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AN APPLICATION OF A FAMILY HOMOTOPY
EXTENSION THEOREM TO ANR SPACES

A. H. KRUSB AND P. W. LIEBNITZ

The first of the writers, on p. 206 of Introduction to the
Theory of Block Assemblages and Related Topics in Topology,
NSF Research Report, University of Kansas, 1956, defined a
clean-cut pair to be any pair (X, A) in which X is a metrizable
space, A is a closed subset of X, A is a strong deformation
neighborhood retract of X, and X — A is an ANR. It is
shown in the present paper that for each clean-cut pair (X, A),
X is an ANR if and only if A is an ANR. A consequence is
that for each locally step-finite clean-cut block assemblage (cf.
the report cited above), the underlying space is an ANR. One
of the central tools is a family homotopy extension theorem.

Consider a topological space X and a set A c X.
Suppose A c N c X. A strong deformation retraction in X of N

onto A is a retraction r of N onto A such that there is a homotopy
H: N x I—+X between the identity map on N and r which leaves A
pointwise fixed at each stage. Also, A is a strong deformation retract
in X of N if and only if there is a strong deformation retraction in
X oΐ N onto A. (These definitions are handled more generally in
[4, pp. 109-111].) A is a strong deformation neighborhood retract of
X if and only if for each neighborhood U of A in X there is a neigh-
borhood V of A in U such that A is a strong deformation neighbor-
hood retract in U of V. (This definition is taken from [4, p. 127].)
It is observed in [4, pp. 127-128] that A is a strong deformation neigh-
borhood retract of X if and only if A is a strong deformation retract
in X of some neighborhood of A.

By an ANR we shall mean an ANR relative to the class of all
metrizable spaces.

In [4, p. 206] the pair (X, A) is defined to be clean-cut if and
only if X is metrizable, A is a closed subset of X, A is a strong de-
formation neighborhood retract of X, and X — A is an ANR.

In § 2 it will be shown that if (X, A) is a clean-cut pair, then X
is an ANR if and only if A is an ANR. The "only if" part is trivial.
The proof of the "if" part will be based on the usual LC characteri-
zation of an ANR and the following proposition from [4, p. 181] (the
hypothesis there that {Xj}jej covers X is inessential since X and K
may be added to the respective families).

PROPOSITION 1.1. Suppose that X is a topological space and that
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{Xj}jej is a family of subsets of X. Suppose t h a t K is a simplicial
complex (\K\ having t h e usual C TF-topology) and t h a t {K3)jej is a
family of subcomplexes of K. Suppose t h a t

is a continuous map, L is a subcomplex of K, and

H: (I LI x /,I L Π X, I X / ) , „ - (X, X ) ί e j

is a homotopy from /1 | L | to some map

g:(\L\,\LΓιKi\)iet-+(X,Xί)iej.

Then i ί has an extension

H': (\K\x I,\Kj\x I ) j e j - (X, Xj)jej

which is a homotopy from / to some extension of g.

The reader may read §2 on the basis of 1.1 and standard results
from ANR theory. In [4, p. 181], 1.1 is done with CTF-complexes
in place of simplicial complexes. If the set J in 1.1 is empty, we
get one of several homotopy extension theorems. We may call 1.1 a
family homotopy extension theorem. For a general treatment of ho-
motopy extension theorems and family homotopy extension theorems,
see [4, pp. 210-217].

2* Results for pairs (X, A). Each simplicial complex will have
the C TΓ-topology. Consider any class 3fΓ of simplicial complexes. As
in [4, pp. 231-232], J2Γ" is admissible if and only if J^" is closed
under subcomplexes and isomorphic images. Suppose that X is a topo-
logical space, 3ίΓ is an admissible class of simplicial complexes, and m
is a nonnegative integer. Then, as in [4, p. 232], X is LC from m
upward relative to 3ίΓ if and only if for each covering ^ of X by open
subsets of X there is a covering ^ of J by open subsets of X such
that (*) below holds.

(*) If Ke 3ίT, if L is a subcomplex of K, if Km(zL (Kw is the
m-skeleton of K), if g: \ L \ —• X is a ^"-subordinate partial realiza-
tion of K in X (thus, for each σeK, g(σ f] \L\)cz some member of
5^"), then g extends to a ^-subordinate full realization f:\K\-+X

of K in X
Also, X is LC relative to J3Γ if and only if X is LC from 0

upward relative to J%Γ. Also, X is LC if and only if X is LC rela-
tive to the class of all simplicial complexes.

The following lemma is probably well-known and follows imme-
diately from standard theorems (e.g., cf. [3, (A), p. 86]). In fact,
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one could replace I by any compact space.

LEMMA 2.1. Suppose that N and X are spaces and A is a
closed subset of N. Suppose that H: N x I—> X is continuous. Sup-
pose that ^/ is a covering of H(A x I) by open subsets of X and
that for each aeA, H({a) x I)aU for some Ue^. Then there
exists a covering ^ of A by open subsets of N such that for each
Ve ^H(V x I) a some member of <%f.

Suppose that X is a space and 3*"" is a set of subsets of X. If
AaX, the star of A with respect to 5^ is the union of those ele-
ments of 5^ which meet A and will be denoted St(A; 3O If ^ and
y are sets of subsets of X, 5̂ ~ will be said to star-refine (or *-refine)
<%/ if and only if for each 7 G ^ , St(V; ^ ) is a subset of a member
of ^ . In this case, 5^ will be called a star-refinement (or *-refine-
ment) of ^/.

THEOREM 2.2. Suppose that X is a normal and paracompact
space and A is a nonvoid closed subset of X which is a strong de-
formation neighborhood retract of X. Let 3ίΓ be an admissible class
of simplicial complexes, and let m be a nonnegative integer. Suppose
that A and X — A are LC from m upward relative to ^Γ. Then
X is LC from m upward relative to

Proof. Consider any covering ^ of I by open subsets of X.
Let ^/ ' be a *-refinement of ^ by open subsets of X which covers
X. Let N be an open neighborhood of A in X such that A is a
strong deformation retract in X of N. Thus there is a homotopy
H: N x /—*X such that H{u,t) — u for each ueA and each tel
and such that H(u, 0) = u and H(u, 1) = r(u) for each ue N, where
r:N—+A is some retraction onto A. Let ^ be a covering of A by
open subsets of N which refines <%s' such that if Ke 3ίΓ, if L is a
subcomplex of K, if Km c L , if g:\L\-> A is a partial realization of
K in A subordinate to % then g can be extended to a full realiza-
tion of K in A subordinate to ^ ' . Using 2.1, let %" be a covering
of A by open subsets of N such that for each V e % f f ( 7 x /) c
some member of 5 "̂. Observe that 5^ refines 5^. Let % be a
*-refinement of 5 "̂ by open subsets of JV which covers ^4. Let ^
be a refinement of 3^ by open subsets of N which covers A. Let
N3 = U % and iS^ = U 3^i. We may and do require that NA a NB.
Let Wl be a covering of X — NΛ by open subsets of X — NΛ which
refines <U\ Let W~ = %" U ^ T . Let 5^i_4 be an open covering of
X— A such that if Ke JΓ, if L i s a subcomplex of K, if KmaL,
if #: I L I —> X — A is a partial realization of K in X — A subordinate
to yx-A, then g can be extended to a full realization of K in X — A
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subordinate to *W. y = ΨA U ^ i _ 4 ; ^ is a covering of X by open
subsets of X.

Now consider Ke Jst~. Consider any partial realization a: \ L | —> X
of K in X subordinate to 3^ such that Km c L. Define

jfiΓ̂  = {a e K: a(σ f]\L\)cz some member of 5^} ,

ίΓ x_ 4 = [a e K: a(σ Π | L |) c some member of ^i_4} .

lϋΓ̂  and KX_A are subcomplexes of K, and JSΓ̂  U i^x_^ = K.
Now α I I KX_A Π 1/1 :1 iΓ x_4 Π 1/1 -̂> X — A is a partial realization

of KX_A in X — A subordinate to ^ i _ 4 , and (Kx_Λ)
m c J5ΓX_4 Π L.

Hence a | | ifx_4 Π -L | extends to a full realization /3: | KX_A \ —> X — A
of jKΓx_κ in X — A subordinate to

Define j§: | iΓ x_4 U ^ H X b y

σ if σ e L ,

σ if σ e KΎ_

i§ is obviously continuous.
Set M = ^ Π (iΓx_^ u £) and £ = £ I I Λf|. Consider σ e i ^ . Now

β(σ Π 11/1) c V for some V e 5^. Consider a face τ e KX_A of σ. Now
/3(f)cW for some We ^ Since also /§(f Π 11/1) = a(τ Π | L | ) c
a:(σ Π I L I) c some member of 5^, TFίΊ NA is nonvoid. Hence IF6 Ψl.
It follows (since also c^r

A refines *% and ^ J *-refines 5^) that

y8(J Π I KΣ_A U L\)aSt(V; ^ς) c some member of 3*ί .

Thus β:\M\—>N is a partial realization of KA in iV subordinate to

For each σeKA, H(β(σ Π | M | ) x / ) c ί ί ( F 2 x J ) c F x for some
e % T̂ i e ^Γ. For each ue\M\ and each te I put

Gtfa) - <?(w, t) = fiΓ(^), ί) ,

and observe that d(w) = r(β(u))e A for each ue\M\. Thus G :̂ |Λf|—>A
is a partial realization of i ^ in A subordinate to 5^. Hence Gt: \M\ —>̂ 4
extends to a full realization J±: \ KA \ —> A subordinate to f/'. Consider
σ e KA. We have J^σ) c U' for some Uf 6 ^ ' . Also G{{\ M\ Π σ) x 7) c F
for some 7 e % Hence G l̂-M] Π ά ) c F . Hence Jtf)c Sί(Z7'; ^ ' ) c Uσ

for some Uσe^ and likewise G((| ikf| Π 5) x /) c ί/̂ . Thus

G: (I AT I x I, (I M | ΓΊ σ) x I ) σ 6 ^ - (X,

is a homotopy from

Gβ: (I Af|,| Λf I Π σ))σeKΛ - (X, Z J ^

to
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J, I IMI: (I MI Π σUKA - (X, Uσ)σeKΛ .

By 1.1, G extends to

GΊ (\KΛ\xI,σx I)σeKΛ-*(X, Uσ)σeKΛ

which is a homotopy from an extension G'o of Go to Jx.

Define φ\\K\-+X by

\β I σ if a e ifx_4 ,

|GJ| if ^

It is easily seen that φ is a full realization of iΓ in X subordinate to
^ which extends a: \ L | —• X

The proof is complete.
For another interesting application of 1.1, cf. the proof of [4,

4.3, p. 249], the application occurring in [4, p. 251]. The theorem
proved there is used to characterize a metric space being ^-dominated
by simplicial complexes (for open coverings Ήf) in terms of LC pro-
perties. See also [4, 3.6, p. 277].

THEOREM 2.3. Suppose that (X, A) is a clean-cut pair. Then
X is an ANR if and only if A is an ANR.

Proof. If X is an ANR, then so is the closed neighborhood
retract A of X by standard ANR theory (also, cf. [4, 1.3, p. 206]).
Suppose now that A is an ANR. By [4, 3.2, p. 275] or [1, p. 364],
a metrizable space is an ANR if and only if it is LC. Hence X — A
and A are LC. By 2.2, X is LC. Thus X is an ANR.

3* Results for clean-cut block assemblages* The definitions
pertinent to this section are too long to be given here and may be
found in [4, p. 70] (for block assemblage), [4, p. 94] (for locally step-
finite), and [4, p. 207] (for clean-cut applied to block assemblages).
We remark here only that clean-cut block assemblage is essentially a
generalization of CW-complex, suitably embedded Euclidean cells being
replaced by suitably embedded ANRs.

THEOREM 3.1. Suppose that (X, &) is a locally step-finite
clean-cut block assemblage. Then X is an ANR.

Proof. The notation of [4, p. 70] will be used. By [4, 8.6, p.
98], X is metrizable. It suffices to show that Sμ is an ANRίov each
μ S v Assume the contray. Thus we have some μ ^ v with Sμ not
an ANR and with Sx an ANR for each λ < μ. I f μ = τ + 1, then
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Sy is an ANR and Sμ = (Bμ - Sy) U Sy is an ANR by [4, p. 207] and
2.3, contradiction. Hence μ has no immediate predecessor. Each point
of Sμ has Sλ for a neighborhood in Sμ, for some λ < μ (cf. [4, p. 94])»
Hence Sy is locally ANR. Hence Sμ is an ANR by [2, 19.2 or 19.3,
p. 341].

COROLLARY 3.2. Suppose that (X, &) is a clean-cut block as-
semblage with only finitely many blocks. Then X is an ANR.
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