THE BOREL SPACE OF VON NEUMANN ALGEBRAS ON A SEPARABLE HILBERT SPACE

Edward G. Effros

Let (S, \mathscr{S}) be a Borel space (see G.W. Mackey, Borel structures in groups and their duals, Trans. Amer. Math. Soc. 85, (1957) 134-165), \mathscr{H} a separable Hilbert space, \mathfrak{L} the bounded linear operators on \mathscr{H} with the Borel structure generated by the weak topology, and \mathscr{S} the collection of von Neumann algebras on \mathscr{H} . A field of \mathscr{H} von Neumann algebras on S is a map $s \to \mathfrak{N}(s)$ of S into \mathscr{S} . We prove that there is a unique standard Borel structures on \mathscr{S} with the property that $s \to \mathfrak{N}(s)$ is Borel if and only if there exist countably many Borel functions $s \to A_i(s)$ of S into \mathfrak{L} such that for each s, the operators $A_i(s)$ generate $\mathfrak{N}(s)$. This is a consequence of the more general result that when it is provided with a suitable Borel structure, the space of weakly* closed subspaces of the dual of a separable Banach space has sufficiently many Borel choice functions.

We show that the commutant, join, and intersection operations on \mathscr{A} are Borel. It follows that the Borel space of factors is standard. The relevance of \mathscr{A} to the theory of group representations is also investigated.

Essentially following von Neumann [9], we say that a field $s \to \mathfrak{A}(s)$ is *Borel* if there exist countably many Borel functions $s \to A_i(s)$ of S into \mathfrak{A} such that for each s the operators $A_i(s)$ generate $\mathfrak{A}(s)$. This definition may be regarded as somewhat artificial. Rather than state which maps of S into \mathscr{A} are Borel, one would conjecture that there is a standard Borel structure on \mathscr{A} for which this characterization of the Borel maps of S into \mathscr{A} is then valid. In § 2 and § 3 we shall show that this is the case. The demonstration depends on two results: a theorem in [4] showing that a certain Borel structure on the closed subsets of a polonais space is standard, and Theorem 2 of this paper. In the latter we prove the existence of Borel choice functions for the weakly* closed subspaces of the dual of a separable Banach space.

The Borel space \mathscr{A} is of importance in representation theory. If G is a second countable locally compact group, and $G^{\circ}(\mathscr{H})$ are the weakly continuous unitary representions of G on \mathscr{H} with the weak Borel structure (see [8]), the map $L \to L(G)'$ (prime indicates commutant) of $G^{\circ}(\mathscr{H})$ into \mathscr{A} is Borel. By proving in § 3 that the factors \mathscr{F} are

Received September 21, 1964. This work has been partially supported by the National Science Foundation under grant NSF GP 1904.

a Borel subset of \mathscr{A} , we obtain new proof in § 4 of Dixmier's result that the factor representations $G^{r}(\mathscr{H})$ form a Borel subset of $G^{\circ}(\mathscr{H})$. We are also able to show that the quasi-equivalence relation is a Borel subset of $G^{\circ}(\mathscr{H}) \times G^{\circ}(\mathscr{H})$.

It is interesting to speculate about the isomorphism relation on \mathscr{F} . Conceivably, one might find an argument similar to those in [3] to prove that the quotient space was not smooth, and thus in particular, that there are uncountably many essentially distinct factors on \mathscr{H} .

We remark that an analogous problem of a "nonintrinsic" definition of structure, solved for \mathscr{A} below, exists in Spanier's definition of a quasi-topology [12]. As is shown in [12], one must look for structures more general than topologies.

We are indebted to E. Alfsen and E. Størmer, who enabled us to simplify the proofs of Theorem 2 (by the convexity argument for the continuity of L) and Theorem 5, respectively.

2. Separable Banach spaces. Let \mathfrak{X} be a separable real or complex Banach space, \mathfrak{X}^* the dual of \mathfrak{X} , $\mathscr{N}(\mathfrak{X})$ the norm closed subspaces of \mathfrak{X} , and $\mathscr{W}(\mathfrak{X}^*)$ the weakly* closed subspaces of \mathfrak{X}^* . We wish to define a Borel structure on $\mathscr{W}(\mathfrak{X}^*)$. As $\mathfrak{Y} \to \mathfrak{Y}^{\perp}$ (the annihilator of \mathfrak{Y}) is a one-to-one correspondence between $\mathscr{N}(\mathfrak{X})$ and $\mathscr{W}(\mathfrak{X}^*)$, it suffices to find a Borel structure on $\mathscr{N}(\mathfrak{X})$ and then to transfer it to $\mathscr{W}(\mathfrak{X}^*)$.

 $\mathscr{N}(\mathfrak{X})$ is a subset of $\mathscr{C}_{0}(\mathfrak{X})$, the collection of nonempty closed subsets of the polonais space \mathfrak{X} . In [4] we showed that convergence of subsets in $\mathscr{C}_{0}(\mathfrak{X})$ defines a standard Borel structure on $\mathscr{C}_{0}(\mathfrak{X})$. Recalling the procedure, if F_{α} is a net in $\mathscr{C}_{0}(\mathfrak{X})$ let $\lim F_{\alpha}$ be those x in \mathfrak{X} for which there is a net $x_{\alpha} \in F_{\alpha}$ with $x_{\alpha} \to x$. Let $\lim F_{\alpha}$ be those x in \mathfrak{X} for which there is a subnet $F_{\alpha_{\beta}}$ and $x_{\alpha_{\beta}} \in F_{\alpha_{\beta}}$ with $x_{\alpha_{\beta}} \to x$. If $F \in \mathscr{C}_{0}(\mathfrak{X})$, we say that F_{α} converges to the limit $F, F_{\alpha} \to F$, if $F = \lim F_{\alpha} = \lim F_{\alpha}$. If $\Sigma \subseteq \mathscr{C}_{0}(\mathfrak{X})$, we let $\overline{\Sigma}$ be the limits of nets in Σ , and we say that Σ is convergence closed if $\overline{\Sigma} = \Sigma$. The convergence closed sets form a topology, and generate a standard Borel structure. It is easily verified that $\mathscr{N}(\mathfrak{X})$ is convergence closed in $\mathscr{C}_{0}(\mathfrak{X})$, hence $\mathscr{N}(\mathfrak{X})$ and $\mathscr{W}(\mathfrak{X}^{*})$ have standard Borel structures.

If d is any metric on \mathfrak{X} compatible with the topology of $\mathfrak{X}, x \in \mathfrak{X}$, and $F \in \mathscr{C}_0(\mathfrak{X})$, define $d(x, F) = \text{glb} \{ d(x, y) : y \in F \}$. For any positive c,

$$(1) \qquad \{F \in \mathscr{C}_0(\mathfrak{X}): d(x, F) \ge c\}$$

is convergence closed. It follows that $F \to d(x, F)$ is a Borel function on $\mathscr{C}_0(\mathfrak{X})$. As in the proof of the first theorem in [4], sets of the form (1) separate points in $\mathscr{C}_0(\mathfrak{X})$, and thus as $\mathscr{C}_0(\mathfrak{X})$ is standard, generate the Borel structure. It follows that the Borel structure on $\mathscr{C}_0(\mathfrak{X})$ is the weakest for which the functions $F \to d(x, F)$ are Borel (actually it would suffice to restrict to the x in a countable dense subset).

Let d be the norm metric on \mathfrak{X} . Then for $\mathfrak{Y} \in \mathscr{W}(\mathfrak{X}^*)$, $d(x, \mathfrak{Y}^{\perp}) = ||x + \mathfrak{Y}^{\perp}||$, the latter being the quotient norm in $\mathfrak{X}/\mathfrak{Y}^{\perp}$. As \mathfrak{Y} is weakly* closed, $\mathfrak{Y}^{\perp} = \mathfrak{Y}$, and we have a natural isometry $(\mathfrak{X}/\mathfrak{Y}^{\perp})^* \cong \mathfrak{Y}$. The corresponding isometry of $\mathfrak{X}/\mathfrak{Y}^{\perp}$ into \mathfrak{Y}^* is defined by $x + \mathfrak{Y}^{\perp} \longrightarrow x | \mathfrak{Y}$, where $x | \mathfrak{Y}$ in the restriction of x, regarded as an element of \mathfrak{X}^{**} , to \mathfrak{Y} . We conclude:

THEOREM 1. Let \mathfrak{X} be a separable Banach space, $\mathscr{W}(\mathfrak{X}^*)$ the weakly* closed subspaces of \mathfrak{X}^* . The Borel structure on $\mathscr{W}(\mathfrak{X}^*)$ is standard, and may be described as the smallest structure for which the functions

$$\mathfrak{Y} o || \, x + \mathfrak{Y}^{\perp} \, || = || \, x \, | \, \mathfrak{Y} \, ||$$
 , $x \in \mathfrak{X}$

are Borel.

If \mathfrak{X} is a real or complex separable Banach space, the *weak*^{*} *Borel* structure on \mathfrak{X}^* is that generated by the weak^{*} topology. In other words, it is the smallest structure for which the functions $f \to f(x)$, $x \in \mathfrak{X}$ are Borel. Although we shall not use this fact, we remark that this structure is standard (see the proof of [8, Th. 8.1]).

Theorem 2 may be regarded as an elaborate form of the Hahn-Banach Theorem. Recalling the usual argument, suppose that \mathfrak{X} is a real Banach space, and that we wish to construct a function in the closed unit ball \mathfrak{X}_1^* of \mathfrak{X}^* . Suppose that f has been defined on a linear subspace \mathfrak{V} of \mathfrak{X} , and is in \mathfrak{V}_1^* . If we extend f to the space generated by \mathfrak{V} and a vector x, we must insist that

(2)
$$|f(x+w)| \leq ||x+w||$$

for all $w \in \mathfrak{V}$, i.e.,

$$- || x + u || - f(u) \le f(x) \le || x + v || - f(v)$$

for all $u, v \in \mathfrak{V}$. Let

(3)
$$L(f) = lub \{- || x + u || - f(u): u \in \mathfrak{B}\}, M(f) = glb \{|| x + v || - f(v): v \in \mathfrak{B}\}.$$

These exist as for any $u, v \in \mathfrak{V}$,

$$f(v-u) \leq ||v-u|| \leq ||x+v|| + ||x+u||$$
,

(4) i.e.,
$$- ||x + u|| - f(u) \le ||x + v|| - f(v)$$
.

Thus we may rewrite (2):

(5)
$$L(f) \leq f(x) \leq M(f) \; .$$

We shall assume below that \mathfrak{V} is finite dimensional, and let \mathfrak{V}^* have the norm topology. The functions $f \to L(f)$ and $f \to M(f)$ are defined on the closed unit ball \mathfrak{V}_1^* . As it is the least upper bound of convex functions, $f \to L(f)$ is convex, and thus continuous on the interior of of \mathfrak{V}_1^* (see [1, p. 92]). From

(6)
$$M(f) = -L(-f)$$
,

 $f \to M(f)$ is also continuous on the interior of \mathfrak{B}_{1}^{*} .

THEOREM 2. Let \mathfrak{X} be a separable Banach space, $\mathscr{W}^{(\mathfrak{X}^*)}$ the weakly* closed subspaces of \mathfrak{X}^* . There exist countably many Borel choice functions $f_n: \mathscr{W}^{(\mathfrak{X}^*)} \to \mathfrak{X}^*$ such that for each $\mathfrak{Y} \in \mathscr{W}^{(\mathfrak{X}^*)}$, the vectors $f_n(\mathfrak{Y})$ are weakly* dense in the closed unit ball \mathfrak{Y}_1 of \mathfrak{Y} .

Proof. Suppose that \mathfrak{X} is real. If $\mathfrak{Y} \in \mathscr{W}(\mathfrak{X}^*)$, we may identify \mathfrak{Y} with $(\mathfrak{X}/\mathfrak{Y}^{\perp})^*$, the norms and the weak* topologies will coincide.

For each sequence of real numbers $t = (t_1, t_2, \cdots)$ with $0 \leq t_i \leq 1$, we shall construct a function $f_t^{\mathfrak{Y}} \in (\mathfrak{X}/\mathfrak{Y}^{\perp})_1^*$. Let x_1, x_2, \cdots be norm dense in \mathfrak{X} , with $x_1 = 0$. Let $x_n(\mathfrak{Y}) = x_n + \mathfrak{Y}^{\perp}$, and $\mathfrak{B}_n(\mathfrak{Y})$ be the linear space spanned by $x_1(\mathfrak{Y}), \cdots, x_n(\mathfrak{Y})$ in $\mathfrak{X}/\mathfrak{Y}^{\perp}$. Define $f_{t_1}^{\mathfrak{Y}}(0) = 0$. Suppose that we have defined $f_{t_1,\dots,t_n}^{\mathfrak{Y}}$ to be an element of $\mathfrak{B}_n(\mathfrak{Y})_1^*$. Letting $\mathfrak{B}_n(\mathfrak{Y}) = \mathfrak{B}, f_{t_1,\dots,t_n}^{\mathfrak{Y}} = f$, and $x_{n+1}(\mathfrak{Y}) = x$ in our previous discussion, define

(7)
$$f_{t_1,\dots,t_{n+1}}^{y}(x) = t_{n+1}L(f) + (1 - t_{n+1})M(f) .$$

If $x \in \mathfrak{V}$, letting u = v = -x, we have from (3), (5), and (7)

$$-f(u) \leq L(f) \leq f_{t_1,\dots,t_{n+1}}^{\mathfrak{Y}}(x) \leq M(f) \leq -f(v),$$

i.e.,

$$f_{t_1,...,t_{n+1}}^{y}(x) = f(x)$$
.

Thus defining $f_{t_1,\ldots,t_{n+1}}^{\mathfrak{Y}}$ on $\mathfrak{B}_{n+1}(\mathfrak{Y})$ by

$$f^{rak{Y}}_{t_1,...,t_{n+1}}(cx\,+\,w)=cf^{rak{Y}}_{t_1,...,t_{n+1}}(x)\,+\,f(w)$$
 ,

we obtain an extension of $f_{t_1,...,t_n}^{\mathfrak{Y}}$ to an element of $\mathfrak{B}_{n+1}(\mathfrak{Y})^*$. As $f = f_{t_1,...,t_{n+1}}^{\mathfrak{Y}}$ satisfies (5), it readily follows that $f_{t_1}^{\mathfrak{Y},...,t_{n+1}}$ is in $\mathfrak{B}_{n+1}(\mathfrak{Y})_1^*$. Define $f_t^{\mathfrak{Y}}$ on the space spanned by the $x_n(\mathfrak{Y})$ to be the union of the functions $f_{t_1}^{\mathfrak{Y},...,t_n}$. This extends by continuity to an element of $(\mathfrak{X}/\mathfrak{Y}^{\perp})_1^*$.

It is clear that any function in $(\mathfrak{X}/\mathfrak{Y}^{\perp})_1^*$ must have the form $f_t^{\mathfrak{Y}}$

for some sequence $t = (t_1, t_2, \cdots)$. We claim that the countable family of functions $f_r^{\mathfrak{Y}}$, $r = (r_1, r_2, \cdots)$ with the r_i rational, and all but a finite number equal to 0, are weakly* dense in $(\mathfrak{X}/\mathfrak{Y}^{\perp})_1^*$. It suffices to prove that for all n, the functions $f_{r_1,\dots,r_n}^{\mathfrak{Y}}$ are weakly*, or equivalently, norm dense in the interior of $(\mathfrak{B}_n(\mathfrak{Y}))_1^*$. This is trivial if n = 1. Suppose that it is true for n. If $g \in \mathfrak{B}_{n+1}(\mathfrak{Y})^*$ and $||g|| \leq 1$, let f be the restriction of g to $\mathfrak{B}_n(\mathfrak{Y})$. From our hypothesis and the earlier discussion, we may select rationals r_1, \cdots, r_n with $f_{r_1,\dots,r_n}^{\mathfrak{Y}}$ close to f in the norm topology, and $L(f_{r_1}^{\mathfrak{Y}},\dots,r_n)$ and $M(f_{r_1}^{\mathfrak{Y}},\dots,r_n)$ close to L(f) and M(f), respectively. Thus by a suitable choice of r_{n+1} , we obtain

$$f_{r_1,...,r_{n+1}}^{\mathfrak{Y}}(x_{n+1}(\mathfrak{Y}))$$

close to $g(x_{n+1}(\mathfrak{Y}))$.

For any sequence (t_1, t_2, \dots) we have that $\mathfrak{Y} \to f_t^{\mathfrak{Y}}(x_n)$ is Borel (regarding $f_t^{\mathfrak{Y}}$ as an element of \mathfrak{Y}). This is trivial if n = 1. Suppose that it is true for $k \leq n$. Then

(8)
$$f_{i}^{\mathfrak{Y}}(x_{n+1}) = f_{i_{1},\dots,i_{n+1}}^{\mathfrak{Y}}(x_{n+1}(\mathfrak{Y})) \\ = t_{n+1}L(f_{i_{1},\dots,t}^{\mathfrak{Y}}) + (1 - t_{n+1})M(f_{i_{n},\dots,t}^{\mathfrak{Y}})$$

If \mathfrak{B}_n is the linear span of x_1, \dots, x_n ,

$$L(f_{t_1,\ldots,t_n}^{\mathfrak{Y}}) = \operatorname{lub} \left\{ - \mid\mid x_{n+1} + u + \mathfrak{Y}^{\perp} \mid\mid - f_t^{\mathfrak{Y}}(u) \colon u \in \mathfrak{B}_n \right\}$$
.

From Theorem 1 and the induction hypothesis,

$$\mathfrak{Y} \rightarrow - || x_{n+1} + u + \mathfrak{Y}^{\perp} || - f_t^{\mathfrak{Y}}(u)$$

is Borel for any $u \in \mathfrak{B}_n$. Restricting to u that are rational linear combinations of the x_k for $k \leq n$, $\mathfrak{Y} \to L(f_{i_1,\ldots,i_n}^{\mathfrak{Y}})$ is the least upper bound of a countable number of Borel functions, and is thus Borel. From (6) and (8), $\mathfrak{Y} \to f_i^{\mathfrak{Y}}(x_{n+1})$ is Borel. For any $x \in \mathfrak{X}$, $\mathfrak{Y} \to f_i^{\mathfrak{Y}}(x)$ is a limit of functions of the form $\mathfrak{Y} \to f_i^{\mathfrak{Y}}(x_n)$, and hence is Borel. Thus $\mathfrak{Y} \to f_i^{\mathfrak{Y}}$ is Borel.

Finally, suppose that \mathfrak{X} is a complex Banach space. Letting \mathfrak{X}_R be the corresponding real Banach space, $\mathscr{N}(\mathfrak{X})$ is a convergence closed subset of $\mathscr{N}(\mathfrak{X}_R)$. Define a map of $\mathscr{W}(\mathfrak{X}^*)$ into $\mathscr{W}((\mathfrak{X}_R)^*)$ by $\mathfrak{Y} \to \operatorname{Re} \mathfrak{Y}$, where the latter consists of all real functions $\operatorname{Re} f$ with $f \in \mathfrak{Y}$ (the customary argument shows that $f \to \operatorname{Re} f$ is an isometry of \mathfrak{X}^* onto $(\mathfrak{X}_R)^*$). For $\mathfrak{Z} \in \mathscr{N}(\mathfrak{X})$, $\operatorname{Re}(\mathfrak{Z}^{\perp}) = \mathfrak{Z}^{\perp}$, where annihilators are taken in \mathfrak{X}^* and $(\mathfrak{X}_R)^*$, respectively. It follows that $\mathfrak{Y} \to \operatorname{Re} \mathfrak{Y}$ defines a Borel isomorphism of $\mathscr{W}(\mathfrak{X}^*)$ onto a Borel subset of $\mathscr{W}((\mathfrak{X}_R)^*)$. Choose real choice functions $f_n: \mathscr{W}((\mathfrak{X}_R)^*) \to (\mathfrak{X}_R)^*$ with $f_n(\mathfrak{Y})$ weakly* dense in \mathfrak{Y}_1 for each $\mathfrak{Y} \in \mathscr{W}((\mathfrak{X}_R)^*)$. Let $g_n: \mathscr{W}(\mathfrak{X}^*) \to \mathfrak{X}^*$ be the corresponding complex functions, i.e., for $\mathfrak{Y} \in \mathscr{W}(\mathfrak{X}^*)$ and $x \in \mathfrak{X}$, let

$$g_n(\mathfrak{Y})(x) = f_n(\operatorname{Re} \mathfrak{Y})(x) - i f_n(\operatorname{Re} \mathfrak{Y})(ix)$$
.

Then $\operatorname{Re} g_n(\mathfrak{Y}) = f_n(\operatorname{Re} \mathfrak{Y}) \in (\operatorname{Re} \mathfrak{Y})_1$, implies $g_n(\mathfrak{Y}) \in \mathfrak{Y}_1$. Given an arbitrary $g \in \mathfrak{Y}_1, x_1, \dots, x_k \in \mathfrak{X}$, and $\varepsilon > 0$, choose an f_n with

$$egin{aligned} &|\,f_n(\operatorname{Re}\,\mathfrak{Y})(x_j) - \operatorname{Re}\,g(x_j)\,| < arepsilon \ &|\,f_n(\operatorname{Re}\,\mathfrak{Y})(ix_j) - \operatorname{Re}\,g(ix_j)\,| < arepsilon \ , \end{aligned}$$

for $j = 1, \dots, k$. Then as

$$g(x) = \operatorname{Re} g(x) - i \operatorname{Re} g(ix) ,$$

we have

$$|g_n(\mathfrak{Y})(x_j) - g(x_j)| < 2\varepsilon$$

for $j = 1, \dots, k$. Thus the $g_n(\mathfrak{Y})$ are weakly^{*} dense in \mathfrak{Y}_1 . Clearly the g_n are Borel.

COROLLARY. If (S, \mathcal{S}) is a Borel space, then a map $s \to \mathfrak{Y}(s)$ of S into $\mathscr{W}(\mathfrak{X}^*)$ is Borel if and only if there exist countably many Borel functions $s \to f_n^s$ of S into \mathfrak{X}^* , such that for each s, the vectors f_n^s are weakly dense in $\mathfrak{Y}(s)_1$.

Proof. If $s \to \mathfrak{Y}(s)$ is Borel, the functions f_n^s are obtained by composing this map with the choice functions of Theorem 2. Conversely, if such functions exist, we have from the isometry

$$\mathfrak{Y}(s)\cong(\mathfrak{X}/\mathfrak{Y}(s)^{\perp})^{*}$$
 , $\|x+\mathfrak{Y}(s)^{\perp}\|=\sup\left\{|f_{i}^{s}(x)|:i=1,\,2,\,\cdots
ight\}$

for each $x \in \mathfrak{X}$. Thus $s \to || x + \mathfrak{Y}(s)^{\perp} ||$ is Borel for each $x \in \mathfrak{X}$, and by Theorem 1, $s \to \mathfrak{Y}(s)$ is Borel.

3. Von Neumann algebras. Let \mathcal{H} , \mathfrak{L} , \mathscr{A} , and \mathscr{F} be as in §1. We have that $\mathfrak{L} = (\mathfrak{L}_*)^*$, where \mathfrak{L}_* is the separable Banach space of ultra-weakly continuous functions on \mathfrak{L} (or by a natural identification, the trace class operators with a suitable norm-see [10]). The ultra-weak and weak* topologies coincide on \mathfrak{L} . Thus letting $\mathscr{W}(\mathfrak{L})$ be the ultra-weakly closed subspaces of \mathfrak{L} , we may give it the Borel structure described in §2.

If $\mathfrak{Y} \in \mathscr{W}(\mathfrak{X})$, write \mathfrak{Y}^* and \mathfrak{Y}' for the adjoints of elements in \mathfrak{Y} , and the commutant of \mathfrak{Y} , respectively. The proof of the following theorem is largely patterned after that of [6, Th. 2.8].

THEOREM 3. $\mathfrak{Y} \to \mathfrak{Y}^*$ and $\mathfrak{Y} \to \mathfrak{Y}'$ define Borel transformations of

W(L).

Proof. For $f \in \mathfrak{L}_*$, define $f^* \in \mathfrak{L}_*$ by $f^*(A) = \overline{f(A^*)}$, the bar indicating complex conjugate. This is an isometry of \mathfrak{L}_* , hence the transformation $\mathfrak{B} \to \mathfrak{B}^*$ on $\mathscr{N}(\mathfrak{A})$ is a homeomorphism (in the sense of convergence), and a Borel isomorphism. For $\mathfrak{Y} \in \mathscr{W}(\mathfrak{A}), (\mathfrak{Y}^{\perp})^* = (\mathfrak{Y}^*)^{\perp}$, i.e., the adjoint operation on $\mathscr{N}(\mathfrak{A}^*)$ is carried into that on $\mathscr{W}(\mathfrak{A})$, and thus is a Borel isomorphism on the latter.

From Theorem 2, we may let $\mathfrak{Y} \to A_n^{\mathfrak{Y}}$ be Borel choice functions on $\mathscr{W}(\mathfrak{X})$ with $A_n^{\mathfrak{Y}}$ ultra-weakly dense in \mathfrak{Y}_1 . We have

$$\mathfrak{Y}'=\{B\in\mathfrak{A}\colon BA_n^{\mathfrak{Y}}-A_n^{\mathfrak{Y}}B=0 ext{ for } n=1,2,\cdots\}.$$

Let \mathfrak{M} and \mathfrak{M}_* be the sequences (A_n) and (f_n) of elements in \mathfrak{L} and \mathfrak{L}_* , respectively, with $\sup \{ ||A_n|| : n = 1, 2, \cdots \} < \infty$ and $\sum_{n=1}^{\infty} ||f_n|| < \infty$. With the norms $||(A_n)|| = \sup \{ ||A_n|| : n = 1, 2, \cdots \}$ and $||(f_n)|| = \sum_{n=1}^{\infty} ||f_n||$, \mathfrak{M} and \mathfrak{M}_* are Banach spaces, and defining $(f_n)((A_n)) = \sum_{n=1}^{\infty} f_n(A_n)$, \mathfrak{M} may be identified with the dual of \mathfrak{M}_* . We have

$$\mathfrak{Y}' = \text{kernel } T^{\mathfrak{Y}}$$
,

where $T^{\mathfrak{Y}}: \mathfrak{L} \to \mathfrak{M}$ is defined by

$$T^{\mathfrak{Y}}(B) = (BA_n^{\mathfrak{Y}} - A_n^{\mathfrak{Y}}B)$$
.

we claim that $T^{\mathfrak{Y}}$ is continuous in the weak* topologies. If $(f_*) \in \mathfrak{M}_*$,

$$(f_n)T^{\mathfrak{Y}}(B) = \sum_{n=1}^{\infty} g_n(B)$$
,

where $g_n(B) = f_n(BA_n^{\mathfrak{Y}} - A_n^{\mathfrak{Y}}B)$. The partial sums $\sum_{n=1}^{N} g_n$ are weakly^{*} continuous, and converge uniformly on the unit ball \mathfrak{L}_1 of \mathfrak{L} , as if $B \in \mathfrak{L}_1$,

$$\left|\sum_{n=N+1}^{\infty}g_n(B)
ight| \leq 2\sum_{n=N+1}^{\infty}||f_n||$$
 .

It follows that $B \to (f_n)T^{\mathfrak{Y}}(B)$ is continuous on \mathfrak{L}_1 , and thus on \mathfrak{L} (see [2, p. 41]). Define $T^{\mathfrak{Y}}_* : \mathfrak{M}_* \to \mathfrak{L}_*$ by

$$T^{\mathcal{Y}}_{*}((f_{n}))(B) = (f_{n})(T^{\mathcal{Y}}(B))$$
.

We have that (kernel $T^{\mathfrak{Y}})^{\perp}$ is the closure of the range of $T^{\mathfrak{Y}}_*$. Thus letting B_i be ultra-weakly dense in \mathfrak{L}_1 and $g_j = (f_n^j)$ be norm dense in \mathfrak{M}_* , we have for any $f \in \mathfrak{L}_*$,

$$|| f + (\mathfrak{Y}')^{\perp} || = \mathrm{glb} \, \{ || f + T^{rak{Y}}_{*}(g_j) \, || \;, \; j = 1, \, 2, \, \cdots \}$$

where

EDWARD G. EFFROS

$$egin{aligned} &\|f+T^{rak{y}}_{*}(g_{j})\,\| = \mathrm{lub}\,\{\!|\,f(B_{i})+T^{rak{y}}_{*}(g_{j})(B_{i})\,|\colon\,i=1,\,2,\,\cdots\}\ &=\mathrm{lub}\,\{\!|\,f(B_{i})+\sum\limits_{n=1}^{\infty}f^{j}_{n}(B_{i}A^{rak{y}}_{n}-A^{rak{y}}_{n}B_{i})\,|\colon\,i=1,\,2,\,\cdots\}. \end{aligned}$$

As $\mathfrak{Y} \to A_n^{\mathfrak{Y}}$ is ultra-weakly Borel, $\mathfrak{Y} \to || f + (\mathfrak{Y}')^{\perp} ||$ is Borel, and as f is arbitrary, we have from Theorem 1 that $\mathfrak{Y} \to \mathfrak{Y}'$ is Borel.

COROLLARY 1. \mathscr{A} is a Borel subset of $\mathscr{W}(\mathfrak{Y})$, and thus is standard under the relative Borel structure.

Proof. \mathscr{S} consists of the $\mathfrak{Y} \in \mathscr{W}(\mathfrak{X})$ invariant under the Borel transformations $\mathfrak{Y} \to \mathfrak{Y}^*$ and $\mathfrak{Y} \to \mathfrak{Y}''$. In general say that θ is a Borel transformation of Borel space (S, \mathscr{S}) . If \varDelta is the diagonal of $S \times S$, and $\theta \times \iota: S \to S \times S$ is defined by $\theta \times \iota(s) = (\theta(s), s)$, we have

$${s \in S: \theta(s) = s} = (\theta \times \iota)^{-1}(\varDelta)$$
.

Thus if (S, \mathscr{S}) is standard, \varDelta is a Borel subset of $S \times S$, and the set of fixed points of θ is Borel.

Given von Neumann algebras \mathfrak{A} and \mathfrak{B} , we let $\mathfrak{A} \lor \mathfrak{B}$ denote the von Neumann algebra generated by \mathfrak{A} and \mathfrak{B} . Providing $\mathscr{A} \times \mathscr{A}$ with the product structure,

COROLLARY 2. The maps of $\mathscr{A} \times \mathscr{A}$ into \mathscr{A} defined by $(\mathfrak{A}, \mathfrak{B}) \to \mathfrak{A} \cap \mathfrak{B}$ and $(\mathfrak{A}, \mathfrak{B}) \to \mathfrak{A} \vee \mathfrak{B}$ are Borel.

Proof. As $\mathfrak{A} \cap \mathfrak{B} = (\mathfrak{A}' \vee \mathfrak{B}')'$, it suffices to prove the second assertion. From Theorem 2, there exist Borel choice functions $A_i: \mathscr{M} \to \mathfrak{A}$ with $A_i(\mathfrak{A})$ ultra-weakly dense in \mathfrak{A}_1 , for each $\mathfrak{A} \in \mathscr{M}$. For each pair $(\mathfrak{A}, \mathfrak{B}) \in \mathscr{M} \times \mathscr{M}$, let $\mathscr{C}(\mathfrak{A}, \mathfrak{B})$ be the self-adjoint linear algebra generated by the elements $A_i(\mathfrak{A})$ and $A_j(\mathfrak{B})$. Let $B_k(\mathfrak{A}, \mathfrak{B})$ be an enumeration of the finite complex rational combinations of finite products of the elements $A_i(\mathfrak{A})$, $A_j(\mathfrak{B})$ and their adjoints. The $B_k(\mathfrak{A}, \mathfrak{B})$ are norm dense in $\mathscr{C}(\mathfrak{A}, \mathfrak{B})$, hence defining $B'_k(\mathfrak{A}, \mathfrak{B}) = B_k(\mathfrak{A}, \mathfrak{B})$ if $|| B_k(\mathfrak{A}, \mathfrak{B}) || \leq 1$, and $B'_k(\mathfrak{A}, \mathfrak{B}) = 0$ otherwise, the $B'_k(\mathfrak{A}, \mathfrak{B})$ are norm dense in $(\mathfrak{A} \vee \mathfrak{B})_1$. From the Kaplansky Density Theorem, the latter is ultra-weakly dense in $(\mathfrak{A} \vee \mathfrak{B})_1$. As $(\mathfrak{A}, \mathfrak{B}) \to B'_k(\mathfrak{A}, \mathfrak{B})$ are Borel, our assertion follows from the corollary to Theorem 2.

COROLLARY 3. \mathscr{F} is a Borel subset of \mathscr{A} , and thus is standard in the relative Borel structure.

Proof. Let \Im be the von Neumann algebra on \mathcal{H} consisting of complex multiples of the identity operator. Then \mathcal{F} is the inverse

image of the element \Im under the Borel map of \mathscr{A} into \mathscr{A} defined by $\mathfrak{A} \to \mathfrak{A} \cap \mathfrak{A}'$.

The argument used in the proof of Corollary 2 shows that a map $s \to \mathfrak{A}(s)$ of a Borel space (S, \mathscr{S}) into \mathscr{S} is Borel if and only if there exist Borel functions $s \to A_i(s)$ of S into 2 such that the $A_i(s)$ generate $\mathfrak{A}(s)$. Thus we have recaptured the original definition of § 1.

In direct integral theory, it is of some importance to know that various other subsets of \mathcal{A} are measurable (see [9, 11]). We suspect that constructive procedures similar to that used in Theorem 2, would enable one to show that many of these sets are Borel.

4. Representation spaces. Let \mathcal{H} , \mathfrak{L} , \mathcal{A} , and \mathcal{F} be as above, and G be a second countable locally compact group (an analogous theory exists for separable C^* -algebras). Let $G^{\circ}(\mathcal{H})$ be the weakly continuous unitary representations of G on \mathcal{H} , with the standard Borel structure defined by Mackey (see [8]). Let $G^{\mathfrak{I}}(\mathcal{H})$ be the subset of factor representations, i.e. those representations $L \in G^{\circ}(\mathcal{H})$ with L(G)' a factor von Neumann algebra.

If $L, M \in G^{c}(\mathcal{H})$, let $\Re(L, M)$ be the ring of intertwining operators for L and M, i.e., those $B \in \mathfrak{L}$ with BL(t) = M(t)B for all $t \in G$. In particular, $\Re(L, L) = L(G)'$. As was the case for Theorem 3, the following is simply a refinement of [6, Th. 2.8].

THEOREM 4. The map $G^{\circ}(\mathcal{H}) \times G^{\circ}(\mathcal{H}) \to G^{\circ}(\mathcal{H})$ defined by $(L, M) \to \Re(L, M)$ is Borel.

Proof. Let t_n be dense in G, and define \mathfrak{M} and \mathfrak{M}_* as in the proof of Theorem 3. Defining $S^{(L,M)}: \mathfrak{L} \to \mathfrak{M}$ by

$$S^{(L,M)}(B) = (BL(t_n) - M(t_n)B)$$

we have that

$$\Re(L, M) = \operatorname{kernel} S^{(L,M)}$$
,

and that $S^{(L,M)}$ is continuous in the weak^{*} topologies. $S^{(L,M)}$ is the adjoint of a map $S^{(L,M)}_*: \mathfrak{M}_* \to \mathfrak{L}_*$, and choosing B_i ultra-weakly dense in \mathfrak{L}_1 , and $g_j = (f_j^n)$ norm dense in \mathfrak{M}_* , we have for any $f \in L_*$,

$$\|\|f+\Re(L,\,M)^{\perp}\,\|={
m glb}\,\{\|\,f+S_*^{\,{\scriptscriptstyle (L,\,M)}}(g_j)\,\|\colon j=1,\,2,\,\cdots\}$$
 ,

where

$$egin{aligned} &\|f+S_*^{_{(L,M)}}(g_j)\,\| = \mathrm{lub}\,\{|\,f(B_i)\ &+\sum\limits_{n=1}^\infty f_j^{\,n}(B_iL(t_n)-M(t_n)B_i)\,|\colon\,i=1,\,2,\,\cdots\} \ . \end{aligned}$$

 $(L, M) \to f_j^n(B_iL(t_n) - M(t_n)B_i)$ is Borel when $G^{\circ}(\mathscr{H}) \times G^{\circ}(\mathscr{H})$ is given the product of the Mackey Borel structures, as any ultra-weakly continuous function is a norm limit of weakly continuous functions. It follows that $(L, M) \to ||f + \Re(L, M)^{\perp}||$ is Borel, and from Theorem 1, $(L, M) \to \Re(L, M)$ is Borel.

COROLLARY 1. The map $G^{\circ}(\mathscr{H}) \to \mathscr{A}$ defined by $L \to L(G)'$ is Borel

COROLLARY 2. (This was first proved by J. Dixmier—see [5, Theorem 1].) The set $G^{\mathfrak{f}}(\mathscr{H})$ of factor representation of G forms a Borel subset of $G^{\mathfrak{o}}(\mathscr{H})$, and thus is standard under the relative Borel structure.

Following Mackey (see [7]), if $L, M \in G^{\circ}(\mathcal{H})$, we say that L is covered by M, L < M, if very subrepresentation of L contains a subrepresentation that is unitarily equivalent to a subrepresentation of M. L is quasi-equivalent to $M, L \sim M$, if $L \prec M$ and $M \prec L$.

If E is a projection in L(G)', and $E \neq 0$, let $L^{\mathbb{B}}$ denote the corresponding subrepresentation of G on the range of E. If there exists a projection $E \in L(G)'$ with $E \neq 0$ and $L^{\mathbb{B}} < M$, let C(L, M) be the least upper bound of all such projections. Otherwise, let C(L, M) = 0. C(L, M) is an element of $L(G)' \cap L(G)''$.

THEOREM 5. The map $G^{\circ}(\mathscr{H}) \times G^{\circ}(\mathscr{H}) \rightarrow \mathfrak{L}$ defined by $(L, M) \rightarrow C(L, M)$ is Borel.

Proof. If $A \in \mathfrak{A}$, let E_A and F_A be the projections on the closure of the range, and the orthogonal complement of the kernel of A. If $A \in \mathfrak{R}(L, M)$, then $F_A \in L(G)'$ and $E_A \in M(G)'$. If $A \neq 0$, and U is the partial isometry in the polar decomposition of A with $U^*U = F_A$, then U determines a unitary equivalence of $L^{\mathbb{F}_A}$ and $M^{\mathbb{E}_A}$, and $F_A \leq C(L, M)$. From Theorems 4 and 2, there exist Borel functions $A_i(L, M)$ that are ultra-weakly dense in the unit ball of $\mathfrak{R}(L, M)$ for each L and M. We claim that

(9)
$$C(L, M) = \bigvee_{i=1}^{\infty} F_{A_i(L, M)}$$
,

where on the right we have taken the least upper bound in the complete projection lattice of L(G)'.

Suppose that there exist L and M with

$$F=C(L,M)-igvee_{i=1}^{oldsymbol{arphi}}F_{{\scriptscriptstyle\mathcal{A}}_{oldsymbol{i}}(L,M)}
eq 0$$
 .

As $L^{\scriptscriptstyle F} \prec M$, there exists a projection $F_{\scriptscriptstyle 0} \leq F$ with $F_{\scriptscriptstyle 0} \neq 0$ and $F_{\scriptscriptstyle 0} = U^*U$ where $U \in \Re(L, M)$. Choosing i_k for which $A_{i_k}(L, M) \to U$ ultra-weakly,

$$0=A_{i_k}(L,\,M)F_{\scriptscriptstyle 0}\,{ o}\,UF_{\scriptscriptstyle 0}=F_{\scriptscriptstyle 0}$$
 ,

a contradiction.

The map of \mathfrak{A} into itself defined by $A \to F_A$ is Borel. To see this, note that $A \to A^*A$ is weakly Borel, as if $x, y \in \mathscr{H}$, letting x_i be an orthonormal basis we have

$$A^*Ax\!\cdot\!y = \sum\limits_{i=1}^\infty {(Ax\!\cdot\!x_i)(Ay\!\cdot\!x_i)^-}$$
 .

A similar expansion shows that for positive integers $n, A \to A^n$ is Borel, hence for any polynomial $p, A \to p(A)$ is Borel. Suppose that f is a bounded real Borel function on the reals, and that there is a sequence of real polynomials p_n converging to f point-wise, uniformly bounded on compact sets. If A is a self-adjoint element in \mathfrak{R} , we have from spectral theory that $p_n(A) \to f(A)$ weakly. Thus $A \to f(A)$ is Borel. Letting g be the characteristic function of the open set $(0, \infty)$, $A \to F_A = g((A^*A)^{1/2})$ is Borel.

For all i, $(L, M) \rightarrow F_{A_i(L,M)}$ is Borel. If F_1, \dots, F_n are propections, then

$$F_1 \lor \cdots \lor F_n = F_{(F_1 + \cdots + F_n)}$$
 ,

hence

$$(L, M) \to \bigvee_{i=1}^n F_{A_i(L,M)}$$

is Borel. As the projections $\bigvee_{i=1}^{n} F_{A_{i}(L,M)}$ converge weakly to $\bigvee_{i=1}^{\infty} F_{A_{i}(L,M)}$, we conclude from (9) that $(L, M) \rightarrow C(L, M)$ is Borel.

Ernest remarked in the proof of [5, Prop. 2] that the quasiequivalence relation on $G^{\mathfrak{f}}(\mathcal{H})$ is a Borel subset of $G^{\mathfrak{f}}(\mathcal{H}) \times G^{\mathfrak{f}}(\mathcal{H})$. The above theorem implies:

COROLLARY 1. The covering and quasi-equivalence relations are Borel subsets of $G^{\circ}(\mathscr{H}) \times G^{\circ}(\mathscr{H})$.

COROLLARY 2. The quasi-equivalence class [L] of a representation L in $G^{\circ}(\mathcal{H})$ is a Borel subset of $G^{\circ}(\mathcal{H})$.

Proof. Let $\pi_i: G^{\circ}(\mathscr{H}) \times G^{\circ}(\mathscr{H}) \to G^{\circ}(\mathscr{H}), i = 1, 2, be$ the projections on the first and second co-ordinates. Then $[L] = \pi_2(\pi_1^{-1}(L) \cap \sim)$, and as π_2 is one-to-one on $\pi_1^{-1}(L) \cap \sim$, and the latter is standard, [L] is Borel.

It would seem likely that the unitary equivalence relation is also a Borel subset of $G^{\circ}(\mathcal{H}) \times G^{\circ}(\mathcal{H})$. Presumably one must prove the existence of a Borel choice function on spaces of the form $\Re(L, M)$, that selects a unitary operator when such exists. If unitary equivalence were a Borel set, it would follow that the representations $L \in G^{c}(\mathscr{H})$ with L(G)' finite was also Borel. It should be noted that the unitary analogue of Corollary 2 above is true (see [3, Lemma 2.4]).

If G is the free group on countably many generators, the map described in Corollary 1 of Theorem 4 is onto. As the given structure and the corresponding quotient structure on \mathscr{A} must coincide, a subset of \mathscr{A} will be Borel if and only if the inverse image in $G^{e}(\mathscr{H})$ is Borel.

BIBLIOGRAPHY

1. N. Bourbaki, *Espaces vectoriels topologiques*, Act. Sci. Ind., no. 1189, Hermann, (1953).

2. J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien, Gauthier-Villars, Paris, 1957.

3. E. Effros, Transformation groups and C*-algebras, to appear.

4. ———, Convergence of closed subsets in a topological space, to appear.

5. J.A. Ernest, A decomposition theorem for unitary representations of locally compact groups, Trans. Amer. Math. Soc. **104** (1962), 252-277.

6. G. W. Mackey, Induced representations of locally compact groups II, Ann. of Math. 58 (1953), 193-221.

7. ———, The theory of group representations (notes by Fell and Lowdenslager), Univ. of Chicago, Lecture Notes, 1955.

8. _____, Borel structures in groups and their duals, Trans. Amer. Math. Soc. 85 (1957), 134-165.

9. J. von Neumann, On rings of operators. Reduction theory. Ann. of Math. 50 (1949), 401-485.

10. R. Schatten, A theory of cross spaces, Ann. of Math. Studies, no. 26, Princeton, 1959.

11. J. Schwartz, Type II factors in a central decomposition, Comm. Pure Appl. Math. 16 (1963), 247-252.

12. E. Spanier, Quasi-topologies, Duke Math. J. 30 (1963), 1-14.

COLUMBIA UNIVERSITY UNIVERSITY OF OSLO UNIVERSITY OF PENNSYLVANIA