REMARKS ON SIMPLE EXTENDED LIE ALGEBRAS

Abstract

Arthur A. Sagle We continue the discussion of finite dimensional simple extended Lie algebras over an algebraically closed field F of characteristic zero with nondegenerate form $(x, y)=$ trace $R_{x} R_{y}$ where R_{x} (or $R(x)$) denotes the mapping $A \rightarrow A: a \rightarrow a x$; for brevity we call such an algebra a simple el-algebra. The main result of this paper is that those simple el-algebras which are not Lie or Malcev algebras probably cannot be analyzed by the usual desirable Lie-type methods.

First if we assume the simple el-algebra [3] A has a diagonalizable Cartan subalgebra [3] such that for any weight space $A(N, \alpha)$ of N in A we have $A(N, \alpha)^{2}=0$ or $A(N, \alpha)^{2} \subset A(N, \beta)$ for some weight β (which is a function of α), then A is a Lie or Malcev algebra. Thus if one attempts to remedy the situation that $A(N, \alpha)^{2}$ is difficult to locate by the rather desirable above assumptions and tries to construct a multiplication table for a new simple el-algebra, then actually nothing new is obtained. Next we show that if the derivation algebra $D(A)$ is used to analyze a simple el-algebra, using [1, page 54] or possibly Lie module theory, then again a difficult situation is encountered: If A is simple el-algebra, then A is not a simple Lie or Malcev algebra if and only if there exists a nonzero element $a \in A$ such that for every derivation $D \in D(A)$ we have $a D=0$. The element $a \in A$ reflects the structure of A and so it appears that the structure of A is not accurately reflected in its derivation albgebra.

The proofs of the above results use the following lemma.
Lemma 1.1. If A is a simple el-algebra, then A is a Lie or 7-dimensional Malcev algebra if and only if $u(x)=$ trace R_{x} is the zero linear functional.

Proof. A linearization of the defining identities of an extended Lie algebra

$$
x y=-y x \quad \text { and } \quad J(x y, x, y)=0
$$

where $J(x, y, z)=x y \cdot z+y z \cdot x+z x \cdot y$ yields

$$
\begin{equation*}
J(w x, y, z)+J(y z, w, x)=J(w y, z, x)+J(z x, w, y) \tag{1.2}
\end{equation*}
$$

[^0]\[

$$
\begin{align*}
w J(x, y, z)-x J(y, z, w) & +y J(z, w, x)-z J(w, x, y) \tag{1.3}\\
& =3[J(w x, y, z)+J(y z, w, x)]
\end{align*}
$$
\]

for all $w, x, y, z \in A$. From (1.2) we obtain by operating on w that

$$
\begin{align*}
(x z, y)-(x, z y) & =\operatorname{trace} R(x z) R(y)-\operatorname{trace} R(x) R(z y) \\
& =\operatorname{trace} R(x z \cdot y+x \cdot z y) \tag{1.4}\\
& =u(x z \cdot y+x \cdot z y)
\end{align*}
$$

Now if $u(x)=0$ for all $x \in A$, then from (1.4) we see (x, y) is a nondegenerate invariant form and from [3], A is a simple Lie or 7dimensional Malcev algebra. Conversely, from the identities for these algebras [2] we see that $u(x)=0$ for all $x \in A$.

We continue the use of the notation in [3] for sets and algebraic operations.
2. On the construction. We shall first investigate the assumption that a simple el-algebra A has a diagonalizable Cartan subalgebra N [3]. That is, N is a nilpotent Lie subalgebra of A such that for all $m, n \in N$,

$$
R_{m n}=\left[R_{m}, R_{n}\right] \equiv R_{m} R_{n}-R_{n} R_{m}
$$

furthermore, decomposing A into its weight spaces relative to $R(N)=$ $\left\{R_{n}: n \in N\right\}$ we have $[1 ; 3]$

$$
A=A(N, 0) \oplus \sum_{\alpha \neq 0} A(N, \alpha)
$$

where, since $R(N)$ is diagonalizable,

$$
A(N, \lambda)=\left\{x \in A: x R_{n}=\lambda(n) x\right\}
$$

is the weight space of N corresponding to the weight λ and, since N is Cartan [3],

$$
N=A(N, 0)
$$

Since we are using a fixed Cartan subalgebra we use the notation A_{σ} or $A(\sigma)$ for $A(N, \sigma)$ and the convention $A(\sigma)=0$ if σ is not a weight of N in A. From [3] we have the identities

$$
\begin{align*}
A_{\alpha} A_{\beta} \subset A_{\alpha+\beta} & \text { if } \alpha \neq \beta \tag{2.1}\\
J\left(A_{\alpha}, A_{\beta}, A_{\gamma}\right)=0 & \text { if } \alpha \neq \beta \neq \gamma \neq \alpha \tag{2.2}\\
\text { and } J\left(A_{\alpha}, A_{\beta}, N\right)=0 & \text { if } \alpha \neq \beta
\end{align*}
$$

Let K denote the kernel of the linear functional $u: x \rightarrow \operatorname{trace} R_{x}$, then we have

$$
\begin{align*}
& (\alpha+\beta)(n)(x, y)=(\alpha-\beta)(n) u(x y) \tag{2.3}\\
& \text { if } n \in N, x \in A_{\alpha}, y \in A_{\beta}
\end{align*}
$$

(2.4) $\quad\left(A_{\alpha}, A_{\beta}\right)=0$ if $\alpha \neq 0$ and $\beta \neq 0$ and $\alpha \neq-\beta$

$$
\begin{equation*}
A_{\alpha} A_{\beta} \subset K \quad \text { if } \alpha \neq 0 \text { and } \beta \neq 0 \text { and } \alpha \neq \beta \tag{2.5}
\end{equation*}
$$

For (2.3), let $n \in N$, then $x n=\alpha(n) x, y n=\beta(n) y$ and using (1.4) we have

$$
\begin{aligned}
(\alpha(n)+\beta(n))(x, y) & =(x n, y)-(x, n y) \\
& =u(x n \cdot y+x \cdot n y)=(\alpha(n)-\beta(n)) u(x y) .
\end{aligned}
$$

For (2.4) and (2.5), let $x \in A_{\alpha}, y \in A_{\beta}$ and first assume $\alpha \neq 0$ and $\beta \neq 0$, $\pm \alpha$. If $x y=0$ for all x, y as above, then the results follow from (2.3). So assume $0 \neq x y \in A(\alpha) A(\beta) \subset A(\alpha+\beta)$, then $\alpha+\beta$ is a weight of N in A. Let $z \in A(\alpha+\beta)$, then since $\alpha \neq \alpha+\beta \neq \beta \neq \alpha$ we use (2.2) to obtain $J(x, y, z) \in J(A(\alpha), A(\beta), A(\alpha+\beta))=0$. Therefore

$$
\begin{aligned}
z R(x y)=z x \cdot y & +y z \cdot x \in A(2 \alpha+\beta) A(\beta) \\
& +A(\alpha+2 \beta) A(\alpha) \subset A(2(\alpha+\beta))
\end{aligned}
$$

Using this result and (2.1) we see that for any weight γ,

$$
A(\gamma) R(x y) \subset A(\gamma+(\alpha+\beta)) \neq A(\gamma)
$$

and therefore the matrix for $R(x y)$ has zeros on its diagonal so that $u(x y)=$ trace $R(x y)=0$. Next we relax the assumptions on β, use the above result and (2.3) to see that (2.4) and (2.5) now follow.

Now we shall start using the hypothesis that if α is any weight of N in A, then $A_{\alpha}^{2}=0$ or there exists a weight $\pi(\alpha)$ such that $A_{\alpha}^{2} \subset A_{\pi(\alpha)}$. Thus we are assuming that if $A_{\alpha}^{2} \neq 0$, then there exists a weight $\pi(\alpha)$ such that for each $x, y \in A_{\alpha}, x y \in A_{\pi(\alpha)}$; that is, π is a function of the weight and not a function of the particular elements used in forming the products. Using this assumption we shall show that for any weight $\alpha, A_{\alpha} \subset K(=$ kernel of $u)$ and therefore by Lemma 1.1 conclude that A is Lie or Malcev.

First for $\alpha=0$ we have $A_{0}^{2}=A_{0} N=0$. So assume $\alpha \neq 0$. If $x y=0$ for all $x, y \in A_{\alpha}$, then using (2.1) we see that for any $x \in A_{\alpha}$, $u(x)=\operatorname{trace} R_{x}=0$ and therefore $A_{\infty} \subset K$. So next we consider $0 \neq$ $A_{\alpha}^{2} \subset A_{\pi(\alpha)}$ where $\alpha \neq 0$.

Lemma 2.6. If $\alpha \neq 0$ and $0 \neq A_{\alpha}^{2} \subset A_{\pi(\alpha)}$, then $\pi(\alpha) \neq 0$.
Corollary 2.7. $\quad N=\sum_{\alpha \neq 0} A(\alpha) A(-\alpha) \subset K$.

Suppose Lemma 2.6 has been proven, then to prove the corollary we first note $\sum_{\alpha \neq 0} A(\alpha) A(-\alpha) \subset A(0)=N$. Next set $B=\sum_{\alpha \neq 0} A(\alpha)(-\alpha) \oplus$ $\sum_{\alpha \neq 0} A(\alpha)$; we shall show B is an ideal of A. For any weight $\beta \neq 0$,

$$
\begin{aligned}
& B A(\beta) \subset\left(\sum_{a \neq 0} A(\alpha) A(-\alpha)\right) A(\beta)+A(\beta)^{2} \\
&+A(\beta) A(-\beta)+\sum_{\alpha \neq 0, \pm \beta} A(\alpha+\beta)
\end{aligned}
$$

Then using $A(\beta)^{2}=0$ or $A(\beta)^{2} \subset A(\pi(\beta))$, where from Lemma 2.6 $\pi(\beta) \neq 0$, we see that $B A(\beta) \subset B$. For $\beta=0$ we note that

$$
\left(\sum_{\alpha \neq 0} A(\alpha) A(-\alpha)\right) A(0) \subset A(0) N=0
$$

and use (2.1) to obtain $B A(0) \subset B$. Thus $B A \subset B$ so that B is an ideal of A and since A is simple, $B=0$ or $B=A$. If $B=0$, then $A_{\alpha}=0$ for each $\alpha \neq 0$ and $A=A_{0}=N$ so that $A^{2}=A_{0} N=0$, a contradiction. Thus $B=A$ and from this $N=\sum_{\alpha \neq 0} A(\alpha) A(-\alpha) \subset K$, using: (2.5).

For Lemma 2.6 assume $\pi(\alpha)=0$ and let $x, y \in A_{\alpha}$, then $x y \in A_{\alpha}^{2} \subset$ $A_{0}=N$. We shall show for any weight β that $\beta(x y)=0$, then for any $z \in A_{\beta}$ we have $z(x y)=z R(x y)=\beta(x y) z=0$. Therefore $(x y) F$ is an ideal of A which must be zero and so $A_{\alpha}^{2}=0$, a contradiction. For $x, y \in A_{\alpha}$ we have from the defining identity

$$
0=J(x y, x, y)=(x y \cdot x) y+(y \cdot x y) x
$$

which implies, since $x y \in N, 2 \alpha(x y) x y=0$. From this and the fact that α is a linear functional on N we have $2 \alpha(x y)^{2}=0$ and so $\alpha(x y)=0$. Thus for $\beta=0, \alpha$ we have $\beta(x y)=0$ so we now assume $\beta \neq 0, \alpha$ and let $z \in A_{\beta}, n \in N$, then using (2.1) and (2.2) we obtain

$$
\begin{aligned}
J(z x, y, n)+J(y n, z, x) & =\alpha(n) J(y, z, x) \\
& =-\alpha(n) \beta(x y) z+\alpha(n)(y z \cdot x+z x \cdot y)
\end{aligned}
$$

and

$$
\begin{aligned}
J(z n, x, y)+J(x y, z, n) & =\beta(n) J(z, x, y) \\
& =-\beta(n) \beta(x y) z+\beta(n)(y z \cdot x+z x \cdot y)
\end{aligned}
$$

We combine these equations by using (1.2) to obtain

$$
\alpha(n)(-\beta(x y) z+z x \cdot y+y z \cdot x)=\beta(n)(-\beta(x y) z+z x \cdot y+y z \cdot x) .
$$

From this equality we obtain, since $\beta(n) \neq \alpha(n)$ for some n, that

$$
\beta(x y) z=z x \cdot y+y z \cdot x \in A(2 \alpha+\beta) .
$$

But since $\beta(x y) z \in A(\beta)$ we have

$$
\beta(x y) z \in A(\beta) \cap A(2 \alpha+\beta)=0
$$

Thus if $z \neq 0, \beta(x y)=0$ and this proves the lemma.
Thus far we have considered for $\alpha \neq 0$: (1) $A_{\alpha}^{2}=0$ which implies $A_{\alpha} \subset K$; (2) $A_{\alpha}^{2} \neq 0$ which implies $\pi(\alpha) \neq 0$ and consequently $N=A_{0}=$ $\sum_{\alpha \neq 0} A(\alpha) A(-\alpha) \subset K$. So we next investigate (2) more closely and note that it suffices to consider $0 \neq A_{\alpha}^{2} \subset A_{\pi(\alpha)}$ where $\pi(\alpha)=\alpha$. For if $\pi(\alpha) \neq \alpha$, then using (2.1) we see that the matrix of R_{x} for any $x \in A_{\alpha}$ has zeros on its diagonal and therefore $u(x)=0$ so that $A_{\alpha} \subset K$ which is what we eventually want to show for any weight α.

Thus we are considering $0 \neq A_{\alpha}^{2} \subset A_{\alpha}$. Since (x, y) is nondegenerate and $A_{\infty}^{2} \neq 0$, there exists a weight β so that

$$
\left(A_{\alpha}^{2}, A_{\beta}\right) \neq 0
$$

But since $A_{\alpha}^{2} \subset A_{\alpha}$ this means $\left(A_{\alpha}, A_{\beta}\right) \neq 0$ and from (2.4) and the assumption that $\alpha \neq 0$ we conclude $\beta=0$ or $\beta=-\alpha$. We shall consider these two cases and show that the situation $0 \neq A_{\alpha}^{2} \subset A_{\alpha}$ actually does not exist so that we may conclude that for any weight $\alpha, A_{\alpha} \subset K$.

Case $\beta=0$. Let $x, y \in A_{\alpha}, n \in A_{0}$ and $x y \in A_{\alpha}$, then using $\left(A_{\alpha}, A_{\alpha}\right)=$ 0 (from (2.3)) we have

$$
\begin{align*}
(x y, n) & =(x y, n)-(x, y n) \\
& =u(x y \cdot n+x \cdot y n) \\
& =u(\alpha(n) x y+\alpha(n) x y) \\
& =2 \alpha(n) u(x y) \tag{2.8}
\end{align*}
$$

However from (2.3) and $x y \in A_{\alpha}$ we have

$$
\begin{align*}
\alpha(n)(x y, n) & =(\alpha+0)(n)(x y, n) \\
& =(\alpha-0)(n) u(x y \cdot n) \\
& =\alpha(n)^{2} u(x y) \tag{2.9}
\end{align*}
$$

From (2.8) we also have $\alpha(n)(x y, n)=2 \alpha(n)^{2} u(x y)$ and therefore from

$$
\begin{equation*}
\alpha(n)^{2} u(x y)=0 \quad \text { for all } n \in N, x, y \in A_{\alpha} \tag{2.9}
\end{equation*}
$$

Now there exists $x, y \in A_{\infty}$ so that $u(x y) \neq 0$, otherwise from (2.8) we would have $\left(A_{a}^{2}, A_{0}\right)=0$, contrary to our assumption for case $\beta=0$. But from the previous equation this implies $\alpha(n)=0$ for all $n \in N$, contradicting the assumption $\alpha \neq 0$. Thus case $\beta=0$ does not exist.

Case $\beta=-\alpha$. That is, $\alpha \neq 0, A_{\alpha}^{2} \subset A_{\alpha}$ and $\left(A_{\alpha}^{2}, A_{\beta}\right) \neq 0$ with $\beta=-\alpha$; in particular we are assuming $-\alpha$ is a weight. We shall show in this case that the dimension of A_{α} is one and therefore $A_{\alpha}^{2}=0$, a contradiction; thus case $\beta=-\alpha$ does not exist. So assume the dimension of A_{α} is greater than one and let $x, y \in A_{\alpha}, z \in A_{-\alpha}$ and $n \in N$, then using $x y \in A_{\alpha}$ and (2.2) we have

$$
J(n y, z, x)+J(z x, n, y)=-\alpha(n) J(y, z, x)
$$

and

$$
J(n z, x, y)+J(x y, n, z)=\alpha(n) J(z, x, y)
$$

Applying (1.2) to these equations we have, since $\alpha \neq 0$,

$$
\begin{aligned}
0=J(y, z, x) & =y z \cdot x+z x \cdot y+x y \cdot z \\
& =x y \cdot z-\alpha(y z) x-\alpha(z x) y
\end{aligned}
$$

Therefore since $x y \cdot z \in A_{0}$ and $x, y \in A_{\alpha}$ we have $x y \cdot z=0$ and $\alpha(y z) x+$ $\alpha(z x) y=0$. But since we have assumed the dimension of $A_{\alpha}>1$ and x, y are arbitrary in A_{α} we have $\alpha(z x)=0$ for any $z \in A_{-\alpha}$; for just choose $0 \neq x$ arbitrary in A_{α} and y to be linearly independent of x, then for any $z \in A, \alpha(y z) x+\alpha(z x) y=0$ which yields the result.

Next we shall show $\beta(z x)=0$ for any weight β of N and any $z \in A(-\alpha), x \in A(\alpha)$. If $\beta=q \alpha$ where q is a rational number, the results follow. Next suppose $\beta \neq q \alpha$ and let $M=\sum_{k} A(\beta+k \alpha), k=$ $0, \pm 1, \pm 2, \cdots$. Using (2.1) and $\beta \neq q \alpha$ we see that M is R_{x}, , $R_{z}-$, and $R(x z)$-invariant and for any $y=\sum_{k} y_{k} \in M$ where $y_{k} \in A(\beta+k \alpha)$ we have

$$
J(y, x, z)=\sum_{k} J\left(y_{k}, x, z\right)=0
$$

using (2.2). Thus $y\left(\left[R_{x}, R_{z}\right]-R(x z)\right)=0$; that is, on M we have $R(x z)=\left[R_{x}, R_{z}\right]$ so that

$$
\begin{equation*}
\operatorname{trace}_{\mu} R(x z)=0 \tag{2.10}
\end{equation*}
$$

where trace ${ }_{M}$ denotes the trace function restricted to M. However calculating the $\operatorname{trace}_{\mu} R(x z)$ from the matrix of $R(x z)$ on M we see that

$$
\begin{aligned}
\operatorname{trace}_{M} R(x z) & =\sum_{k} N_{k}(\beta+k \alpha)(x z), \quad N_{k}=\operatorname{dim} A(\beta+k \alpha) \\
& =\left(\sum_{k} N_{k}\right) \beta(x z)+\left(\sum_{h} k N_{k}\right) \alpha(x z) \\
& -\left(\sum_{k} N_{k}\right) \beta(x z), \text { since } \alpha(x z)=0 .
\end{aligned}
$$

This equation and (2.10) imply $\beta(x z)=0$. Thus for any weight β and any $y \in A_{\beta}$ we have $y R(x z)=\beta(x z) y=0$ which implies $R(x z)=0$ and therefore $x z=0$ i.e. $A(\alpha) A(-\alpha)=0$. We use this fact to obtain a contradiction to $\left(A^{2}(\alpha), A(-\alpha)\right) \neq 0$. So let $x, y \in A(\alpha), z \in A(-\alpha)$, then using (1.4) we have

$$
\begin{aligned}
(x y, z) & =(x, y z)+u(x y \cdot z+x \cdot y z) \\
& =u(x y \cdot z), \text { using } y z \in A(\alpha) A(-\alpha)=0 \\
& =0, \text { using } x y \in A(\alpha) \text { and } A(\alpha) A(-\alpha)=0 .
\end{aligned}
$$

This contradiction shows case $\beta=-\alpha$ does not exist and so from previous remarks we have for any weight $\alpha, A_{\alpha} \subset K$ which proves

Theorem 2.11. Let A be a simple el-algebra satisfying the

following conditions

(1) there exists a Cartan subalgebra N of A so that $R(N)=$ $\left\{R_{n}: n \in N\right\}$ acts diagonally in A
(2) if $A=\sum_{\alpha} A(N, \alpha)$ is the weight space decomposition of A relative to $R(N)$ where N is the subalgebra of (1), then $A(N, \alpha)^{2}=0$ or $A(N, \alpha)^{2} \subset A(N, \pi(\alpha))$ for some weight $\pi(\alpha)$.

Then A is a Lie or 7-dimensional Malcev algebra.
3. On derivations. Again let A be a simple el-algebra. To use the derivation algebra $D(A)$ in the analysis of A we first locate the derivations of A as follows.

Theorem 3.1. Every derivation of A is inner, that is, $D(A)$ is contained in the Lie trasformation algebra $L(A)$ which is the smallest Lie algebra containing $R(A)=\left\{R_{x}: x \in A\right\}$ [4].

Proof. Since A is simple it contains no nontrivial $L(A)$-invariant subspaces and so $L(A)$ is irreducible in A. This implies $L(A)=C \oplus$ $L(A)^{\prime}$ where C is the center of $L(A)$ and $L(A)^{\prime}=[L(A), L(A)]$ is semisimple [1; Th. 2.11]. Furthermore $C=0$ or $C=F I$; for if S is a linear transformation in C, then since F is algebraically closed S has a characteristic root λ in F. Using the fact $[R(A), S]=0$ we see $\{x \in A: x S=\lambda x\}$ is a nonzero ideal of A and therefore equals A. From this the results concerning C follow.

Now let $D \in D(A)$, then we have $\left[R_{x}, D\right]=R(x D)$ for all $x \in A$ and this together with the Jacobi identity imply $\left[L(A)^{\prime}, D\right] \subset L(A)^{\prime}$. Thus the mapping

$$
L(A)^{\prime} \rightarrow L(A)^{\prime}: X^{\prime} \rightarrow\left[X^{\prime}, D\right] \quad \text { all } X^{\prime} \in L[A]^{\prime}
$$

is a derivation of $L(A)^{\prime}$. Since $L(A)^{\prime}$ is semi-simple every derivation of $L(A)^{\prime}$ is inner and therefore there exists $D^{\prime} \in L(A)^{\prime}$ so that $\left[X^{\prime}, D\right]=$ [$\left.X^{\prime}, D^{\prime}\right]$ all $X^{\prime} \in L(A)^{\prime}$ [1; Th. 3.6]. But for any $X=a I+X^{\prime} \in L(A)$ where $a \in F$ (if $C \neq 0$) we have $[X, D]=\left[X, D^{\prime}\right]$. Thus if $T=D-D^{\prime}$ we have in particular that $[R(A), T]=0$. Again since F is algebraically closed T has a characteristic root μ and we see that $\{x \in A: x T=$ $\mu x\}$ is a nonzero ideal in A. This implies either $T=0$ in which case $D=D^{\prime}$ or $T=\mu I$ in which case $D=\mu I+D^{\prime}$. Now in this latter case we note $D^{\prime} \in L(A)^{\prime}$ so that trace $D^{\prime}=0$ and since $(x, y)=$ trace $R_{x} R_{y}$ is nondegenerate we have from $\left[R_{x}, D\right]=R(x D)$ that $(x D, y)+$ $(x, y D)=0$ so that D is skewsymmetric and also trace $D=0$. From these facts on trace and $D=\mu I+D^{\prime}$ we conclude $D=D^{\prime} \in L(A)$ in both cases.

Even though we know all derivations of a simple el-algebra are inner, their exact form has not yet been determined. However the
following is not too difficult to prove: If A is a simple el-algebra, then A is a Lie algebra if and only if there exists an element $x \in A$ so that R_{x} is a nonzero derivation of A. Next we have

Theorem 3.2. If A is a simple el-algebra, then A is not a Lie or 7-dimensional Malcev algebra if and only if there exists a nonzero element $a \in A$ such that for every derivation D of A we have $a D=0$.

Proof. If A is a Lie or 7-dimensional Malcev algebra then the conclusion is well known [2]. Conversely, if A is not Lie or 7-dimensional Malcev, then since $(x, y)=$ trace $R_{x} R_{y}$ is nondegenerate we use Lemma 1.1 to obtain a nonzero element $a \in A$ so that for all $x \in A$, $u(x)=(x, a)$. But for any derivation D we have $R(x D)=\left[R_{x}, D\right]$ and $(x D, y)+(x, y D)=0$ so that in particular we have for any $x \in A$, $(a D, x)=-(a, x D)=-u(x D)=-\operatorname{trace} R(x D)=0$. Thus since (x, y) is nondegenerate $a D=0$.

References

1. N. Jacobson, Lie algebras, Interscience, 1962.
2. A. Sagle, Malcev algebras, Trans. Amer. Math. Soc. 101 (1961), 426-458.
3. \qquad , On simple extended Lie algebras over fields of characteristic zero, to appear.
4. R.D. Schafer, Inner derivations of nonassociative algebras, Bull. Amer. Math. Soc. 55 (1949), 769-776.

University of California, Los Angeles

[^0]: Received November 7, 1963. This research was supported in part by NSF Grant GP-1453.

