NONNEGATIVE PROJECTIONS ON $C_{0}(X)$

G. L. Seever

Let X be a locally compact Hausdorff space, $C_{0}(X)$ the space of continuous real-valued functions on X which vanish at infinity, and let $C_{0}(X)$ be equipped with the supremum norm. Let $E: C_{0}(X) \rightarrow C_{0}(X)$ be a nonnegative projection $(x \geqq 0 \Rightarrow E x \geqq 0$; $\left.E^{2}=E\right)$ of norm 1. The first theorem states that $E(x E y)=$ $E(E x E y)$ for all $x, y \in C_{0}(X)$. Let $X_{0}=\bigcap\left\{x^{-1}[\{0\}]: x \geqq 0, E x=0\right\}$. The second theorem states (in part) that $M=E\left[C_{0}(X)\right]$ under the norm and order it inherits from $C_{0}(X)$ is a Banach lattice, that the mapping $x \rightarrow x \mid X_{0}$ (=restriction of x to X_{0}) is an isometric vector lattice homomorphism ($=$ linear map which preserves the lattice operations) of M onto a subalgebra of $C_{0}\left(X_{0}\right)$, and that for $t \in X_{0}, E(x E y)(t)=(E x E y)(t)$ for all $x, y \in C_{0}(X)$.

The paper concludes with a characterization of the conditional expectation operators L^{1} of a probability space.

The characterization is complementary to (and inspired by) one given by Moy [5; p. 61]. As a corollary to our first theorem we obtain the theorem of Kelley [2; p. 219] which states that $E\left[C_{0}(X)\right]$ is a subalgebra of $C_{0}(X)$ if and only if $E(x E y)=E x E y$ for all $x, y \in C_{0}(X)$.

Preliminaries. An M-space is a Banach lattice whose norm satisfies the condition $x, y \geqq 0 \Rightarrow\|x \vee y\|=\max (\|x\|,\|y\|) \quad(x \vee y$ is the maximum of x and y). An element u of a Banach lattice is a unit if and only if $\{x: 0 \leqq x \leqq u\}=\{x: x \geqq 0,\|x\| \leqq 1\}$. If a Banach lattice has a unit, it has only one and is an M-space.

Lemma 1. Let M be an M-space with unit u. Then
(i) $X=\left\{x^{*} \in M^{*}: x^{*} u=1, x^{*}\right.$ is a vector lattice homomorphism $\}$ is $\sigma\left(M^{*}, M\right)$-compact;
(ii) the natural mapping of M into $C(X)$ (X has the relative $\sigma\left(M^{*}, M\right)$-topology $)$ is an isometric vector lattice homomorphism onto.

If, in additions, M is order-complete ${ }^{1}$, then
(iii) X is Stonian ${ }^{2}$;
(iv) M is the (norm-)closed linear span of the set U of extreme points of $\{x \in M: 0 \leqq x \leqq u\}$, and $x \in M$ belongs to U if and only if $x \wedge(u-x)=0$.

[^0]Proof. (i) and (ii) are proved in [1] (pp. 1000-1006). (iii) is proved in [7] (p. 185). We now prove (iv). By (i)-(iii) we may assume that $M=C(X)$ for some Stonian $X . \quad x$ is an extreme point of $\{y \in C(X): 0 \leqq y \leqq 1\}$ if and only if it is the characteristic function of an open closed subset of X. This proves the second part of (iv). The linear span A of U is a subalgebra and (since X is totally disconnected) separates the points of X. By the Stone-Weierstrass Theorem A is dense in $C(X)$.

The adjoint of a Banach lattice with its natural norm and order $\left(x^{*} \geqq y^{*} \Leftrightarrow x^{*} x \geqq y^{*} x\right.$ for all $\left.x \geqq 0\right)$ is an order-complete Banach lattice (that the adjoint is a lattice is proved in [6], p. 36). In particular, if X is a locally compact Hausdorff space, then both $C_{0}(X)^{*}$ and $C_{0}(X)^{* *}$ are order-complete Banach lattices.

Lemma 2. Let X be a locally compact Hausdorff space. Then $C_{0}(X)^{* *}$ is an M-space with unit, and when it is equipped with the multiplication it so acquires, the natural embedding of $C_{0}(X)$ in $C_{0}(X)^{* *}$ is multiplicative.

Proof. The mapping $\mu \rightarrow\|\mu\|$ is additive and nonnegatively homogeneous on $\left\{\mu \in C_{0}(X)^{*}: \mu \geqq 0\right\}$ and so has a unique linear extension to all of $C_{0}(X)^{*}$. This extension, which we denote by 1 , is clearly a unit for $C_{0}(X)^{* *}$.

Let $\Omega=\left\{\xi \in C_{0}(X)^{* * *}: \xi 1=1, \xi\right.$ a vector lattice homomorphism $\}$. Let $\kappa: C_{0}(X) \rightarrow C_{0}(X)^{* *}$ be the natural embedding. We show the existence of a meagre subset H of Ω such that for x and y in $C_{0}(X), \kappa(x) \kappa(y)$ and $\kappa(x y)$, when regarded as functions on Ω, agree on $\Omega \sim H . \kappa$ is a vector lattice homomorphism [6; p. 39] so that for $\xi \in \Omega$, $\xi \circ \kappa$ is a vector lattice homomorphism, i.e., $\xi \circ \kappa$ is a nonnegative multiple of evaluation at some point of X. Thus if $\|\xi \circ \kappa\|=1$, then $\xi \circ \kappa$ is evaluation at some point of X and so is multiplicative. We now show that $H=$ $\{\xi \in \Omega:\|\xi \circ \kappa\|<1\}$ is meagre. Let $A=\{\kappa(x): x \geqq 0,\|x\| \leqq 1\}$. A is directed by \leqq and is bounded above. Thus $\mathrm{V} A$ ($=$ supremum of A in $\left.C_{0}(X)^{* *}\right)$ exists and for μ a nonnegative member of $C_{0}(X)^{*},(\mathrm{~V} A)(\mu)=$ $\sup _{f \in A} f(\mu) . \sup _{f \in_{A}} f(\mu)=\sup \{\mu(x): x \geqq 0,\|x\| \leqq 1\}=\|\mu\|=1(\mu)$ whenever $\mu \geqq 0$. Thus $\mathrm{V} A=1$. Since the supremum of a subset of $C(\Omega)$ and the pointwise supremum agree off some meagre set, we have $1=$ $\xi(1)=\sup \{\xi(f): f \in A\}=\sup \{(\xi \circ \kappa)(x): x \geqq 0,\|x\| \leqq 1\}=\|\xi \circ \kappa\| \quad$ save for ξ in some meagre set. Thus, $\kappa(x y)$ and $\kappa(x) \kappa(y)$, when regarded as functions on Ω, agree on $\Omega \sim H$, i.e., $\kappa(x y)=\kappa(x) \kappa(y)$

Lemma 3. Let X be a compact Hausdorff space, and let $E: C(X) \rightarrow$ $C(X)$ be a nonnegative projection of norm 1. Then $E[C(X)]$ with the norm and order it inherits from $C(X)$ is an M-space and has $E 1$
for a unit.
Proof. To show that $M=E[C(X)]$ is a vector lattice it is enough to prove that for $x \in M$, the maximum in M of x and 0 exists. Let $x \in M . \quad x^{+} \geqq x, 0 \Longrightarrow E x^{+} \geqq x, 0\left(x^{+}=x \vee 0\right)$. If $y \in M$, and $y \geqq x, 0$, then $y \geqq x^{+}$so that $y=E y \geqq E x^{+}$. Thus $E x^{+}$is the maximum in M of x and 0 . Let $u=E 1$. We show that for $x \in M,\|x\|=$ $\inf \{\alpha:-\alpha u \leqq x \leqq \alpha u\}$. This will show that M is a Banach lattice, and that u is a unit for M. Let $x \in M$. $-\|x\| \leqq x \leqq\|x\| \Rightarrow-\|x\| u=$ $E(-\|x\|) \leqq E x=x \leqq E(\|x\|)=\|x\| u ; \quad$ if $\quad-\alpha u \leqq x \leqq \alpha u$, then $-\alpha \leqq-\alpha u \leqq \alpha u \leqq \alpha$ so that $\alpha \geqq\|x\|$.

Main Theorems.

Theorem 1. Let X be a locally compact Hausdorff space, and let $E: C_{0}(X) \rightarrow C_{0}(X)$ be a nonnegative projection of norm 1. Then $E(x E y)=$ $E(E x E y)$ for all $x, y \in C_{0}(X)$.

Proof. We shall show that by passing to $E^{* *}$ and $C_{0}(X)^{* *}$ it is enough to prove the theorem under the additional hypotheses
(a) X is Stonian;
(b) if $\left\{x_{i}\right\}_{i \in I}$ is an increasing net in $C(X)$ with $x=\mathrm{V}_{i \in I} x_{i}$, then $E x=\mathrm{V}_{i \in I} E x_{i}$.
First we prove the theorem under the additional hypotheses. Let $M=$ $E[C(X)]$. If $\left\{x_{i}\right\}_{i \in I}$ is an increasing net in M with $\mathrm{V}_{i \in I} x_{i}=x \in C(X)$, then $E x=\mathrm{V}_{i \in I} E x_{i}=\mathrm{V}_{i \in I} x_{i}=x$ so that M is an order-complete M space with unit $u=E 1$. By Lemma $1 M$ is the closed linear span of the set \mathscr{U} of extreme points of $U=\{x \in M: 0 \leqq x \leqq u\}$. By the bilinearity and continuity of $(x, y) \rightarrow x y$ it is enough to prove that $E(x y)=E(x E y)$ whenever $x \in \mathscr{U}$ and $0 \leqq y \leqq 1$. Set $z=E(x y)-E(x E y)$. $x+z=E(x+x y-x E y)=E(x(1+y-E y))$, and, since $0 \leqq x \leqq 1$ and $1+y-E y \geqq 0$ (indeed, $1-E y \geqq 0$), we have $0 \leqq E(x(1+y-E y)) \leqq$ $E(1+y-E y)=E 1=u$. Thus $x+z \in U$. Similarly, $x-z \in U$. Since both $x+z$ and $x-z$ belong to U and $x \in \mathscr{C}$ we must have $z=0$. This proves the theorem under the additional hypotheses.

Now let X and E be as in the theorem. $E^{* *}$ is a nonnegative projection of norm 1, and by Lemmas 1 and 2 there is a Stonian space Ω such that $C_{0}(X)^{* *}=C(\Omega)$. Let $\left\{f_{i}\right\}_{i \in I}$ be an increasing net in $C_{0}(X)^{* *}$ with $f=\mathrm{V}_{i \in I} f_{i}$. For μ a nonnegative member of $C_{0}(X)^{*}, f(\mu)=$ $\sup _{i} f_{i}(\mu)=\lim _{i} f_{i}(\mu)$. Since any member of $C_{0}(X)^{*}$ is the difference of nonnegative members, we have $f(\mu)=\lim _{i} f_{i}(\mu)$ for all $\mu \in C_{0}(X)^{*}$. Since $E^{* *}$ is $\sigma\left(C_{0}(X)^{* *}, C_{0}(X)^{*}\right)$-continuous, $\left\{E^{* *} f_{i}\right\}_{i_{I} I} \sigma\left(C_{0}(X)^{* *}, C_{0}(X)^{*}\right)$ converges to $E^{* *} f$, which, together with the monotonicity of $\left\{E^{* *} f_{i}\right\}_{i \in I}$, implies that $E^{* *} f=\mathrm{V}_{i \in I} E^{* *} f_{i}$. Thus $E^{* *}$ and Ω satisfy the ad-
ditional hypotheses. Let $\kappa: C_{0}(X) \rightarrow C_{0}(X)^{* *}$ be the natural embedding. For $x, y \in C_{0}(X), \kappa(E(x E y))=E^{* *}(\kappa(x E y))=E^{* *}(\kappa(x) \kappa(E y))=$ $E^{* *}\left(\kappa(x) E^{* *}(\kappa(y))\right)=E^{* *}\left(E^{* *}(\kappa(x)) E^{* *}(\kappa(y))\right)=E^{* *}(\kappa(E x) \kappa(E y))=$ $E^{* *}(\kappa(E x E y))=\kappa(E(E x E y))$.

Corollary. (Kelley) $E\left[C_{0}(X)\right]$ is a subalgebra of $C_{0}(X)$ if and only if $E(x E y)=E x E y$ for all $x, y \in C_{0}(X)$.

Proof. $E\left[C_{0}(X)\right]$ is a subalgebra of $C_{0}(X)$ if and only if $E x E y=$ $E(E x E y)$ for all $x, y \in C_{0}(X)$.

Definition. Let L and M be vector lattices, and let $T: L \rightarrow M$ be a nonnegative linear map. $|\operatorname{Ker}|(T)=\{x \in L: T(|x|)=0\} \quad(|x|=$ $x \vee(-x))$.

Note that $|\operatorname{Ker}|(T)$ is a vector lattice ideal in L, that is, $|\operatorname{Ker}|(T)$ is a linear subspace of L and $x \in|\operatorname{Ker}|(T),|y| \leqq|x| \Rightarrow y \in|\operatorname{Ker}|(T)$.

Theorem 2. Let X be a locally compact Hausdorff space and $E: C_{0}(X) \rightarrow C_{0}(X)$ a nonnegative projection of norm 1. Let $X_{0}=$ $\bigcap\left\{x^{-1}[\{0\}]: x \in|\operatorname{Ker}|(E)\right\}, Y$ be the set of level sets (sets of constancy) of $M=E\left[C_{0}(X)\right], X_{1}=\bigcup\left\{A \in Y: A \cap X_{0} \neq Q\right\}$, and let $Z=\bigcap\left\{x^{-1}[\{0\}]:\right.$ $x \in M\}$. Then
(i) M with the norm and order it inherits from $C_{0}(X)$ is a Banach lattice;
(ii) $x \rightarrow x \mid X_{0}$ is an isometric vector lattice homomorphism from M to $C_{0}\left(X_{0}\right)$;
(iii) for $x, y \in M, x y\left|X_{0}=E(x y)\right| X_{0}$; in particular, $\left\{x \mid X_{0}: x \in M\right\}$ is a subalgebra of $C_{0}\left(X_{0}\right)$;
(iv) $X_{1} \cup Z=\left\{s \in X: E(x E y)(s)=(E x E y)(s)\right.$ for all $\left.x, y \in C_{0}(X)\right\}$.

Proof. We saw in the proof of Lemma 3 that M is a vector lattice under the order it inherits from $C_{0}(X)$. (ii) will imply that M is a Banach lattice. First we prove that $x \rightarrow x \mid X_{0}$ is a vector lattice homomorphism. Let $x \in M$. We have seen that the maximum of x and 0 in M is $E x^{+}$. Thus we must show that $E x^{+}\left|X_{0}=x^{+}\right| X_{0} . E x^{+} \geqq x$, $0 \Rightarrow E x^{+} \geqq x^{+} . E x^{+}-x^{+} \geqq 0, E\left(E x^{+}-x^{+}\right)=0 \Rightarrow E x^{+}-x^{+} \in|\operatorname{Ker}|(E) \Rightarrow$ $E x^{+}-x^{+}$vanishes on X_{0}. Thus $x \rightarrow x \mid X_{0}$ is a vector lattice homomorphism of M to $C_{0}\left(X_{0}\right)$. Note that $|\operatorname{Ker}|(E)$ is a closed algebraic ideal in $C_{0}(X)$ and so is equal $\left\{x \in C_{0}(X): x \mid X_{0}=0\right\}$. Let $y \in C_{0}(X)$ be an extension of $x \mid X_{0}$ with norm $\left\|x \mid X_{0}\right\|$. Since x and y agree on $X_{0}^{\prime}, E y=E x=x$. We thus have $\left\|x \mid X_{0}\right\|=\|y\| \geqq\|E y\|=\|x\| \geqq$ $\left\|x \mid X_{0}\right\|$. Thus $x \rightarrow x \mid X_{0}$ is an isometry from M into $C_{0}\left(X_{0}\right)$.

We first prove (iii) under the additional hypothesis that X is compact. $M_{0}=\left\{x \mid X_{0}: x \in M\right\}$ is a closed vector sublattice of $C\left(X_{0}\right)$. By
the proof of the Stone-Weierstrass theorem in [4] (p.8) M_{0} is a subalgebra if it contains the constants. For this it is enough to prove $1\left|X_{0}=E 1\right| X_{0} .1-E 1 \geqq 0, E(1-E 1)=0 \Rightarrow 1-E 1 \in|\operatorname{Ker}|(E) \Rightarrow 1-E 1$ vanishes on X_{0}. Now let $x, y \in M$. There exists $z \in M$ such that $z\left|X_{0}=x y\right| X_{0} . \quad x y$ and z agree on X_{0} so that $E(x y)=E z=z$. Thus $x y\left|X_{0}=E(x y)\right| X_{0}$.

Now let us return to the general case. $C_{0}(X)^{* *}=C(\Omega)$ for some compact Ω, and $E^{* *}$ is a nonnegative projection of norm 1. By the above $E^{* *}(f g)-f g \in|\operatorname{Ker}|\left(E^{* *}\right)$ whenever $f, g \in E^{* *}\left[C_{0}(X)^{* *}\right]$. In particular, if $x, y \in M$, then $E^{* *}(\kappa(x) \kappa(y))-\kappa(x) \kappa(y) \in|\operatorname{Ker}|\left(E^{* *}\right)$, where $\kappa: C_{0}(X) \rightarrow C_{0}(X)^{* *}$ is the natural embedding. Thus $0=$ $E^{* *}\left(\left|E^{* *}(\kappa(x) \kappa(y))-\kappa(x) \kappa(y)\right|\right)=E^{* *}\left(\left|E^{* *}(\kappa(x y))-\kappa(x y)\right|\right)=E^{* *}(\mid \kappa(E(x y)-$ $x y) \mid)=E^{* *}(\kappa(|E(x y)-x y|))=\kappa(E(|E(x y)-x y|))$ so that $E(\mid E(x y)-$ $x y \mid)=0$, i.e., $E(x y)-x y \in|\operatorname{Ker}|(E)$. Thus $E(x y)$ and $x y$ agree on X_{0} whenever $x, y \in M$.

Let the set on the right in (iv) be denoted by W. Clearly, $Z \subset W$. To prove that $X_{1} \subset W$ it is enough to prove that $X_{0} \subset W$. Let $x, y \in C_{0}(X)$. By (iii) ExEy and $E(E x E y)$ agree on X_{0} and by Theorem $1 E(E x E y)=E(x E y)$. Thus $E x E y$ and $E(x E y)$ agree on X_{0}. Now let $s \in W \sim Z$. Set $M_{0}=\left\{x \mid X_{0}: x \in M\right\}$. Let $\varphi \in M_{0}^{*}$ be defined by $\varphi\left(x \mid X_{0}\right)=x(s), x \in M$. For $x, y \in M, \varphi\left(\left(x \mid X_{0}\right)\left(y \mid X_{0}\right)\right)=\varphi\left(x y \mid X_{0}\right)=$ $\varphi\left(E(x y) \mid X_{0}\right)=E(x y)(s)=E(x E y)(s)=(E x E y(s)=(x y)(s)=\varphi(x) \varphi(y)$. Thus φ is a nonzero multiplicative linear functional on M_{0}. Therefore there exists $t \in X_{0}$ such that $\varphi\left(x \mid X_{0}\right)=x(t), x \in M$, i.e., the level set of M which contains s intersects X_{0}. Thus $s \in X_{1}$.

Definition. Let X be a locally compact Hausdorff space. For $t \in X, \delta_{t} \in C_{0}(X)^{*}$ is evaluation at t.

Corollary. Let $u(s)=\left\|E^{*} \hat{o}_{s}\right\|, s \in X$. Then $E\left[C_{0}(X)\right]$ is a vector sublattice of $C_{0}(X)$ if and only if $E x E y=u E(x E y)$ for all $x, y \in C_{0}(X)$.

Proof. Suppose $E\left[C_{0}(X)\right]$ is a vector sublattice of $C_{0}(X)$. Let $s \in X . \quad x \mid X_{0} \rightarrow x(s)$ is a vector lattice homomorphism of M_{0} to \boldsymbol{R} so that there exist $t \in X_{0}$ and $\alpha \in \boldsymbol{R}$ such that $x(s)=\alpha x(t)$ for all $x \in M$. $x \mid X_{0} \rightarrow x(t)$ is a linear functional of norm 1 on M_{0} so that $\left\|E^{*} \delta_{s}\right\|=$ $\sup \{x(s): x \in M,\|x\| \leqq 1, x \geqq 0\}=\alpha$ sup $\{x(t): x \in M,\|x\| \leqq 1, x \geqq 0\}=\alpha$. Thus $\quad \alpha=u(s)$. Let $\quad x, y \in C_{0}(X) . \quad u(s) E(x E y)(s)=u(s)^{2} E(x E y)(t)=$ $u(s)^{2}(E x)(t)(E y)(t)=(E x)(s)(E y)(s)=(E x E y)(s)$.

Now suppose that $E x E y=u E(x E y)$ for all $x, y \in C_{0}(X)$. First we show that $x, y \in M, x \wedge_{M} y=0 \Rightarrow x \wedge y=0 . \quad x \wedge_{M} y=0 \Rightarrow\left(x \mid X_{0}\right) \wedge$ $\left(y \mid X_{0}\right)=0 \Rightarrow x y \mid X_{0}=0, x, y \geqq 0 \Rightarrow E(x y)=0, x, y \geqq 0 \Rightarrow 0=u E(x y)=$ $E x E y=x y, x, y \Rightarrow x \wedge y=0$. Now let x be any element of M. $E x^{+}=x \vee^{k} 0$, $E x^{-}=(-x) \vee_{M} 0 \Rightarrow E x^{+} \wedge_{M} E x^{-}=0 \Rightarrow E x^{+} \wedge E x^{-}=0 . \quad x=E x^{+}-E x^{-}$
and $E x^{+} \wedge E x^{-}=0 \Rightarrow x^{+}=E x^{+}$and $x^{-}=E x^{-} .{ }^{3}$ Thus $x \in M \Rightarrow x^{+} \in M$, i.e., M is a vector sublattice of $C_{0}(X)$.

Examples. Let X be the discrete space $\{0,1,2\}$, and let $E_{i}: C(X) \rightarrow$ $C(X), i=1,2,3$, be defined by

$$
\begin{aligned}
& \left(E_{1} x\right)(s)=\left\{\begin{array}{ll}
x(s) & s=0,1 \\
\frac{1}{2}(x(0)+x(1)) & s=2
\end{array} \quad\left(E_{2} x\right)(s)= \begin{cases}\frac{1}{2} x(1) & s=0 \\
x(1) & s=1,2\end{cases} \right. \\
& \left(E_{3} x\right)(s)= \begin{cases}0 & s=0 \\
x(0)+x(1) & s=1 \\
x(2) & s=2\end{cases}
\end{aligned}
$$

E_{1}, E_{2}, and E_{3} are nonnegative projections on $C(X),\left\|E_{1}\right\|=\left\|E_{2}\right\|=1$, and $\left\|E_{3}\right\|=2 ; E_{1}[C(X)]$ is not a vector sublattice of $C(X) ; E_{2}[C(X)]$ is a vector sublattice of $C(X)$ but not a subalgebra; $E_{3}\left[C_{3}(X)\right]$ is a subalgebra of $C(X)$, but E_{3} does not satisfy the conclusion of Theorem 1.
(i) and (ii) were proved (essentially) by Lloyd [3; p. 172] for X compact. Specifically, let X be compact, and let E, M and Y be as in Theorem 2; let Y_{0} be the set of elements of Y at which evaluation is a nonzero extreme point of the nonnegative part of the unit ball of M^{*}; then Y_{0} is compact (when Y is equipped with the quotient topology), and the natural map of M to $C\left(Y_{0}\right)$ is an order-preserving isometry onto. It can be shown that $Y_{0}=\left\{A \in Y: A \cap X_{0} \neq 0\right\}$ so that (ii) follows from Lloyd's result.

An application. In this section (S, Σ, μ) is a probability space (i.e., (S, Σ, μ) is a totally finite measure space with $\mu(S)=1$). For Σ_{0} a σ-subalgebra of $\Sigma, E\left(\cdot, \Sigma_{0}\right): L^{1}(\mu) \rightarrow L^{1}(\mu)$ is defined by

$$
\left.\begin{array}{l}
E\left(x, \Sigma_{0}\right) \text { is } \Sigma_{0} \text {-measurable } \\
\int_{A} E\left(x, \Sigma_{0}\right) d \mu=\int_{A} x d \mu \text { for all } A \in \Sigma_{0}
\end{array}\right\} x \in L^{1}(\mu),
$$

that is, $E\left(x, \Sigma_{0}\right)$ is the Radon-Nikodým derivative of $(x \cdot \mu) \mid \Sigma_{0}$ with respect to $\mu \mid \Sigma_{0}\left(x \cdot \mu\right.$ is defined by $\left.(x \cdot \mu)(A)=\int_{A} x d \mu, A \in \Sigma\right) . \quad E\left(\cdot, \Sigma_{0}\right)$ is the conditional expectation operator of Σ_{0}. The object of this section is to characterize all such operators.

Lemma 4. Let M be an order complete vector sublattice of $L^{\infty}(\mu)$ which contains 1. Then there is a σ-subalgebra Σ_{0} of Σ such that $M=\left\{x \in L^{\infty}(\mu): x\right.$ is Σ_{0}-measurable $\}$.

[^1]Proof. M is an order-complete M-space with unit and so by Lemma 1 is the closed linear space of the set U of extreme points of the nonnegative part of its unit ball. $U=\{x \in M: x \wedge(1-x)=0\}$. Thus $U=\left\{\chi_{4}: A \in \Sigma\right\} \cap M^{4}$. Set $\Sigma_{0}=\left\{A \in \Sigma: \chi_{A} \in M\right\}$. That Σ_{0} is a σ-subalgebra of Σ follows easily from the fact that M is an order-complete vector sublattice of $L^{\infty}(\mu)$. The closed linear span of U is thus the set of Σ_{0}-measurable members of $L^{\infty}(\mu)$.

Lemma 5. Let $T: L^{1}(\mu) \rightarrow L^{1}(\mu)$ be a linear map of norm 1 such that $T 1=1$. Then T is nonnegative, and $\int T x d \mu=\int x d \mu$ for all $x \in L^{1}(\mu)$.

Proof. Let $x \in L^{1}(\mu), \quad 1 \geqq x \geqq 0 . \quad 1-\int x d \mu=\|1-x\|_{1} \geqq$ $\|T(1-x)\|_{1}=\int 1-T x \mid d \mu \geqq 1-\int T x d \mu$ so that $\int x d \mu \leqq \int T x d \mu \leqq$
$\int T x \mid d \mu=\|T x\|_{1} \leqq\|x\|_{1}=\int x d \mu$. Thus, $0 \leqq x \leqq 1 \Rightarrow \int x d \mu=\int T x \mid d \mu=$ $\int T x d \mu$. The second equality shows that $T x \geqq 0$ whenever $1 \geqq x \geqq 0$, and it follows immediately that T is nonnegative. The equality of $\int x d \mu$ and $\int T x d \mu$ for $0 \leqq x \leqq 1$ implies equality for all $x \in L^{1}(\mu)$.

Theorem 3. Let $E: L^{1}(\mu) \rightarrow L^{1}(\mu)$ be a projection of norm 1 such that $E 1=1$. Then there is a σ-subalgebra Σ_{0} of Σ such that $E=E\left(\cdot, \Sigma_{0}\right)$.

Proof. By Lemma $5 E$ is nonnegative. Since $E 1=1$ and $E>0$, E maps $L^{\infty}(\mu)$ into $L^{\infty}(\mu)$. The restriction E_{0} of E to $L^{\infty}(\mu)$ is thus a nonnegative projection of norm 1 . We first show that $|\operatorname{Ker}|\left(E_{0}\right)=\{0\}$. Let $x \geqq 0$, and suppose $E_{0} x=0$. Since $1 \wedge x=0 \Rightarrow x=0$, and since $E_{0}(1 \wedge x)=0$, we may assume $0 \leqq x \leqq 1$. $1-\int x d \mu=\|1-x\|_{1} \geqq$ $\left\|E_{0}(1-x)\right\|_{1}=\|E 1\|_{1}=1$. Thus $x=0 . \quad L^{\infty}(\mu)=C(\Omega)$ for some compact Ω so that we may apply Theorem 2. Thus $E_{0}\left(x E_{0} y\right)=E_{0} x E_{0} y$ for all $x, y \in L^{\infty}(\mu)$, and $E_{0}\left[L^{\infty}(\mu)\right]=M$ is a vector sublattice of $L^{\infty}(\mu)$. We assert that M is an order-complete vector sublattice. Let $\left\{x_{i}\right\}_{i \in I}$ be an increasing net in M with $x=\mathrm{V}_{i \in I} x_{i}$. $\left\{x_{i}\right\}_{i \in I} L^{1}$-converges to x so that $E_{0} x=L^{1}-\lim _{i} E_{0} x_{i}=L^{1}-\lim _{i} x_{i}=x$, i.e., $x \in M$. By Lemma 4 there is a σ-subalgebra Σ_{0} of Σ such that $M=\left\{x \in L^{\infty}(\mu): x\right.$ is $\Sigma_{0^{-}}$ measurable\}. We conclude the proof by showing that E and $E\left(\cdot, \Sigma_{0}\right)$ agree on $L^{\infty}(\mu)$. Let $x \in L^{\infty}(\mu)$. $E x$ and $E\left(x, \Sigma_{0}\right)$ are Σ_{0}-measurable and so are equal if and only if $\int_{A} E\left(x, \Sigma_{0}\right) d \mu=\int_{A} E x d \mu$ for all $A \in \Sigma_{0}$. Let $A \in \Sigma_{0} . \int_{A} E x d \mu=\int \chi_{A} E x d \mu=\int_{A} E\left(\chi_{A}\right) E x d \mu=\int_{A} E\left(x E \chi_{A}\right) d \mu=\int E\left(x \chi_{A}\right) d \mu=$
${ }^{4}$ We identify bounded $\stackrel{L}{ }$-measurable functions and the corresponding elements of $L^{\infty}(\mu)$.

$$
\int x \chi_{A} d \mu=\int_{A} x d \mu=\int_{A} E\left(x, \Sigma_{0}\right) d \mu
$$

Corollary. (Moy) Let $E: L^{1}(\ell) \rightarrow L^{1}(\not \ell)$ be a linear map of norm 1 such that
(a) $E 1=1$;
(b) $E(x E y)=E x E y$ for all $x, y \in L^{\infty}(\mu)$.

Then there is a σ-subalgebra Σ_{0} or Σ such that $E=E\left(\cdot, \Sigma_{0}\right)$.
Proof. For $x \in L^{\infty}(\sigma), E^{2} x=E(1 E x)=E 1 E x=E x$. Thus E^{2} and E agree on $L^{\infty}(\mu)$, i.e. E is a projection.

Remark. As was mentioned in the introduction, Theorem 3 was inspired by Moy's theorem. In particular, had Moy's theorem required that E be nonnegative, it would never have occurred to me that the condition of nonnegativeness could be dropped. The proof of Theorem 3 can, of course, be much shortened by using Moy's theorem. However, our proof is substantially different from hers and for this reason is given.

References

1. S. Kakutani, Concret representations of abstract M-spaces (a characterization of the spaces of continuous functions), Ann. of Math. 2 (1941), 994-1024.
2. J. L. Kelley, Averaging operators on $C_{\infty}(X)$, III. J. Math. 2 (1958), 214-223.
3. S. P. Lloyd, On certain projections in spaces of continuous functions, Pacific J. Math. 13 (1963), 171-175.
4. L. H. Loomis, Abstract Harmonic Analysis, van Nostrand, New York, 1963.
5. Shu-Teh Chen, Moy, Characterizations of conditional expectation as a transformation on function spaces, Pacific J. Math. 4 (1954), 47-64.
6. I. Namioka, Partially ordered linear topological spaces, Mem. Amer. Math. Soc. No. 24 (1957).
7. M. H. Stone, Boundedness properties in function lattices, Canad. J. Math. 1 (1949), 176-186.

University of California, Los Angeles

[^0]: Received October 23, 1964.
 ${ }^{1}$ That is, as a lattice M is conditionally complete.
 ${ }^{2} X$ is Stonian if and only if it is compact and its open subsets have open closures.

[^1]: ${ }^{3}$ If L is any vector lattice, $x \in L, u, v \in L, u \wedge v=0$, and if $x=u-v$, ther $u=x^{+}$and $v=x^{-}$.

