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Introduction* While the analytic extension of a harmonic function
across analytic differential boundary conditions is always possible for
the case of two independent variables [3], no comparable global theorem
exists for harmonic functions in N > 2 variables.

This work is concerned with the problem of global extension of a
harmonic function U(x, y, z) across a plane on which U satisfies a
linear differential boundary condition of the form

B(U) ^-ψ- + Pn(x, V)U=O on σ(z = 0) ,
dz

where Pn(x, y) is a polynomial of degree n. It is assumed here that
the given function U is C1 in the closure of a cylindrical domain
R:{x2 + y2<p\ -l<z<0}.

The possibility of harmonic reflection is obvious for n = 0, Pn =
const, as B{U) itself is harmonic. Since it vanishes on z = 0, it can
be extended harmonically, and the harmonic extension of U can then
be found by integrating with respect to z. But such procedure is no
longer available in our case. We shall show, how our problem can be
reduced to that of solving an initial value problem of a certain hyper-
bolic differential equation (1.22) of order 2n with distinct characteristic
surfaces (of normal type).

Classical considerations yield the analyticity of U on a and, there-
fore, its harmonic extensibility across σ into a neighborhood of σ. Our
result asserts that this neighborhood is the whole of the mirror image
of R, denoted by R.

Our method consists of constructing a new function V(x, y, z)
from U and a differential expression in V (see (1.6) and (1.18)), which
is harmonic in R and vanishes on z = 0. Thus, this expression in V
can be first extended into R U σ U R as a harmonic function φ(x, y, z).
The solution of the differential equation thus obtained for V in R is
impeded by its degeneracy. To remove this degeneracy we add to the
differential equation the Laplacian of V and its higher derivatives in
such a way as to obtain a normal hyperbolic problem (1.22), whose
solution is guaranteed by a result of I. G. Petrovsky. This modifica-
tion of the differential equation can be done in infinitely many ways,
in particular, so as to make the characteristic surfaces close down on
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parallels to the z-axis. Local extensibility of U, together with the
solution of the modified equation, then yields the global extension of
U. We note, that this method works equally well for N > 3 independ-

ent variables.
The above described method, however, seems to fail in the case

of the wave equation when σ is part of the tilmelike plane z = 0, and
the boundary condition on it is as simple as Uz + x U = 0.

On the other hand, the oblique derivative problem for the wave
equation Uxx + Uyy — Utt = 0, whose solution satisfies the boundary
condition

B\U) = Ux + aUy + {Ay + B)U = 0 on x = 0 ,

yields to a similarly motivated, yet formally different attack. The
domain of extension in this case depends on a Φ 0.

I would like to take this opportunity to express my gratitude to
professor H. Lewy who suggested this problem and offered advice
during its investigation.

1* Analytic extension of harmonic functions* We consider an
open cylindrical domain R: {x2 + y2 < p2, — l<z<0} and the plane
region σ : {x2 + y2 < p2, z = 0}. Denote by R the mirror image of R
with respect to the z — 0 plane.

Let there be given a real function U(x, y, z)f Ue C1 in the closure
of R, such that:

(1.1) Uxx + Uyy + Uzz = ΔU = 0 in R

(1.2)

where Pn(x, y) is a polynomial in x, y of degree n, given in the form

(1.3) Pn(x, y) = Σ Σ Akm xk~mym ,
/c=0m=0

the coefficients Akm being real.

LEMMA 1. / / U(x,y,z) is harmonic in R, UeC1 in R[JdR,
<ιnd satisfies condition (1.2) on σ, then U can be harmonically extended
into R'\J σ U G, where G is the portion z > 0 of some neighborhood
of σ.

Proof. Since U is C1 in R U OR, we have by Green's formula

n \X—τ\
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where X = (x, y, z), τ = {ξ, η, ζ), n is the outer normal, and integra-
tion is over the surface of the cylinder ξ2 + η2 — p2, ζ = — I, ζ = 0.
By (1.2) this becomes

= MX) - \\ + ιw
- T \ OQ X —

where A(X) stands for the integral in (1.4) taken over the lateral
surface and the lower base of the cylinder. By passage to the limit
as X tends to Xf e σ, one obtains in a manner familiar in potential
theory,

2πU{X') = A{X') - \\
I JL — T

where A(Xf) is an analytic function on σ. This integral equation is
an especially simple case of E. Hopf's equation (6.1) ([2], page 220),
and his method yields immediately the result, that U(x, y, 0) is analytic
on the open disc o.

Since, due to condition (1.2), Uβ(x, y, 0) is also analytic, we obtain
from the Cauchy-Kowalewski theorem, that there exists an analytic
solution U of Cauchy's problem with U = U, Uz = Uz on σ for ΔU =
0 in some neighborhood G of σ.

If we continue U, given in R U σ, as U in G — R — σ, this new
function is, according to well known arguments, harmonic in RUσljG.

We now introduce the symbolic notation

(1.5) D-'fix, y, z) = \f{x, y, Qdζ ,
Jo

and define an analytic function V(x, y, z) for (x, y, z) e R U σ:

(1.6) V(x, y, z) = Dr**-" U(X, y, z) + Y-^F.ix, y) ,

where the functions Fk(x, y) (0 ^ k ^ 2n — 2) are solutions of the
following equations on σ:

(1.7) ^ - Ϊ + T T F ^ + σ",(«, y,o) = o

(1 8) i h + w)F— + U(x' y>0) = °
( 1 9 ) (h + W)K + F^ = ° (0^r^2n- 4)

with, say, boundary values zero on x2 + y2 = p2.
The choice of these functions is motivated by the requirements
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(1.10) ΔV = 0 in R

(1.11) Vz2n + Pn{x, y) Vz2n~i = 0 on σ ,

which are easily verified.

Let s stand for either x or for y, and denote

77 — Q d _ ? ® Z7m —. (JJ \m\

02 ds

We then have the identities:

(1.12) HS+' = g J ^ ' - ^ J ^ , <m = 0 , 1 , 2, • •) f

(1.13, US = Σ g ^ - ' ^ i - (-=1,2,...)

where the coefficients afk and 6*Λ are real numbers, and a™m — b™m = 1»1

Proof. Introducing new variables £ = s + i«, τ = s — iz, we majr
write, with θ/dt - l/2[(0/ββ) - i(θ/θ«)] and 0/0τ - l/2[(d/ds) + i(θ/θz)]

Hence,

(1.14) flϊ. = ί.έ(-l

Now, for any variable | (real or complex)

where the coefficients Bζ are nonnegative integers. Since dτ/dt = dt/dτ —
0, and for z = 0 we have t = τ = s, each term in (1.14) is, but for a
constant coefficient, of the form

t"τβ.
dt«dτβ

Since P/mθτ = l/4[(02/β>s2) + (β*/β^], each term in (1.14) is, but for a con-
stant coefficient, either of the form

or of the form
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Now, for any positive integer q, [(O/ds) ± i(d/dz)]q has terms with
imaginary coefficients only of the form 0λ+μ/0sλ^μ, where μ is odd,
and terms with real coefficients only of the form 0λ+μ/0sλ^μ, where μ
is even (λ + μ = q). Consequently, as H?o must have real coefficients,
it will consist of terms sλ+μ(dλ+μj/dsλdzμ')f where μ is odd when n is odd,
.and μ is even when n is even, which implies identities (1.12) and (1.13).

LEMMA 2. There exist differential operators

where Cirh are real constants, such that

^ έ - χ for z = 0

Proof. Starting from the definition of H?o we see, that the above
statement holds f or p = 1 and p = 2, with A0 = 1, PI = δ/βs and D} =
0/02. Assuming, that the statement holds for p ^ 2n, we prove by
induction, that it also holds for p = 2n + 1 and p — 2n + 2.

Since, by assumption, the lemma holds for p rg 2%, we have for
any nonnegative integers a and β, and any positive integer q S 2n

C\2q-l+06+β q

K } d

But identity (1.12) yields

— Σ (

—j+1

We now observe, that all terms on the right hand side of the above
expression are of the form (1.16), where q = 2n — j + 1 (1 ̂  j " ̂  n,
i.e. g ^ 2tι), a = j , /S = 0, for terms contained in the simple sum, and
# = 2k - j + 1 (0 g i g fc, 0 ^ k ^ w - 1, i.e. q^2n -1), a = j ,
β — 2n — 2k, for terms contained in the double sum. Hence, the above
lemma holds for p = 2n + 1.

A similar argument, which utilizes identity (1.13) instead of (1.12),
shows that this lemma holds also for p = 2n + 2, and thus completes
the proof.

We now introduce the differential operator of order 2p — 1

<1.17) QϊtZ = Σ Hi^DΓ1 (P ^ 1)
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where the DΓ1 are those of (1.15). Note that, for z = 0, Q% =

Define an analytic function <p(x, y, z) for (x, y, z)eR\J σ:

(1.18) φ(x, y, z) = VMx, V, z) + NV(x, y, z) .

Here V{x, y, z) is the function defined in (1.6), and N = N(x, y, z) is
a differential operator of order 2n — 1 defined by:

N(x, y, z) =

where the coefficients Afcw are the coefficients of the polynomial Pn(x, y)
defined in (1.3).

LEMMA 3. Δφ = 0 in R, and <p(x, y, 0) = 0.

Proof. Note, that ΔHXiZ = JBΓ,,̂  and ΔHyyZ = iϊ^.z/. Thus, by
(1.17) and (1.19), the operators Δ and iV commute. Therefore, opera-
ting on both sides of (1.18) by Δ, and making use of (1.10), we obtain

Δφ = (JFL + N)ΔV = 0 in 12.

Making use of (1.17) and (1.15) we may write, for z = 0,

N(x,y,z)V(x,y,z)\Λ=0

A

Z = 0

which becomes

(1.20) N(x, y, z) V(x, y, z) U = ± Σ A^*-"^" 1 V.*-i(a;f ?/, 0) .
fe=0m=0

Thus, setting z = 0 in (1.18) and making use of (1.20) and (1.11) we
obtain φ (x, y, 0) = 0.

Hence, if we set for {x, y,z)eRU σ

(1.21) φ(x, y, z) = -φ(x, y, -z) = - Γ - ^ - + lV(a?, y, ζ)]v(x,y,ζ)

then φ is harmonic in R[J σ \J R.
Since <£>(#, 2/, —s) is known for (x, y, z) e R U σ, we shall seek a

function V(x, y, z) for (α?, y, z) e R U σ, which satisfies the following
overdetermined system (S) for F on z > 0:
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M%, V, z) + N(x, y, z)V(x, y, z) = -φ(x9 y, -z)

υZ

_
= Fr(x, y) 0^r^2n-2 VM*»-i(x, y, 0) = U(x, y, 0)

where the functions Fr(x9 y) are defined by the equations (1.7), (1.8)
and (1.9).

Since, by Lemma 1, U can be continued into R (J σ (J G as an

analytic function, the formula (1.6) can be used to define a function

V*(x9 y, z) as an analytic function in R U σ U G', where G' consists of

all those points of G, which can be joined in G to points of σ by

parallels to the 2-axis. This, so defined function F * is harmonic in

R U σ U Gr, satisfies the initial conditions of (S), and

^ + N(x,y,Q\V*{x,y,Q\ζ^z

= -<P(v, y, -z) in Gf .

Thus, a solution V*(x, y, z) of system (S) exists ίor (x, y, z)eG' \Jσ.
To investigate the size of the domain into which V(x, y, z) can be

continued, consider the solution of the following Cauchy problem:

(1.22) MV(x, y, z) s g [^ - a{^ + JU)J V + βN(x, y, z) V

= -βφ(x9 y, -z)

drV\
(1.23)

dzr = Fr{x,.y) (Q^r^2n-2), V,*-i(x, y, 0) = U(x, y, 0)

where <x{(i = 1, 2, ••-,%) are distinct positive real numbers, and β =

UU (1 + «i).
Now, for distinct positive au M i s a normal hyperbolic operator

with the distinct characteristic sheets through a point (x°, y", z°) of the
form (a; - x'f + (y ~ tf = at(z - z")\ It is a result of I. G. Petrovsky
(see [1]), that the Cauchy problem (1.22), (1.23) has the unique C~
solution V(x, y, z) in that part R* (a = (arlf α l f ., aj) of the domain
of influence of the initial surface σ for the equation MV(x, y, z) =
—βφ(x, y, —z), which lies in R, so that φ(x, y, —z) is defined.

In view of the identity

where P is a polynomial in θ/dx9 d/dy, d/dz the function V*(x9 y, z),
which solves system (S) in G' satisfies the above Cauchy problem (1.22),
(1.23) in the neighborhood of the initial surface σ, and by uniqueness,
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the solution V(x, y, z) e R£ must coincide with V*(x, y, z) in that
neighborhood. Consequently, ΔV and all its derivatives vanish on σ.

Since the operators M and Δ commute, operating on equation (1.22)
by Δ we obtain M(ΔV) — 0. Therefore, by uniqueness of the solution
of Cauchy's problem for M(ΔV) — 0 with homogeneous initial condi-
tions, we conclude that V(x, y, z), which solves (1.22), (1.23), is har-
monic in R* and solves system (S) in this domain.

Putting U(x, y, z) = (d^/dz2*-1) V(x, y, z) for (x, y, z) e R* we have
•constructed the harmonic extension of U into R\Jσ\}R£. We now
observe, that as a{ —• 0 (i — 1, 2, , n) the characteristic surfaces of
M close down on parallels to the 2-axis. It follows, that every point
of R is in some R£ for a{ sufficiently small. In view of the simple
connectedness of R U o U R, the harmonic extension of U at any point
of R cannot depend on α, and it follows that U can be harmonically
extended into all of R U σ (J R. Thus,

THEOREM 1. / / U{x,y,z) is harmonic in R, UeC1 in R{JdR,
and satisfies condition (1.2) on σ, then U can be harmonically ex-
tended into R U σ U R.

REMARK The construction of the extension of U depended on the
solution of a hyperbolic problem whose order is twice the degree of
the polynomial Pn(x, y), the coefficient in the first order boundary con-
dition. This illustrates the difficulty of extending our result to the
case of, say, a coefficient f(x, y), which is an entire function.

2* Extension of solutions of the wave equation* We consider an
open domain D: {—m < x < 0, —l<y<l, —l<t<l} and the plane
region σ: {x = 0, —l<y<l, —l<t<l}. Denote, for any domain
3f, the mirror image of £& with respect to the x = 0 plane by ̂ .

Let there be given a real function U(x,y,t), UeC* in the closure
of D, such that:

= Uxx + Uyy- Utt = 0 in D

(2.2) Ux + aUy + (Ay + B)U = 0 on σ

where a, A, B are real constants; a Φ 0.

Define a function V(x, y, t) for (x, y, t) e D U σ:

<2.3) V(x, y, t) Ξ , Γ U(ξ, y, t)dξ + G(y, t)
Jo

where G(y, t) is the C4 solution of the Cauchy problem:

Gn-Gtt+U.{0,.y,t) =

* " G(y, 0) = Gt(y, 0) = 0
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Let P be the parallelepiped bounded by the planes t ± y = ±1,
x = 0, x = - m . Then, V(x, y, t) e C\VX e C4) is defined in PΓ\D\Jσ,
and we have the relations:

(2.5) LV=0 in PΓ\D\Jσ,

(2.6) 7M + αV., + (Ay + 5)V. = 0 on Pf)σ,

which are easily verified.
We now define for (x,y,t)eP f\ D\J σ the function:

<2.7) φ(x, y, t) ̂ Vxx + aVxy + A(y£- - x±) V + BVX .
\ dx 0y/

Since the operators L and {y(d/dx) — x(d/dy)} commute, operating
on both sides of (2.7) by L, and making use of (2.5), we obtain:

= {-IT + a

I to2
dxdy dx dy

Setting x = 0 in (2.7), and making use of (2.6) we have φ(0, y, t) = 0.
If we now set for (x,y,t)ePΓ\D\Jσ

φ(x,y,t) = -φ(-x,y,t)

it follows, that L<? = 0 in P f Ί - D U σ U P n A and ̂  e C3.
Since φ(—a?, y, t) is known for (x, y,t)e P Γ\ DU β, we now seek

a function F(#, #, ί) for {x,y,t)eP Γ\ D\J σ, which solves the follow-
ing Cauchy problem:

(2.8) MV(x, y, t) = Vxx + aVxy + (Ay + B)VX - AsF, - -?>(-»,», t)

(2.9) F(0, y, ί) - G(y, t) , 7.(0, y, t) - C/(0, y, t) on P n ̂  .

It is well known, that the function V(x, y, t) e C\ which satisfies (2.8),
(2.9), exists in a domain Q. Here Q is that domain, each of whose
sections by a plane t — K(—l<K<l) is a right triangle bounded by
x = 0, # = Z — I JGL| and 2/ — α# = | J5Γ| — ϊ if a > 0, or by x = 0, 7/ =
I iΠ — Z and y — α:x = I — | ίΓ | if a < 0. Note that Q does not depend
on U, and is a subdomain of P Π D U ^.

LEMMA 4. If V{x, y, t) e C 4 in Q is the solution of the Cauchy
problem (2.8), (2.9), then LV = 0 m Q.

Proof. We operate on both sides of (2.8) by L. Since the operators
L and {y(d/dx) — x(d/dy)} commute, and Lφ( — x, y, t) = 0, we obtain:
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setting x = 0 in (2.8) we have,

Vxx(0, y, t) = -aVxy(0, y, t) - (Ay + B)Vβ(0, y, t)

and hence, making use of (2.9) and (2.2), we obtain:

(2.10) Vxx(0, y, t) = 0.(0, y, t) .

Thus, due to equations (2.9) and (2.4)

From (2.3) and (2.7) we have:

φ(-x, y, t) = φ(ξ, y, t) |e=_, = Ut(ξ, y, t) |e=_. + aUy(-x, y, t)

+ {Ay + B)U(-x, y, t) + AxGv(y, t) + Ax \~"u^ξ, y, t)dξ
Jo

and therefore,

, O 1 1 , -^-Ψ( - x, y, t) U = - U..(0, y,t)-a UJp, y, t)
\ΔmΔ.\.) OX

-{Ay + B)Um(0,y,t) + AGy{y,t) .

Differentiating (2.8) with respect to x, and setting x = 0 we obtain

Vm + aVxxy + (Ay + B)VXX - AVy = -JLp(-x, y, t) \x=0 o n ^ O
to

which after substituting (2.9), (2.10) and (2.11) becomes:

Vm(0, y, t) = Uxx(0, y, t) .

Hence, by (2.9) and (2.1),

J
dx

Consequently, by uniqueness of the solution of Cauchy's problem
for M(LV) = 0 with homogeneous initial conditions, we have that
LV=0 in Q.

We thus have:

THEOREM 2. // U(x, y91) e C4 in the closure of D solves the wave
equation (2.1) and satisfies the boundary condition (2.2) on σ, then
there exists a function U = VxeC* in the subdomain Q of D, which
extends U across σ as C3 solution of the wave equation.
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