REMARKS ON SIMPLE EXTENDED LIE ALGEBRAS

ARTHUR A. SAGLE

We continue the discussion of finite dimensional simple extended Lie algebras over an algebraically closed field F of characteristic zero with nondegenerate form $(x, y) = \text{trace } R_x R_y$ where R_x (or R(x)) denotes the mapping $A \to A$: $a \to ax$; for brevity we call such an algebra a simple el-algebra. The main result of this paper is that those simple el-algebras which are not Lie or Malcev algebras probably cannot be analyzed by the usual desirable Lie-type methods.

First if we assume the simple el-algebra [3] A has a diagonalizable Cartan subalgebra [3] such that for any weight space $A(N, \alpha)$ of N in A we have $A(N, \alpha)^2 = 0$ or $A(N, \alpha)^2 \subset A(N, \beta)$ for some weight β (which is a function of α), then A is a Lie or Malcev algebra. Thus if one attempts to remedy the situation that $A(N, \alpha)^2$ is difficult to locate by the rather desirable above assumptions and tries to construct a multiplication table for a new simple el-algebra, then actually nothing new is obtained. Next we show that if the derivation algebra D(A) is used to analyze a simple el-algebra, using [1, page 54] or possibly Lie module theory, then again a difficult situation is encountered: If A is simple el-algebra, then A is not a simple Lie or Malcev algebra if and only if there exists a nonzero element $a \in A$ such that for every derivation $D \in D(A)$ we have aD = 0. The element $a \in A$ reflects the structure of A and so it appears that the structure of A is not accurately reflected in its derivation albgebra.

The proofs of the above results use the following lemma.

LEMMA 1.1. If A is a simple el-algebra, then A is a Lie or 7-dimensional Malcev algebra if and only if $u(x) = trace R_x$ is the zero linear functional.

Proof. A linearization of the defining identities of an extended Lie algebra

$$xy = -yx$$
 and $J(xy, x, y) = 0$

where $J(x, y, z) = xy \cdot z + yz \cdot x + zx \cdot y$ yields

(1.2) J(wx, y, z) + J(yz, w, x) = J(wy, z, x) + J(zx, w, y)

Received November 7, 1963. This research was supported in part by NSF Grant GP-1453.

$$(1.3) wJ(x, y, z) - xJ(y, z, w) + yJ(z, w, x) - zJ(w, x, y) = 3[J(wx, y, z) + J(yz, w, x)]$$

for all $w, x, y, z \in A$. From (1.2) we obtain by operating on w that

$$(xz, y) - (x, zy) = \operatorname{trace} R(xz)R(y) - \operatorname{trace} R(x)R(zy)$$

 $(1.4) = \operatorname{trace} R(xz \cdot y + x \cdot zy)$
 $= u(xz \cdot y + x \cdot zy)$.

Now if u(x) = 0 for all $x \in A$, then from (1.4) we see (x, y) is a nondegenerate invariant form and from [3], A is a simple Lie or 7-dimensional Malcev algebra. Conversely, from the identities for these algebras [2] we see that u(x) = 0 for all $x \in A$.

We continue the use of the notation in [3] for sets and algebraic operations.

2. On the construction. We shall first investigate the assumption that a simple el-algebra A has a diagonalizable Cartan subalgebra N [3]. That is, N is a nilpotent Lie subalgebra of A such that for all $m, n \in N$,

$$R_{mn} = [R_m, R_n] \equiv R_m R_n - R_n R_m ;$$

furthermore, decomposing A into its weight spaces relative to $R(N) = \{R_n: n \in N\}$ we have [1; 3]

$$A = A(N, 0) \bigoplus \sum_{\alpha \neq 0} A(N, \alpha)$$

where, since R(N) is diagonalizable,

$$A(N, \lambda) = \{x \in A : xR_n = \lambda(n)x\}$$

is the weight space of N corresponding to the weight λ and, since N is Cartan [3],

$$N = A(N, 0)$$
.

Since we are using a fixed Cartan subalgebra we use the notation A_{σ} or $A(\sigma)$ for $A(N, \sigma)$ and the convention $A(\sigma) = 0$ if σ is not a weight of N in A. From [3] we have the identities

$$(2.1) A_{\alpha}A_{\beta} \subset A_{\alpha+\beta} \text{if } \alpha \neq \beta$$

$$\begin{array}{ll} (2.2) & J(A_{\alpha}, A_{\beta}, A_{\gamma}) = 0 & \text{ if } \alpha \neq \beta \neq \gamma \neq \alpha \\ \text{ and } J(A_{\alpha}, A_{\beta}, N) = 0 & \text{ if } \alpha \neq \beta . \end{array}$$

Let K denote the kernel of the linear functional $u: x \rightarrow \text{trace } R_x$, then we have

614

$$(2.3) \qquad (\alpha + \beta)(n)(x, y) = (\alpha - \beta)(n)u(xy)$$

$$\text{ if } n \in N, x \in A_{\alpha}, y \in A_{\beta}$$

 $(2.4) \qquad (A_{\alpha}, A_{\beta}) = 0 \quad \text{if } \alpha \neq 0 \text{ and } \beta \neq 0 \text{ and } \alpha \neq -\beta$

$$(2.5) A_{\alpha}A_{\beta} \subset K \text{if } \alpha \neq 0 \text{ and } \beta \neq 0 \text{ and } \alpha \neq \beta \text{.}$$

For (2.3), let $n \in N$, then $xn = \alpha(n)x$, $yn = \beta(n)y$ and using (1.4) we have

$$\begin{aligned} (\alpha(n) + \beta(n))(x, y) &= (xn, y) - (x, ny) \\ &= u(xn \cdot y + x \cdot ny) = (\alpha(n) - \beta(n))u(xy) . \end{aligned}$$

For (2.4) and (2.5), let $x \in A_{\alpha}$, $y \in A_{\beta}$ and first assume $\alpha \neq 0$ and $\beta \neq 0$, $\pm \alpha$. If xy = 0 for all x, y as above, then the results follow from (2.3). So assume $0 \neq xy \in A(\alpha)A(\beta) \subset A(\alpha + \beta)$, then $\alpha + \beta$ is a weight of N in A. Let $z \in A(\alpha + \beta)$, then since $\alpha \neq \alpha + \beta \neq \beta \neq \alpha$ we use (2.2) to obtain $J(x, y, z) \in J(A(\alpha), A(\beta), A(\alpha + \beta)) = 0$. Therefore

$$egin{aligned} zR(xy) &= zx\!\cdot\!y + yz\!\cdot\!x\!\in\!A(2lpha+eta)A(eta) \ &+ A(lpha+2eta)A(lpha) \subset A(2(lpha+eta)) \;. \end{aligned}$$

Using this result and (2.1) we see that for any weight γ ,

$$A(\gamma)R(xy) \subset A(\gamma + (\alpha + \beta)) \neq A(\gamma)$$

and therefore the matrix for R(xy) has zeros on its diagonal so that u(xy) = trace R(xy) = 0. Next we relax the assumptions on β , use the above result and (2.3) to see that (2.4) and (2.5) now follow.

Now we shall start using the hypothesis that if α is any weight of N in A, then $A^2_{\alpha} = 0$ or there exists a weight $\pi(\alpha)$ such that $A^2_{\alpha} \subset A_{\pi(\alpha)}$. Thus we are assuming that if $A^2_{\alpha} \neq 0$, then there exists a weight $\pi(\alpha)$ such that for each $x, y \in A_{\alpha}, xy \in A_{\pi(\alpha)}$; that is, π is a function of the weight and not a function of the particular elements used in forming the products. Using this assumption we shall show that for any weight $\alpha, A_{\alpha} \subset K(=$ kernel of u) and therefore by Lemma 1.1 conclude that A is Lie or Malcev.

First for $\alpha = 0$ we have $A_0^2 = A_0 N = 0$. So assume $\alpha \neq 0$. If xy = 0 for all $x, y \in A_{\alpha}$, then using (2.1) we see that for any $x \in A_{\alpha}$, $u(x) = \operatorname{trace} R_x = 0$ and therefore $A_{\alpha} \subset K$. So next we consider $0 \neq A_{\alpha}^2 \subset A_{\pi(\alpha)}$ where $\alpha \neq 0$.

LEMMA 2.6. If $\alpha \neq 0$ and $0 \neq A^2_{\alpha} \subset A_{\pi(\alpha)}$, then $\pi(\alpha) \neq 0$.

Corollary 2.7. $N = \sum_{\alpha \neq 0} A(\alpha)A(-\alpha) \subset K$.

Suppose Lemma 2.6 has been proven, then to prove the corollary we first note $\sum_{\alpha \neq 0} A(\alpha)A(-\alpha) \subset A(0) = N$. Next set $B = \sum_{\alpha \neq 0} A(\alpha)(-\alpha) \bigoplus \sum_{\alpha \neq 0} A(\alpha)$; we shall show B is an ideal of A. For any weight $\beta \neq 0$,

$$egin{aligned} BA(eta) \subset (\sum_{lpha
eq 0} A(lpha)A(-lpha))A(eta) + A(eta)^2 \ &+ A(eta)A(-eta) + \sum_{lpha
eq 0} A(lpha+eta) \, . \end{aligned}$$

Then using $A(\beta)^2 = 0$ or $A(\beta)^2 \subset A(\pi(\beta))$, where from Lemma 2.6 $\pi(\beta) \neq 0$, we see that $BA(\beta) \subset B$. For $\beta = 0$ we note that

$$(\sum_{\alpha\neq 0}A(\alpha)A(-\alpha))A(0)\subset A(0)N=0$$

and use (2.1) to obtain $BA(0) \subset B$. Thus $BA \subset B$ so that B is an ideal of A and since A is simple, B = 0 or B = A. If B = 0, then $A_{\alpha} = 0$ for each $\alpha \neq 0$ and $A = A_0 = N$ so that $A^2 = A_0N = 0$, a contradiction. Thus B = A and from this $N = \sum_{\alpha \neq 0} A(\alpha)A(-\alpha) \subset K$, using (2.5).

For Lemma 2.6 assume $\pi(\alpha) = 0$ and let $x, y \in A_{\alpha}$, then $xy \in A_{\alpha}^{2} \subset A_{0} = N$. We shall show for any weight β that $\beta(xy) = 0$, then for any $z \in A_{\beta}$ we have $z(xy) = zR(xy) = \beta(xy)z = 0$. Therefore (xy)F is an ideal of A which must be zero and so $A_{\alpha}^{2} = 0$, a contradiction. For $x, y \in A_{\alpha}$ we have from the defining identity

$$0 = J(xy, x, y) = (xy \cdot x)y + (y \cdot xy)x$$

which implies, since $xy \in N$, $2\alpha(xy)xy = 0$. From this and the fact that α is a linear functional on N we have $2\alpha(xy)^2 = 0$ and so $\alpha(xy) = 0$. Thus for $\beta = 0$, α we have $\beta(xy) = 0$ so we now assume $\beta \neq 0$, α and let $z \in A_{\beta}$, $n \in N$, then using (2.1) and (2.2) we obtain

$$egin{aligned} J(zx,\,y,\,n) + J(yn,\,z,\,x) &= lpha(n)J(y,\,z,\,x) \ &= -lpha(n)eta(xy)z + lpha(n)(yz\!\cdot\!x + zx\!\cdot\!y) \end{aligned}$$

and

$$egin{aligned} J(zn,\,x,\,y) \,+\, J(xy,\,z,\,n) &= eta(n)J(z,\,x,\,y) \ &= -eta(n)eta(xy)z + eta(n)(yz\!\cdot\!x + zx\!\cdot\!y) \ . \end{aligned}$$

We combine these equations by using (1.2) to obtain

$$\alpha(n)(-\beta(xy)z + zx \cdot y + yz \cdot x) = \beta(n)(-\beta(xy)z + zx \cdot y + yz \cdot x)$$
.

From this equality we obtain, since $\beta(n) \neq \alpha(n)$ for some n, that

$$\beta(xy)z = zx \cdot y + yz \cdot x \in A(2\alpha + \beta)$$
.

But since $\beta(xy)z \in A(\beta)$ we have

$$\beta(xy)z \in A(\beta) \cap A(2\alpha + \beta) = 0$$
.

Thus if $z \neq 0$, $\beta(xy) = 0$ and this proves the lemma.

Thus far we have considered for $\alpha \neq 0$: (1) $A_{\alpha}^2 = 0$ which implies $A_{\alpha} \subset K$; (2) $A_{\alpha}^2 \neq 0$ which implies $\pi(\alpha) \neq 0$ and consequently $N = A_0 = \sum_{\alpha \neq 0} A(\alpha)A(-\alpha) \subset K$. So we next investigate (2) more closely and note that it suffices to consider $0 \neq A_{\alpha}^2 \subset A_{\pi(\alpha)}$ where $\pi(\alpha) = \alpha$. For if $\pi(\alpha) \neq \alpha$, then using (2.1) we see that the matrix of R_x for any $x \in A_{\alpha}$ has zeros on its diagonal and therefore u(x) = 0 so that $A_{\alpha} \subset K$ which is what we eventually want to show for any weight α .

Thus we are considering $0 \neq A_{\alpha}^{2} \subset A_{\alpha}$. Since (x, y) is nondegenerate and $A_{\alpha}^{2} \neq 0$, there exists a weight β so that

$$(A^2_{\alpha}, A_{\beta}) \neq 0$$
.

But since $A_{\alpha}^2 \subset A_{\alpha}$ this means $(A_{\alpha}, A_{\beta}) \neq 0$ and from (2.4) and the assumption that $\alpha \neq 0$ we conclude $\beta = 0$ or $\beta = -\alpha$. We shall consider these two cases and show that the situation $0 \neq A_{\alpha}^2 \subset A_{\alpha}$ actually does not exist so that we may conclude that for any weight $\alpha, A_{\alpha} \subset K$.

Case $\beta = 0$. Let $x, y \in A_{\alpha}, n \in A_0$ and $xy \in A_{\alpha}$, then using $(A_{\alpha}, A_{\alpha}) = 0$ (from (2.3)) we have

$$(xy, n) = (xy, n) - (x, yn)$$
$$= u(xy \cdot n + x \cdot yn)$$
$$= u(\alpha(n)xy + \alpha(n)xy)$$
$$(2.8) = 2\alpha(n)u(xy).$$

However from (2.3) and $xy \in A_{\alpha}$ we have

(

$$\begin{aligned} \alpha(n)(xy, n) &= (\alpha + 0)(n)(xy, n) \\ &= (\alpha - 0)(n)u(xy \cdot n) \\ 2.9) &= \alpha(n)^2 u(xy) . \end{aligned}$$

From (2.8) we also have $\alpha(n)(xy, n) = 2\alpha(n)^2 u(xy)$ and therefore from

(2.9)
$$\alpha(n)^2 u(xy) = 0$$
 for all $n \in N, x, y \in A_{\alpha}$.

Now there exists $x, y \in A_{\alpha}$ so that $u(xy) \neq 0$, otherwise from (2.8) we would have $(A_{\alpha}^2, A_0) = 0$, contrary to our assumption for case $\beta = 0$. But from the previous equation this implies $\alpha(n) = 0$ for all $n \in N$, contradicting the assumption $\alpha \neq 0$. Thus case $\beta = 0$ does not exist.

Case $\beta = -\alpha$. That is, $\alpha \neq 0, A_{\alpha}^2 \subset A_{\alpha}$ and $(A_{\alpha}^2, A_{\beta}) \neq 0$ with $\beta = -\alpha$; in particular we are assuming $-\alpha$ is a weight. We shall show in this case that the dimension of A_{α} is one and therefore $A_{\alpha}^2 = 0$, a contradiction; thus case $\beta = -\alpha$ does not exist. So assume the dimension of A_{α} is greater than one and let $x, y \in A_{\alpha}, z \in A_{-\alpha}$ and $n \in N$, then using $xy \in A_{\alpha}$ and (2.2) we have

$$J(ny, z, x) + J(zx, n, y) = -\alpha(n)J(y, z, x)$$

ARTHUR A. SAGLE

and $J(nz, x, y) + J(xy, n, z) = \alpha(n)J(z, x, y) .$

Applying (1.2) to these equations we have, since $\alpha \neq 0$,

$$egin{aligned} 0 &= J(y,z,x) = yz\!\cdot\!x + zx\!\cdot\!y + xy\!\cdot\!z \ &= xy\!\cdot\!z - lpha(yz)x - lpha(zx)y \;. \end{aligned}$$

Therefore since $xy \cdot z \in A_0$ and $x, y \in A_{\alpha}$ we have $xy \cdot z = 0$ and $\alpha(yz)x + \alpha(zx)y = 0$. But since we have assumed the dimension of $A_{\alpha} > 1$ and x, y are arbitrary in A_{α} we have $\alpha(zx) = 0$ for any $z \in A_{-\alpha}$; for just choose $0 \neq x$ arbitrary in A_{α} and y to be linearly independent of x, then for any $z \in A, \alpha(yz)x + \alpha(zx)y = 0$ which yields the result.

Next we shall show $\beta(zx) = 0$ for any weight β of N and any $z \in A(-\alpha), x \in A(\alpha)$. If $\beta = q\alpha$ where q is a rational number, the results follow. Next suppose $\beta \neq q\alpha$ and let $M = \sum_k A(\beta + k\alpha), k = 0, \pm 1, \pm 2, \cdots$. Using (2.1) and $\beta \neq q\alpha$ we see that M is $R_x - R_z - R_z - R_z$, and R(xz)-invariant and for any $y = \sum_k y_k \in M$ where $y_k \in A(\beta + k\alpha)$ we have

$$J(y, x, z) = \sum_k J(y_k, x, z) = 0$$
 ,

using (2.2). Thus $y([R_x, R_z] - R(xz)) = 0$; that is, on M we have $R(xz) = [R_x, R_z]$ so that

where trace_M denotes the trace function restricted to M. However calculating the trace_M R(xz) from the matrix of R(xz) on M we see that

$$ext{trace}_{\mathtt{M}} R(xz) = \sum_k N_k (eta + klpha)(xz), \qquad N_k = \dim A(eta + klpha)$$

= $(\sum_k N_k) \beta(xz) + (\sum_k k N_k) \alpha(xz)$
- $(\sum_k N_k) \beta(xz)$, since $\alpha(xz) = 0$.

This equation and (2.10) imply $\beta(xz) = 0$. Thus for any weight β and any $y \in A_{\beta}$ we have $yR(xz) = \beta(xz)y = 0$ which implies R(xz) = 0and therefore xz = 0 i.e. $A(\alpha)A(-\alpha) = 0$. We use this fact to obtain a contradiction to $(A^2(\alpha), A(-\alpha)) \neq 0$. So let $x, y \in A(\alpha), z \in A(-\alpha)$, then using (1.4) we have

$$(xy, z) = (x, yz) + u(xy \cdot z + x \cdot yz)$$

= $u(xy \cdot z)$, using $yz \in A(\alpha)A(-\alpha) = 0$
= 0, using $xy \in A(\alpha)$ and $A(\alpha)A(-\alpha) = 0$.

This contradiction shows case $\beta = -\alpha$ does not exist and so from previous remarks we have for any weight α , $A_{\alpha} \subset K$ which proves

THEOREM 2.11. Let A be a simple el-algebra satisfying the

following conditions

(1) there exists a Cartan subalgebra N of A so that $R(N) = \{R_n : n \in N\}$ acts diagonally in A

(2) if $A = \sum_{\alpha} A(N, \alpha)$ is the weight space decomposition of A relative to R(N) where N is the subalgebra of (1), then $A(N, \alpha)^2 = 0$ or $A(N, \alpha)^2 \subset A(N, \pi(\alpha))$ for some weight $\pi(\alpha)$.

Then A is a Lie or 7-dimensional Malcev algebra.

3. On derivations. Again let A be a simple el-algebra. To use the derivation algebra D(A) in the analysis of A we first locate the derivations of A as follows.

THEOREM 3.1. Every derivation of A is inner, that is, D(A) is contained in the Lie transformation algebra L(A) which is the smallest Lie algebra containing $R(A) = \{R_x : x \in A\}$ [4].

Proof. Since A is simple it contains no nontrivial L(A)-invariant subspaces and so L(A) is irreducible in A. This implies $L(A) = C \bigoplus L(A)'$ where C is the center of L(A) and L(A)' = [L(A), L(A)] is semisimple [1; Th. 2.11]. Furthermore C = 0 or C = FI; for if S is a linear transformation in C, then since F is algebraically closed S has a characteristic root λ in F. Using the fact [R(A), S] = 0 we see $\{x \in A: xS = \lambda x\}$ is a nonzero ideal of A and therefore equals A. From this the results concerning C follow.

Now let $D \in D(A)$, then we have $[R_x, D] = R(xD)$ for all $x \in A$ and this together with the Jacobi identity imply $[L(A)', D] \subset L(A)'$. Thus the mapping

$$L(A)' \to L(A)' : X' \to [X', D]$$
 all $X' \in L[A]'$

is a derivation of L(A)'. Since L(A)' is semi-simple every derivation of L(A)' is inner and therefore there exists $D' \in L(A)'$ so that [X', D] =[X', D'] all $X' \in L(A)'$ [1; Th. 3.6]. But for any $X = aI + X' \in L(A)$ where $a \in F$ (if $C \neq 0$) we have [X, D] = [X, D']. Thus if T = D - D'we have in particular that [R(A), T] = 0. Again since F is algebraically closed T has a characteristic root μ and we see that $\{x \in A : xT =$ $\mu x\}$ is a nonzero ideal in A. This implies either T = 0 in which case D = D' or $T = \mu I$ in which case $D = \mu I + D'$. Now in this latter case we note $D' \in L(A)'$ so that trace D' = 0 and since (x, y) = trace $R_x R_y$ is nondegenerate we have from $[R_x, D] = R(xD)$ that (xD, y) +(x, yD) = 0 so that D is skewsymmetric and also trace D = 0. From these facts on trace and $D = \mu I + D'$ we conclude $D = D' \in L(A)$ in both cases.

Even though we know all derivations of a simple el-algebra are inner, their exact form has not yet been determined. However the

ARTHUR A. SAGLE

following is not too difficult to prove: If A is a simple el-algebra, then A is a Lie algebra if and only if there exists an element $x \in A$ so that R_x is a nonzero derivation of A. Next we have

THEOREM 3.2. If A is a simple el-algebra, then A is not a Lie or 7-dimensional Malcev algebra if and only if there exists a nonzero element $a \in A$ such that for every derivation D of A we have aD = 0.

Proof. If A is a Lie or 7-dimensional Malcev algebra then the conclusion is well known [2]. Conversely, if A is not Lie or 7-dimensional Malcev, then since $(x, y) = \text{trace } R_x R_y$ is nondegenerate we use Lemma 1.1 to obtain a nonzero element $a \in A$ so that for all $x \in A$, u(x) = (x, a). But for any derivation D we have $R(xD) = [R_x, D]$ and (xD, y) + (x, yD) = 0 so that in particular we have for any $x \in A$, (aD, x) = -(a, xD) = -u(xD) = -trace R(xD) = 0. Thus since (x, y) is nondegenerate aD = 0.

REFERENCES

1. N. Jacobson, Lie algebras, Interscience, 1962.

- 2. A. Sagle, Malcev algebras, Trans. Amer. Math. Soc. 101 (1961), 426-458.
- 3. _____, On simple extended Lie algebras over fields of characteristic zero, to appear.
- 4. R.D. Schafer, Inner derivations of nonassociative algebras, Bull. Amer. Math. Soc. 55 (1949), 769-776.

UNIVERSITY OF CALIFORNIA, LOS ANGELES