A surface S is said to be analytic
if it admits an analytic representation G | QQ, i.e., dGJdw — 0, k — 1, 2,
w — ux + w 2 .

For an analytic or an anti-analytic surface S, b(S) = 0. It is
also clear that b(S) = 0 if and only if the tangent plane of S at
every point is an analytic plane. A simple computation shows the
following lemma:

LEMMA 4.1. The following three conditions are equivalent:

1) 6(S) = α(S),

2)

3) Φ GLdG1 + G2dG2 = 0 / o r ei erT/ closed curve c on S.

Let D be a bounded domain in the space C2 on which (D, rf) is
complete. The quantity

(4.4) dBD{z) - [KD(z9 z)]112 dbs(z), z - (zlf z2) ,

is invariant with respect to pseudo-conformal mappings and a monotone
decreasing functional of D [6], dBD(z) is called the invariant B-area
element of S. For a piecewise continuously differentiable surface S
in D, the invariant S-area of S is defined and given by the equation

(4.5) BD(S) - [ \[KD(G,
JJ

and is independent of the choice of piecewise continuously differenti-
able representations G \ Qo of S.

A surface S in D is said to satisfy the condition (L) with respect
to the metric d if there exists a representation G \ Qo of S for which
there exists a constant L(S) > 0 depending only on S and satisfying
the inequality

<4.6) SfD{G\ σ(w19 w2)) ^ L(S) \w1-w2\
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for every pair of points w{, w2 in QQ; here σ(wu w2) is the line segment
that joins wλ and w2 in Qo, wk = u[k) + iu{

2

lc\ k = 1, 2.
It is clear that G | 0(QO)> where 9(Q0) is the boundary of Qo, is a

representation of the boundary curve Γ of S and that Γ is rectifiable.
It is also clear that every continuously differentiable surface S
satisfies the condition (L) with respect to d.

We shall say that a surface S is of class C'®(L, N, Γ) if S
admits a continuously differentiable representation

G\Q0:zk = Gk(w) , k = 1, 2, w e QQ,

which satisfies the following conditions:
(a) for a fixed positive constant L, L(S) ̂  L,
(b) for a fixed positive constant N,

N { ^ i = 1, 2, G = (Gu G ) ,

for every pair of points wl9 w2 in Qo>

(c) S spans a preassigned closed Jordan curve Γ in D in such a
way that G is a one-to-one mapping on d(Q0).

A surface Sm is called minimal surface of the class C'Sl(Ly N, Γ)
if ^ ( S m ) g SΛ(S) for all S e C'ffl(L, N, Γ).

THEOREM 4.1.3 For each L and N for which the class C'$t{L, N, Γ)
is not empty, there exists a minimal surface Sm in the class.

Proof. Let infs BD(S) = Ύ, where S runs over all surfaces in
C'&(L, N, Γ). Then 0 S Ύ < °°. Hence, there exists a minimizing
sequence {Sn}. Let Gn \Q0 be a representation of Sn which satisfies
conditions (a), (b) and (c). From (a) it follows that for any pair of
positive integers p, q,

d(Gp(w), Gg(w)) ^ 2-2*12 L .

Therefore, {Gn(w)} is equi-bounded. The equi-continuity of {Gn(w)}
follows from the inequality

(4.7) d(Gn(w), Gn(w')) ^L\w - w'\ f o r a n y w, w' e Qo a n d al l n.

Hence, we can select a subsequence {Gm(w)} of {Gn(w)} which con-
verges uniformly to a continuous function G°(w) defined in QQ. Let
G° I Qo define a surface So. Then it is clear that So spans Γ in such
a way that G° is a one-to-one mapping on d(Q0). The family {dGm/dUj}

3 Replacing (a) by the condition (ar) on page 951, a result similar to Theorem 4.1
can be given (see Corollary 2).
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of continuous functions dGm/dUj is equi-bounded and equi-continuous
by (b) for j = 1, 2. Therefore, we can select a subsequence {Gmi{w)}
of {Gm{w)} which converges uniformly to G°(w) and such that {ΘGmί/dUj}
converges uniformly to a continuous function dG°/dUj for j = 1, 2.
This implies that So is a continuously differentiate surface. In order
to show Soe C'$Ϊ(L, N, Γ), let cm% and c0 be the image curves of a
line segment σ(w19 w2) which connects two points wx and w2 in Qo

under Gmi{w) and G°(w), respectively. Then cmi converges to c0 and,
hence, Km LD(cm.) ^ LΌ(c0) by the lower semi-continuity of L^. Since

LD(cmi) ^ L\w1 — w2\ for all m ί f LB(c0) ^L\w1 — w2\ . It is clear that
G\w) satisfies (b). Since the functional BD is lower semi-continuous in
C'®(L, N, Γ) and So e C'®{L, N, Γ), we have Bΰ(S0) = 7. Thus So is
a minimal surface in the class C'St(L, N, Γ).

REMARK. In the case that Γ lies on an analytic plane π and
the portion π of π (Ί D enclosed by Γ1 is simply connected, π is a
minimal surface of CSΐ(L, N, Γ) with some L and N, and BD(S0) = 0.
In general, if there exists an analytic surface S in D which spans Γ,
then S is a minimal surface with some L and N, and JB0(S) = 0.

Let C'Sΐ(N, Γ) be the class of continuously diff erentiable surfaces
in the space C2 which span a preassigned Jordan closed curve Γ in C2

and satisfy the condition (b). Then (b) implies condition (a) with
respect to the Euclidean metric p for every surface in C'St(N, Γ).
Since C2 is complete with respect to p, the following corollary follows
by the same procedure as in Theorem 4.1.

COROLLARY 1. In the class C'$ΐ(N, Γ), there exists a minimal
surface Sm in the sense that

b(Sf

m) ^ b(S) for all S e C'$l(N, Γ) .

Let C'StΛ(N, Γ) be the class of continuously diff erentiable surfaces
S in D which satisfy conditions (b), (c) and

(a') for a preassigned real number a, 0 ^ a ^ 1,

(4.8) ^fiί?) ^ a Sit every point z e S .
das(z)

We notice that the class C'®a(N, Γ) is motone decreasing with
respect to a.

COROLLARY 2. For a fixed a > 0 and N for which CfBa(N, Γ)
is not empty there exists a minimal surface in the class.

Proof. The S-areas BD(Sn) of Sn which belong to a minimizing
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sequence {Sn} have a fixed uppper bound. Therefore, condition (a')
ensures the existence of an M > 0 such that every Sn lies completely
in DM, DM = [z I KD(z, z) S M]. This implies condition (a) with some
L, which depends on a and N. Hence, the corollary follows from
the theorem.

5 The existence of minimal closed surfaces in {D, d). Let Dk

be a domain in the space of one complex variable zk bounded by nk

closed curves b[k\b{k\ •• ,&i*). Here b^ is the outer boundary com-
ponent of Dk and b[k) is an inner boundary component, which is a
circle, i.e., b[k) = [ ^ [ 1 ^ 1 = r J .

Let D be a domain in the space C2 which is topologically equivalent
to the product domain D = D1 x D2, and ϊ\ the topological image of
ΐ\ = 6ί1} x &ί2). A surface S in ΰ which is homotopic to T± in JJ(Ί\),
where D(Ti) is the topological image of D(ΐj - Dx{b{k)) x A(&ίfc)) (see
§3 for notation), is a closed surface of the torus type and, hence,
admits a doubly periodic representation

G I R2: zk - G fcK, wa), fc = 1, 2, (^, u2) e β 2 ,

R* = (-co < ^ , % 2 < +co) ,

of periods 1. For our purposes, therefore, it is enough to consider G
on the unit square Qo as a representation of S.

We shall say that a closed surface S is of class C'&a(N, 2\) if S
is homotopic to 2\ in JD(2\) and admits a continuously differentiable
representation G \ Qo satisfying condition (a;) and (b) in § 4. By the
same procedure as in Corollary 2 of Theorem 4.1, we can prove the
following theorem for any fixed a > 0.

THEOREM 5.1. For each N for which the class C'Ba(Nf TΊ) is
not empty, there exists a minimal closed surface Sm(D) in the class.

Let Df$i{D, Tj) be the class of all closed surfaces S of the form
S = cλ x c2 in D, where ck is a piecewise continuously differentiable
closed curve in Dk which is homotopic to b{k) in Dk{b[k}). For each
SeD'Stφ, 2\), we have JB^(S) = Lφύ L^fe). It follows from the
fact that KD{Z, Z) = KDl(zu zt) KD2(Z2, Z2) [7]. Therefore, the following
is an immediate consequence of Theorem 3.1.

THEOREM 5.2. There exists a minimal surface Sm(D) of the
class D'Slφ, fx). It is given by K(D^ x K(D2), where K(Dk) is a
minimal closed curve of Dk with respect to b[k).

Let A—Aλ x A2, where Ak is a doubly connected plane domain in
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the 24-plane. Let DfStx{A, T) be the class of piecewise continuously
differentiate closed surfaces S in A which are homotopic to T =
&ί1} x b{

2

] in A, where b[k) is the inner boundary component of Ak9 and
satisfy the condition das(z) = dbs(z).A Then the following theorem
holds:

THEOREM 5.3. There exists a unique minimal closed surface in
the class D'ft^A, T). It is given by K(A1) x K(A2), where K(Ak) is
a minimal closed curve of Ak with respect to b[k).

Proof. Let A = Q = Qx x Q2, Qk = [zk\rk < \zk\ < 1]. We shall
show Sm(Q) = K(Q^} x K(Q2) is a unique minimal closed surface of
D ' S l ά Q , T). L e t P l k = [ z k \ r k < \ z k \ < rψ], P 2 k = [zk \ r ψ ^ \ z k \ < \ \ .
If SeP21xP22, it is immediate that BQ(S) ^ BQ(Sm). For any
SeD'St^Q, T), S can be replaced by a surface SeZ>%(Q, Γ) with
BQ(S) = BQ(S) and lying in P2 1 x P22 by the pseudo-conf ormal mapping
s? = rjzk, k - 1,2. Thus, Bρ(S) ^ 5 Q (SJ for every SeD'^iQ, T).
There exists a univalent analytic function /fc(zΛ) which maps A^ onto
Qk. Therefore, the pseudo-conf ormal mapping wk = fΰ\^k) maps A
onto Q and, hence, SJQ) onto SW(A), SW(A) - K{AX) x iί(A2). The
uniqueness of Sm(A) is clear.

6» Bounds for the JS-areas of minimal closed surfaces in the
space (D, d). Using the method of exterior and interior domains of
comparison, various bounds for the ΰ-areas of minimal surfaces can
be obtained. As we have considered in § 3, let Dk be bounded by
bίk) = [zk\\zk\= rk\ &<£ = [^11^1 = 1], and (nk - 2) closed Jordan
curves bψ\ ••-, δ^U, which lie in the domain bounded by b[k) and &J£.
L e t A l k = [zk I rk < \ z k \ < 1 ] , A 2 k = [zk \ \ z k - a k \ < p k , \ z k \ > rk\
0 < \ak\ ^ pk ~ rk, be exterior and interior domains of comparison for
A , respectively. Then Aά = Aόl x Aj2 can be used as exterior and
interior domains of comparison of D — Dx x D2, i.e., Ax Z) J9 Z) A2. Let
Sm(,D) and SUA,-) be minimal surfaces of the classes D'Stφ, f,) and
D'fft(Ajf TO, respectively. Then S^l(Sm(A1)) ^ Bz(Sm(D)) ^ ^ 2 (S m (A 2 )).
Using this inequality, we have the following distortion theorem for
minimal surfaces of the class D'Sΐφ, 2\).

T H E O R E M 6 . 1 . Π U # ( n ) ^ ( / ) 2 > ( U A )) Π
Rk is given in (3.4) with the corresponding subscript k and E(r) is
given in Theorem 3.3.

By a construction of an interior domain of comparison for D in

4 This is the case a = 1 in (ar) (see (4.8) and Lemma 4.1).
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Theorem 5.1, we can also obtain a distortion theorem for minimal sur-
faces Sm(D) in Theorem 5.1 which gives us an upper bound. Suppose
an interior domain of comparison for D is given by A2kf then we
have

THEOREM 6.2. BD(Sm(D)) ^ 4 ΠJUI E(Rk)9 where Rk and E(r) are
given as in Theorem 6.1.

REMARK. For the product domain Q = Qλ x Q2 of two annuli Qλ

and Q2, ϋΓ(Qi) x K(Q2) is not necessarily a minimal surface for the
class D'$ΐa(Q, T) for a fixed a, 0 < a < 1.
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