
ON CONTINUOUS MATRIX-VALUED FUNCTIONS
ON A STONIAN SPACE

DON DECKARD AND CARL PEARCY

1Φ Introduction* In this paper the authors continue the study
(begun in [9] and carried on in [3] and [10]) of matrices with entries
from the algebra C(ϊ) of all continuous complex-valued functions on
an extremely disconnected, compact Hausdorff space 36. (Such spaces
are sometimes called Stonian after M. H. Stone, who considered them
in [14].) One of the authors has shown ([10], Theorem 3) that if A
and B are n x n matrices over C(X) such that A(x) is unitarily equivalent
to B(x) for each x e 3c, then A and B are unitarily equivalent in the
algebra Mn(£) of all n x n matrices over C(X). It is thus natural to
ask whether the similarity of A(x) and B(x) for each x e I is sufficient
to guarantee the similarity of A and B in Mn(£). We show by example
in §2 that the answer is no; however, we also show that if the
hypothesis is strengthened by the addition of a uniform boundedness
requirement, then the similarity of A and B in MJJSL) does indeed follow.
As a by-product of the technique introduced to give this result, we
obtain a new short proof of Theorem 3 of [10].

In § 3 we show that a certain class of entire functions maps Mn(£)
onto itself; this is a generalization (with a different proof) of a result
of Kurepa [8] for n x n matrices, and adds to the information obtained
by Brown [1] on the question of which entire functions map which
Banach algebras onto themselves. As a corollary, we learn that every
invertible element of MJjί) has a logarithm. Section 4 is devoted to
proving that an element of Mn(£) has an identically vanishing trace if
and only if it is a commutator in Mn(£). (See Remark 2, §4, for a
paraphrase of this result cast in the terminology of operator theory
on Hubert space.) Finally, in § 5 the authors give two examples which
indicate that it is probably fruitless to pursue the structure theory of
matrices over C(X) where 3£ is a more general topological space than a
Stonian space.

2* Similarity in MJ$). The most convenient definition of Mn{H)
is as follows. Let Mn denote the full ring of n x n complex matrices
under the operator norm, and let £ be any Stonian space. Denote by
Mn(£) the *-algebra of continuous functions from X to Mn, where the
algebraic operations in Λfn(ϊ) are defined pointwise. Under the norm
|| A || = supx6ϊ | |A(α)||,Mn(X) is a C*-algebra identifiable with the C*-
algebra of all n x n matrices over C(3£). Moreover, Mn(£) is an
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ATF*-algebra [7], and this fact is used briefly in this section.
We first show that pointwise similarity of A(x) and B(x) on X is

not sufficient to ensure that A and B be similar in Mn(£). For this
purpose, let £f be the Stone-Czech compactification of the natural
numbers Λ'. Then ^ is a Stonian space. (See, for example, the
discussion on page 295 of [12].) Consider elements A and B of
defined by:

o )• B W (o o

for each natural number x e ^K Then A(x) = J5(#) = 0 for x
and it is obvious that A(x) and B(x) are similar for each x e £f. Suppose
that S~(Sij) is an invertible element in M2(S^) satisfying SA = BS.
Calculation yields s21(x) = 0 for x e Λr so that s21 = 0. Furthermore,
sn(x) = xs22(x) for x e ^Y\ and the invertibility of S guarantees that
s22 never vanishes. Thus sn is unbounded, contradicting sn e C(S^)9

and it follows that A and B are not similar in M2{^).
The following theorem gives necessary and sufficient conditions

for A and B to be similar in Mn{H).

THEOREM 1. Let H be any Stonian space, and let A, BeMn(£).
Suppose that there is a dense subset ^ c ΐ and a positive number M
such that for x e ^ there is an invertible matrix S(x) satisfying
S(x)A(x)S-\x) = B(x), || S(x) \\ < M, and \\ S~\x) \\ < M. Then there
is an invertible element TeMn(di) satisfying TAT'1 = B, \\T\\ g ikf,
and || I 7 " 1 ! ! ^ M.

Proof. We consider collections {^} of nonempty, disjoint, compact
open sets ^ c ϊ with the property that if ^ e {^}, then there is
an invertible element T^MJ&i) satisfying Ti{x)A(x)Tr\x) = B(x),
|| T,{x) | | < M, and || Tf\χ) || < Af for each x e ^ . Let {^}<6/ be a
maximal such collection, and denote ^ = Uiei^i Then ^ is compact
open, and it follows from Lemma 2.1 of [3] that the function f defined
on Uΐei^ΐ so as to extend each of the T{ can be extended to an
element TeMn(^). Similarly, there is a function ZeMn(%f) which
extends each of the T%~\ It is clear from continuity considerations
that Z = T~λ, and that T has all the desired properties on ^ , so that
it suffices to prove W = X. Suppose, to the contrary, that X — "?/ Φ φ.
To obtain a contradiction, it suffices to find a compact open set

W and an invertible element Ve ΛfΛ(3θ such that for a e 3*7
- B(x)V(x)9 \\V(x)\\< M, and || V~\x) \\<M. To do this,

we regard the equation VA = BV as a system of linear equations
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CiΛ + c12v2 + + clmvm = 0

(L)

C^i + Cm2V2 + + CmmVm = 0

where

(1) the unknown functions vi are the entries, in some prescribed
order, of the matrix V

(2) the coefficients ci3- e C(ΐ — <?/) are the appropriate combinations
of the entries of the matrices A and B

(3) m = n\

For x e X — ^ , consider the corresponding system (L(x)) of linear
equations, and let x0 e 36 — <?/ be a point such that the rank r(x) of
the system (L(x)) assumes its maximum r0 at x0. (The case r0 = 0
leads trivially to a contradiction of 3£ — ̂ / Φ ψ, and we ignore it. The
case r0 = m cannot occur.) Then there is some r0 x r0 minor N of the
coefficient determinant of the system (L(x0)) which is nonzero, and by
continuity there exists a compact open neighborhood 5̂ ί c X — W of x0

such that for x e % the same minor N remains a nonzero minor of
maximum size. According to the hypothesis, there is a point xλ e 5^\and
an invertible matrix SixJ such that S(x1)A(x1) = BixJSfa), WSζxJW < M,
and 11 S^fa) \\<M. Let the corresponding nontrivial solution of the system
(L(Xi)) be denoted by (μ19 μ2, •• ,/i») (i.e., the μ{ are the entries of
the matrix S(a?i)). We wish to define an m-tuple {vλ{x)9 v2{x), , vm(x))
at each point of Ψl in such a way that

(1) the m-tuple is a solution of (L(x)) for each x e %
(2) Vi e C( %) f or 1 ̂  i ^ m, and
(3) î(ί»i) = μi for 1 ̂  i ^ m. This is accomplished as follows.

Since for x e % AT is a nonzero minor of maximum size, it suffices
to solve (continuously on Ψl) the r0 equations affiliated with JV. Thus
for the appropriate m ~ r0 values of i (the values not affiliated with
N)j define vt(x) = μt on % then for xe ^ the other r0 numbers
v{(x) are determined by Cramer?s rule, and since the functions ci3 are
continuous it follows that (1), (2), and (3) above are satisfied. Next
place the resulting functions v{ e C( ψ[) in their appropriate positions
in the matrix V, and shrink the neighborhood Ψl of xλ to a compact
open neighborhood 7^ c ^Γ of ĉ  such that f or x e 5 "̂ the matrix
V(x) is invertible and the inequalities 11 V(x) \\ < Mand 11 V~\x) \\ < M
remain valid. The existence of the compact open set 5^ contradicts
the maximality of the collection {^}ί€7, and thus the proof is complete.

We can prove Theorem 3 of [10] in a similar fashion,



860 DON DECKARD AND CARL PEARCY

THEOREM 2. // X is Stonian and A, Be Mn(T) are such that A(x)
and B(x) are unitarily equivalent at each point of a dense subset of
X, then A and B are unitarily equivalent in Mn(£).

Proof. We consider collections {^} of nonempty, disjoint, compact
open subsets ^ c ϊ with the property that if ^ e { ^ } , then there
is a unitary element ^ e l ^ ) satisfying Ui(x)A(x)U?(x) = B(x) for
each x e *%si% As before, we choose a maximal collection {^}ίe/> and
define <%s — \Jiei ^ ί Again it suffices to prove ^/ — 3£. The argument
then proceeds exactly as above, except that the system of linear equations
to be considered is the system equivalent to the pair of equations
VA = BV and FA* = J3* V. (Thus the system consists of 2n2 equations
in n2 unknowns, but it is clear that this has no effect on the argument.)
Then, proceeding essentially as above, we obtain a compact open subset
5*"" c 3t — 'g/and an invertible (not necessarily unitary) element Ve Mn{7^)
such that for xe ^ V(x)A(x) = B(x)V(x) and V(x)A*(x) = B*(x)V(x).
One knows from ([14], Lemma 2.1) that we can write V in polar form
V— UP where U is a unitary element of Λfn(3^). A standard calculation
shows that for x e 5*7 U(x)A(x) U*(x) = B(x); thus the existence of 5^ con-
tradicts the maximality of the collection {^}ί6i> and the proof is complete.

REMARK. One would naturally like to have a collections of global
objects to attach to an element A e Λfw(X) which would serve as a
complete set of similarity invariants for A. In this connection, it is
easy to see that one cannot always obtain an element JeMn(£) such
that A is similar to J in MJJ&) and such that J(x) is in Jordan form
for each xe%.

3 Entire functions on Mn(£). We say that an entire function
/ has property (K) if, for every complex number ζ, there is a complex
number z satisfying f(z) = ζ and f\z) φ 0. In [8] Kurepa showed that
an entire function / maps Mn onto itself if and only if / has property
(K). The study was then taken up by Brown [1] who characterized
the class of entire functions / which map the algebra £f(£tf) of all
bounded operators on an infinite dimensional Hubert space έ%f onto
itself. Brown showed that such an / maps every Banach algebra onto
itself, and we say that such an / has property (B). Since certain
W* -algebras of operators on Hubert space have faithful C*-represen-
tations as an Mn{Έ) (see [9]), one has, in a sense, Sf(£ίf) ZD Mn{ϋ) z> Mn.
Thus it is of interest to discover which entire functions map Mn(£)
onto itself, and the answer is given by

THEOREM 3. // / is an entire function and H is a Stonian space,
then f maps Λfn(ϊ) onto itself if and only if f has property (K).
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Proof. Since for each x e 9c, [p(A)](#) = p(A(x)) for every polynomial
p(z), and since / is the uniform limit of polynomials on compact sets
of the z-plane, [f(A)](x) = f(A(x)) for each x e ϊ . Thus, if / maps
Mn(£) onto itself, then / must map Mn onto itself, so that by Kurepa's
theorem [8], / has property (K). Now suppose that / has property
(K), and let AeMn(X). We look for BeMn(X) such that f(B) A.
Let x0 be an arbitrary point of X and let ζlf , ζp be the distinct
eigenvalues of A(xQ). Choose zlf *—,zp to be complex numbers with
the properties that /(^) = ζ< and /'fa) Φ 0. For i = 1, , p, let Sf{

be a (non-degenerate) closed disc about zt such that / is Schlicht on
^ , and arrange it so that the sets /(ϋ%) are mutually disjoint. Let
g denote the inverse of the restriction of / to U?=i ®ί Then g is
defined and continuous on *%r = UlU/C^) a n d is analytic at each
interior point of 3ίm It follows from Lemma 2.2 of [3] that there
exists a compact open neighborhood ΛΊ ~ .yf/'ixo) of x0 such that for
xeΛ^, the spectrum of A(ίc) (denoted hereafter Λ[A(x)]) is a subset
of the interior of S&. If Ao denotes the restriction of A to Λ^9 then
Ao is an element of the C*-algebra M^x^)* and it is clear that the
spectrum of Ao is U^e^0^[A(α;)]. As usual, following Dunford [5],
g(AQ) e Mn(Λ^) can be defined as the sum of the p integrals
l/2πi \ g(X)(A0 - Xl^dX, where A is the boundary of the s e t / ( ^ )

If we denote BQ = ^(A)? it follows from Theorem 2.10 of [5] that
f(B0) = AQ. Since this construction was carried out about an arbitrary
point x0 e 3£, we can apply the compactness of X to obtain points
xly , xr e X and compact open neighborhoods ^Vl of the x{ such that
Ul=i Λi = X and such that the above construction has been carried
out to yield a corresponding B{ on each ^V[. Furthermore, we can
assume that the ,Ari are pairwise disjoint. The element B e Mn(£)
defined by B(x) = Bt(x) for x e Λl is such that f(B) = A, and the proof
is complete.

COROLLARY 3.1. IfTίisa totally disconnected, compact Hausdorff
space, then each invertίble element of ikTΛ(3£) has a logarithm in Mn(£),
and thus has roots of all orders in Λfn(ϊ).

Proof. Observe first that the proof of Theorem 3 above goes
through word for word in the case that 9£ is only compact Hausdorff
and totally disconnected. Then observe that if Ae Mn(£) and an entire
function / are given, in order to carry out the construction in the
above proof to obtain a B such that f(B) = A, it suffices to know that
for each ζ in the spectrum of A, there is a complex number z such that
f(z) — ζ and f'{z) Φ 0. These observations complete the proof.

It results easily from Theorem 3 that if
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91 — V £P> M C$ \

is any finite C*-sum of algebras MnJJίk) where the Hk are Stonian spaces,
then the entire functions which map §t onto itself are exactly those
with property (K). However, if one considers algebras

® = g iΘMn(ϊJ k)

which are C*-sums of infinitely many Mnjβίk) where nk—>co and the
Xfc are only assumed to be compact Hausdorff spaces, then the situation
is different, as is demonstrated by the following theorem.

THEOREM 4. If S3 is any algebra of the form

S)ft V £P> M ί ΐ Ί
k = \ K

where nk —> oo and each Tίk is a compact Hausdorff space, then the
entire functions which map S3 onto itself are exactly those with
property (B)

The proof of this theorem is patterned after an argument of
Brown [1], and depends on the following lemma.

LEMMA 3.2. Let f be any entire function, let g(z) be the polynomial

«—1

g(z) = Σ aiZ< ,
»=0

and let AeMn be the "analytic Toeplitz" matrix

'a0

_ α2 ax a0

Then f(A) is an "analytic Toeplitz" matrix

f(A) =
b0

h bB
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and the entire function h(z) = f(g(z)) has a power series expansion

h(z) =

where βt = 64 for 0 ^ ί ^ n — 1.

i = 0

Proof. If / is any positive integral power of 2, or more generally
any polynomial, an inductive computation shows that the result is
valid. For an arbitrary entire function /, let pn(z) be a sequence of
polynomials which converges uniformly to / on every compact subset
of the 2-plane. Then, since pn(g(z)) converges uniformly to h(z) on
compact subsets of the plane, the coefficients in the power series
expansions of the pn(g(z)) must converge to the corresponding coefficients
in the power series expansion of h(z). (See, for example, ([2], § 211))
Furthermore, since pn(A) converges to f{A) in the norm topology of
Mn, the entries of pn(A) must converge to the corresponding entires
of f(A), and the result follows.

Proof of Theorem 4. For convenience we take nk — n.
be clear that this does not affect the argument. Let

be defined by setting

It will

0

1 0

1 0

1 0

for each positive integer n. Let / be an entire function which maps
onto 33, and suppose that

satisfies f(A) = rB where r is some fixed positive real number. Since
for any central projection E e 35, f(EA) = Ef(A)f it is clear that for
each positive integer n, f(An) = rBn. Now choose an arbitrary xn e Hn

for each integer n. The fact that f[An(xn)] = rBn(xn) follows just as
in the proof of Theorem 3. Since An{xn) commutes with Bn(xn) =
l/rf[An(xn)] and Bn is identically constant on 9£w, a matrix calculation
shows that for each positive integer n, the matrix An(xn) has the form



864 DON DECKARD AND CARL PEARCY

of

2 Hi a0

where the αj are of course complex numbers. Define the sequence
gjz) of polynomials by

- Σ

and let ftn(z) = f(gn(z)). Since /[Aw(an)] = rBn(xn), it follows from
Lemma 3.2 that for each positive integer n, hn(z) is an entire function
having a power series expansion

hn(z) = rz+ Σ «z fc

Since A = Σ Θ 4 is a bounded operator, it follows that there exists

a positive number M such that

Σ I α? I1 < Λί
ΐ=0

for each w. Let £%r denote the disc & = {̂ : | ίe | ^ 1/2} and observe
that it follows from the above inequality that the sequence gn(z) is
uniformly bounded on & by the number 2l/M. It follows from
MonteΓs theorem ([2], §416) that one can extract a subsequence g%k{z)
which converges uniformly on 3f to a function 0(3) which is analytic
on £2f. It follows that h%k(z) — f(gnjc(z)) converges uniformly to f(g(z))
on ^ , and by virtue of the form of the power series expansion of
each hnk(z), we must have f(g(z)) — rz on £2f. It is now clear that
g(z) is a Schlicht mapping of the interior &° of £%f onto some bounded
domain g(&°) and that / is a Schlicht mapping of g(&°) onto the
open disc {z:\z\ < r/2}. Since r was arbitrary, it follows from ([1],
Theorem 2) that / has property (JS), and the proof is complete.

4. Commutators in MJJSL). We introduce the notation σ(B) for
the trace in the usual sense of an n x n complex matrix B. In this
section, we generalize another result known for MnJ and thereby set
forth a class of operators on Hubert space which are commutators.
(See Remark 2 at the end of this section.) More precisely, we establish

THEOREM 5. If X is a Stonίan space and A e Mn(£), then A
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satisfies σ[A(x)] = 0 if and only if there are elements B and C in
Mnβ) such that A^BC - CB.

One half of the theorem is trivial; to prove the other half we use
an idea suggested by Halmos in [6]. The crucial lemma is the following.

LEMMA 4.1. / / £ is any Stonian space and AeMn(£) is such
that σ[A(x)] = 0, then there is an invertible S e MJJί) such that
SAS-1 = D = (dij) satisfies dn = 0.

Proof. We consider collections {^} of disjoint, nonempty, compact
open sets f/^eX with the property that if ^ e {^}, then there is an
invertible S { e Λfn(^<) such that || Si ||, || Sr1 || g 6 and such that for
each X G % the matrix SiASι~

1(x) has a zero in the upper left hand
corner. Let {^} ί6i be a maximal such collection, and define '?/ —
Uiei *&%• It follows from Lemma 2.1 of [3] that to complete the proof,
it suffices to establish ^ = 3c. Thus, suppose to the contrary that
% — %S Φ φ. According to Theorem 1 of [3] there exist functions
\f '' * 9 ^n £ C(3£ — <%s) such that for xelί— Ήf, the numbers λ^cc), , λn(cc)
are exactly the eigenvalues of A(x). Furthermore, there must be at
least one point x 0 G Ϊ - f / such that some Xi(x0) Φ 0. (Otherwise, we
could apply Theorem 2 of [3] to obtain a unitary UeMn{H — ̂ /) such
that UAU*(x) is in upper triangular form for each xeH—^. Then the
diagonal entries of UAU*(x) would be identically zero, and the maximality
of the collection {^} ί6i would be contradicted.) Since we know from
the hypothesis that

there must be at least two distinct i such that \(x0) Φ 0. In fact, a
little thought convinces one that there exist λ, and Xk (j Φ k) such that

0 < I λ ^ ) I ̂  I \k(x0) I < I Xk(x0) - \3ix0) I .

It follows from the circle of ideas connected with the proof of Theorem
2 of [3] that there is a unitary element UeMn(H) — <%/) such that
UAU*(x) = (dij(x)) is in upper triangular form for each x e X — ̂ / and
such that α n = Xk and α22 = X, on X — ^ . Thus 0 < | a22(x0) \ <Z
I o,n(x0) I < I an(x0) — a22(x0) |, and by clever choice of U (i.e., by applying
an additional rotation, and then changing notation) one can arrange
things so t h a t | an(x0) — a22(x0) \ < \ a12(x0) — [an(x0) — a22(x0)] |. I t follows

that for some δ, 0 < δ < 1, there is a compact open neighborhood
y c ϊ - ^/ of x0 such that f or x e 3*7 0 < | α22(^) | ^ (1 + δ) | αu(aj) | <
\dn(x) — [an(x) — α22(x)] |. The argument now splits into two cases.
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Case I. For every x e 5̂ 7 | a12(x) | ^ | an(x) |. In this case we define
an invertible S = (s{j) e Λfn(3*~) to be the direct sum of the 2 x 2
matrix (si3 : i, i ^ 2) and the identity element of Λfn_2(3θ, where for
xe ^sn(x) = s22(#) = 1, s12(x) = 0, and sal(aj) = αu(ίc)/αia(aj). An easy
calculation shows that | | S | | , || S"1!! ^ 4, and another calculation shows
that for xe ^ the matrix SUAU*S~1(x) has a zero in the upper left
hand corner. The existence of 7" thus contradicts the maximality of
the collection { 5^ΐ}ί€ί> and we proceed to

Case II. There is a compact open subset V/^" c ^ such that for
x e Ύ/^, \au(x) \ < \au(x) |. As before we define an invertible S =
(si3) e Mn( Ύ/^) to be the direct sum of the 2 x 2 matrix (si3: i, j ^ 2)
and the identity element of AfΛ_2(

 <5^). This time for x e W~ we take
Sn(x) = su(x) = s21(x) = [αn(x)/{α12(x) - [an(x) - α22(x)]}]1/2 and s22(x) =
su(x) [{a12(x) + ^22(^)}Mn(^)], where the exponent 1/2 denotes any square
root taken in such a way that sn e C( Ύ/^). (Theorem 1 of [3] enables
us to take continuous square roots.) As a result of the inequalities
which are valid on 5^7 one has | su(x) \ < 1 and | s22(x) \ ̂  2 + δ for

each x e ^ furthermore, sus22 — s12s21 = 1 on <^7 ^ n d it follows that
II SII, US"1 II ^ 6. Calculation shows that for xe W~, SUAU*S-\x)
has a zero for its upper left hand entry, and thus the proof is complete.

The following corollary follows easily by induction on n, and we
omit its proof.

COROLLARY 4.2. If Ae MJT) is such that σ[A(x)] = 0, then there
is an invertible S e MJ$) such that SAS"1 = {aiά) satisfies au = 0 for

Proof of Theorem 5. We are given that tf[A(x)] = 0. Choose
S e Mn(&) according to Corollary 4.2 so that SAS"1 = (ai5) satisfies au = 0
f o r 1 g i ^ n . D e f i n e B ± = {bi5) e M n β ) b y δ « = i f o r l ^ i ^ n a n d
bi3 = 0 for iφ j . Also define d = (co ) e Mnβ) by ciά Ξ a^/iba — b3j)
for iΦ j and ci3- = 0 f or i = i . If 5 and C are defined by JB = iS-'CxS,
then it is easy to see that B1C1 — CλBλ — SAS"1, or, what is the same
thing, BC - CB = A.

REMARKS.

(1) A stronger version of Lemma 4.1, obtained from the present
version by requiring S to be unitary, actually holds. The proof, however,
uses a completely different idea and is much longer than the above
proof.

(2) A bounded operator B on Hubert space is called ^-normal [9]
if the W*-algebra which B generates satisfies a polynomial identity
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of the form

where the sum is taken over all permutations π on 2n objects. It is
known that such a T7*-algebra is a finite direct sum of algebras each
of which has a faithful C* -representation as some Mk(Jik) with XΛ Stonian
and k^n. Furthermore such a TF*-algebra has a well-behaved center-
valued trace function, so that Theorem 5 can be paraphrased: Any
^-normal operator with trace zero is the commutator of a pair of
^-normal operators.

(3) There are at least two classes of operators on Hubert space
which possess well-behaved numerical traces. These are operators in
the trace-class [13], and operators in W*-algebras which are factors
of type Hi. Is it true that every operator with trace zero in one of
these classes is a commutator?

5. Two examples* In this section we set forth two examples
which show that Theorem 2 of [3] and Theorems 1 and 2 of the present
paper cannot be extended to the setting in which X is assumed only
to be a compact Hausdorff, totally disconnected space. In these examples
we take ^ to be the compact Hausdorff, totally disconnected space
consisting of the set {al9 α2, , αw, , 0} with the relative topology,
where the real sequence {an} is strictly decreasing to zero and satisfies
cos (l/αn) = sin (l/αn) = \\V 2 for n odd and cos (l/αn) = 1, sin (1/αJ = 0
for n even.

EXAMPLE 1. (This example is essentially due to Rellich [11].)
Define A e M2( J Π by

/I - αTC cos (2/αJ - α n sin (2/αnV
{CCJ ~ ' -α, sin (2/α,) 1 + αM cos (2/α.)/ '

Then, even though A is Hermitian, ίfcere exists no unitary
such that UAU*(t) is in upper triangular form for each

Proof. Assume that such a U= (ui:}) exists, and let UAU*(t) =
{biά{t)). Then the biS e C(^~), and the vector (Ujt), ΰjt)) = V(t) has
length one at each t e J7~ and has entries which are elements of
C(^~). Futhermore, it is easy to see that [A(ί) - bn(t)I]V(t) = 0. In
other words, the vector V(t) is a continuous eigenvector for A(t) cor-
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responding to the eigenvalue bn(t). An easy calculation shows that
the eigenvalues of A(an) are 1 — an and 1 + anj so that for each n,
bn{an) = 1 — an or bn(an) = 1 + an. Furthermore, it is easy to see that
the vector (cos (l/αΛ), sin (l/αΛ)) is an eigenvector for A(an) corresponding
to the eigenvalue 1 — an, and the vector (sin(l/αj, — cos(l/αj) is an
eigenvector for A(an) corresponding to the eigenvalue 1 + an. It
follows that for n odd, we must have | ΰn(an) | = 1/τ/ 2, and for n
even, we must have | ΰn(an) | = 0 or 1. This contradicts un e
and completes the proof.

EXAMPLE 2. Define A, Be M2(^~) by A(0) = B(0) = 0 and

[ o
Then A(t) is unitarily equivalent to B(t) for each te^~, but there
exists no invertible S e M%(^~) such that SAS"1 = B.

Proof. Suppose such an invertible S = (s^ ) £ M2(j7~) does exist
Then SA = JBS, and calculation shows that s21 = 0. Furthermore,
βn(cϋ — ( —l)%s22(α%) for each n, and since S is invertible and s21 = 0,
sn and s22 are bounded away from zero. It follows that su and s22

cannot both be continuous at zero, a contradiction.

REMARK. While the theory of elements A e Mn(%) is not very
satisfactory for 3£ only totally disconnected, it is nevertheless true that
A has continuous eigenvalues [4].
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