NONNEGATIVE PROJECTIONS ON $C_0(X)$

G. L. SEEVER

Let X be a locally compact Hausdorff space, $C_0(X)$ the space of continuous real-valued functions on X which vanish at infinity, and let $C_0(X)$ be equipped with the supremum norm. Let $E: C_0(X) \rightarrow C_0(X)$ be a nonnegative projection $(x \ge 0 \Rightarrow Ex \ge 0;$ $E^2 = E)$ of norm 1. The first theorem states that E(xEy) =E(ExEy) for all $x, y \in C_0(X)$. Let $X_0 = \bigcap \{x^{-1}[\{0\}]: x \ge 0, Ex = 0\}$. The second theorem states (in part) that $M = E[C_0(X)]$ under the norm and order it inherits from $C_0(X)$ is a Banach lattice, that the mapping $x \rightarrow x \mid X_0$ (=restriction of x to X_0) is an isometric vector lattice homomorphism (=linear map which preserves the lattice operations) of M onto a subalgebra of $C_0(X_0)$, and that for $t \in X_0$, E(xEy)(t) = (ExEy)(t) for all $x, y \in C_0(X)$.

The paper concludes with a characterization of the conditional expectation operators L^1 of a probability space.

The characterization is complementary to (and inspired by) one given by Moy [5; p. 61]. As a corollary to our first theorem we obtain the theorem of Kelley [2; p. 219] which states that $E[C_0(X)]$ is a subalgebra of $C_0(X)$ if and only if E(xEy) = ExEy for all $x, y \in C_0(X)$.

Preliminaries. An *M*-space is a Banach lattice whose norm satisfies the condition $x, y \ge 0 \Rightarrow ||x \lor y|| = \max(||x||, ||y||)$ $(x \lor y)$ is the maximum of x and y). An element u of a Banach lattice is a *unit* if and only if $\{x: 0 \le x \le u\} = \{x: x \ge 0, ||x|| \le 1\}$. If a Banach lattice has a unit, it has only one and is an *M*-space.

LEMMA 1. Let M be an M-space with unit u. Then

(i) $X = \{x^* \in M^* : x^*u = 1, x^* \text{ is a vector lattice homomorphism}\}$ is $\sigma(M^*, M)$ -compact;

(ii) the natural mapping of M into C(X) (X has the relative $\sigma(M^*, M)$ -topology) is an isometric vector lattice homomorphism onto.

If, in additions, M is order-complete¹, then

(iii) X is $Stonian^2$;

(iv) *M* is the (norm-)closed linear span of the set *U* of extreme points of $\{x \in M: 0 \leq x \leq u\}$, and $x \in M$ belongs to *U* if and only if $x \wedge (u - x) = 0$.

¹ That is, as a lattice M is conditionally complete.

Received October 23, 1964.

 $^{^2}$ X is Stonian if and only if it is compact and its open subsets have open closures.

Proof. (i) and (ii) are proved in [1] (pp. 1000-1006). (iii) is proved in [7] (p. 185). We now prove (iv). By (i)-(iii) we may assume that M = C(X) for some Stonian X. x is an extreme point of $\{y \in C(X): 0 \leq y \leq 1\}$ if and only if it is the characteristic function of an open closed subset of X. This proves the second part of (iv). The linear span A of U is a subalgebra and (since X is totally disconnected) separates the points of X. By the Stone-Weierstrass Theorem A is dense in C(X).

The adjoint of a Banach lattice with its natural norm and order $(x^* \ge y^* \Leftrightarrow x^*x \ge y^*x$ for all $x \ge 0$ is an order-complete Banach lattice (that the adjoint is a lattice is proved in [6], p. 36). In particular, if X is a locally compact Hausdorff space, then both $C_0(X)^*$ and $C_0(X)^{**}$ are order-complete Banach lattices.

LEMMA 2. Let X be a locally compact Hausdorff space. Then $C_0(X)^{**}$ is an M-space with unit, and when it is equipped with the multiplication it so acquires, the natural embedding of $C_0(X)$ in $C_0(X)^{**}$ is multiplicative.

Proof. The mapping $\mu \to ||\mu||$ is additive and nonnegatively homogeneous on $\{\mu \in C_0(X)^* : \mu \ge 0\}$ and so has a unique linear extension to all of $C_0(X)^*$. This extension, which we denote by 1, is clearly a unit for $C_0(X)^{**}$.

Let $\Omega = \{\xi \in C_0(X)^{***}: \xi = 1, \xi \text{ a vector lattice homomorphism}\}.$ Let $\kappa: C_0(X) \to C_0(X)^{**}$ be the natural embedding. We show the existence of a meagre subset H of Ω such that for x and y in $C_0(X)$, $\kappa(x)\kappa(y)$ and $\kappa(xy)$, when regarded as functions on Ω , agree on $\Omega \sim H$. κ is a vector lattice homomorphism [6; p. 39] so that for $\xi \in \Omega$, $\xi \circ \kappa$ is a vector lattice homomorphism, i.e., $\xi \circ \kappa$ is a nonnegative multiple of evaluation at some point of X. Thus if $||\xi \circ \kappa|| = 1$, then $\xi \circ \kappa$ is evaluation at some point of X and so is multiplicative. We now show that H = $\{\xi \in \Omega : || \xi \circ \kappa || < 1\}$ is meagre. Let $A = \{\kappa(x) : x \ge 0, ||x|| \le 1\}$. A is directed by \leq and is bounded above. Thus $\bigvee A$ (=supremum of A in $C_0(X)^{**}$ exists and for μ a nonnegative member of $C_0(X)^*$, $(\mathbf{V}A)(\mu) =$ $\sup_{f \in A} f(\mu)$. $\sup_{f \in A} f(\mu) = \sup \{\mu(x) : x \ge 0, ||x|| \le 1\} = ||\mu|| = 1(\mu)$ whenever $\mu \ge 0$. Thus $\mathbf{V}A = 1$. Since the supremum of a subset of $C(\Omega)$ and the pointwise supremum agree off some meagre set, we have 1 = $\xi(1) = \sup \left\{ \xi(f) \colon f \in A \right\} = \sup \left\{ (\xi \circ \kappa)(x) \colon x \ge 0, \, || \, x \, || \le 1 \right\} = || \, \xi \circ \kappa \, || \quad \text{save}$ for ξ in some meagre set. Thus, $\kappa(xy)$ and $\kappa(x)\kappa(y)$, when regarded as functions on Ω , agree on $\Omega \sim H$, i.e., $\kappa(xy) = \kappa(x)\kappa(y)$

LEMMA 3. Let X be a compact Hausdorff space, and let $E: C(X) \rightarrow C(X)$ be a nonnegative projection of norm 1. Then E[C(X)] with the norm and order it inherits from C(X) is an M-space and has E1

for a unit.

Proof. To show that M = E[C(X)] is a vector lattice it is enough to prove that for $x \in M$, the maximum in M of x and 0 exists. Let $x \in M$. $x^+ \ge x$, $0 \Longrightarrow Ex^+ \ge x$, $0(x^+ = x \lor 0)$. If $y \in M$, and $y \ge x$, 0, then $y \ge x^+$ so that $y = Ey \ge Ex^+$. Thus Ex^+ is the maximum in M of x and 0. Let u = E1. We show that for $x \in M$, ||x|| =inf $\{\alpha: -\alpha u \le x \le \alpha u\}$. This will show that M is a Banach lattice, and that u is a unit for M. Let $x \in M$. $-||x|| \le x \le ||x|| \Longrightarrow -||x|| u =$ $E(-||x||) \le Ex = x \le E(||x||) = ||x|| u$; if $-\alpha u \le x \le \alpha u$, then $-\alpha \le -\alpha u \le \alpha u \le \alpha$ so that $\alpha \ge ||x||$.

Main Theorems.

THEOREM 1. Let X be a locally compact Hausdorff space, and let $E: C_0(X) \rightarrow C_0(X)$ be a nonnegative projection of norm 1. Then E(xEy) = E(ExEy) for all $x, y \in C_0(X)$.

Proof. We shall show that by passing to E^{**} and $C_0(X)^{**}$ it is enough to prove the theorem under the additional hypotheses

(a) X is Stonian;

(b) if $\{x_i\}_{i \in I}$ is an increasing net in C(X) with $x = \bigvee_{i \in I} x_i$, then $Ex = \bigvee_{i \in I} Ex_i$.

First we prove the theorem under the additional hypotheses. Let M = E[C(X)]. If $\{x_i\}_{i \in I}$ is an increasing net in M with $\bigvee_{i \in I} x_i = x \in C(X)$, then $Ex = \bigvee_{i \in I} Ex_i = \bigvee_{i \in I} x_i = x$ so that M is an order-complete M-space with unit u = E1. By Lemma 1 M is the closed linear span of the set \mathscr{U} of extreme points of $U = \{x \in M: 0 \leq x \leq u\}$. By the bilinearity and continuity of $(x, y) \to xy$ it is enough to prove that E(xy) = E(xEy) whenever $x \in \mathscr{U}$ and $0 \leq y \leq 1$. Set z = E(xy) - E(xEy). x + z = E(x + xy - xEy) = E(x(1 + y - Ey)), and, since $0 \leq x \leq 1$ and $1 + y - Ey \geq 0$ (indeed, $1 - Ey \geq 0$), we have $0 \leq E(x(1 + y - Ey)) \leq E(1 + y - Ey) = E1 = u$. Thus $x + z \in U$. Similarly, $x - z \in U$. Since both x + z and x - z belong to U and $x \in \mathscr{U}$ we must have z = 0. This proves the theorem under the additional hypotheses.

Now let X and E be as in the theorem. E^{**} is a nonnegative projection of norm 1, and by Lemmas 1 and 2 there is a Stonian space Ω such that $C_0(X)^{**} = C(\Omega)$. Let $\{f_i\}_{i \in I}$ be an increasing net in $C_0(X)^{**}$ with $f = \bigvee_{i \in I} f_i$. For μ a nonnegative member of $C_0(X)^*$, $f(\mu) =$ $\sup_i f_i(\mu) = \lim_i f_i(\mu)$. Since any member of $C_0(X)^*$ is the difference of nonnegative members, we have $f(\mu) = \lim_i f_i(\mu)$ for all $\mu \in C_0(X)^*$. Since E^{**} is $\sigma(C_0(X)^{**}, C_0(X)^*)$ -continuous, $\{E^{**}f_i\}_{i\in I}\sigma(C_0(X)^{**}, C_0(X)^*)$ converges to $E^{**}f$, which, together with the monotonicity of $\{E^{**}f_i\}_{i\in I}$, implies that $E^{**}f = \bigvee_{i\in I} E^{**}f_i$. Thus E^{**} and Ω satisfy the additional hypotheses. Let $\kappa: C_0(X) \to C_0(X)^{**}$ be the natural embedding. For $x, y \in C_0(X)$, $\kappa(E(xEy)) = E^{**}(\kappa(xEy)) = E^{**}(\kappa(x)\kappa(Ey)) = E^{**}(\kappa(x)E^{**}(\kappa(y))) = E^{**}(\kappa(x)E^{**}(\kappa(y))) = E^{**}(\kappa(ExEy)) = E^{**}(\kappa(ExEy) = E^{**}(\kappa(ExEy)) = E^{**}(\kappa(ExEy)) = E^{**}(\kappa(ExEy)) = E^{**}(\kappa(ExEy)) = E^{**}(\kappa(ExEy) = E^{**}(\kappa(ExEy)) = E^{**}(\kappa(ExEy)) = E^{**}(\kappa(ExEy)) = E^{**}(\kappa(ExEy)) = E^{**}(\kappa(ExEy) = E^{**}(\kappa(ExEy)) = E^{**}(\kappa(ExEy)) = E^{**}(\kappa(ExEy) = E^{**}(\kappa(ExEy)) = E^{**}(\kappa(ExEy) = E^{**}(\kappa(ExEy)) = E^{**}(\kappa(ExEy) = E^{**}(\kappa(ExEy)) = E^{**}(\kappa(ExEy)) = E^{**}(\kappa(ExEy) = E^{**}(\kappa(ExEy)) = E^{**}(\kappa(ExEy) = E^{**}(\kappa(ExEy)) = E^{**}(\kappa(ExEy) = E^{**}(\kappa(ExEy))$

COROLLARY. (Kelley) $E[C_0(X)]$ is a subalgebra of $C_0(X)$ if and only if E(xEy) = ExEy for all $x, y \in C_0(X)$.

Proof. $E[C_0(X)]$ is a subalgebra of $C_0(X)$ if and only if ExEy = E(ExEy) for all $x, y \in C_0(X)$.

DEFINITION. Let L and M be vector lattices, and let $T: L \to M$ be a nonnegative linear map. $|\operatorname{Ker}|(T) = \{x \in L: T(|x|) = 0\} (|x| = x \lor (-x)).$

Note that $|\operatorname{Ker}|(T)$ is a vector lattice ideal in L, that is, $|\operatorname{Ker}|(T)$ is a linear subspace of L and $x \in |\operatorname{Ker}|(T)$, $|y| \leq |x| \Rightarrow y \in |\operatorname{Ker}|(T)$.

THEOREM 2. Let X be a locally compact Hausdorff space and $E: C_0(X) \to C_0(X)$ a nonnegative projection of norm 1. Let $X_0 = \bigcap \{x^{-1}[\{0\}]: x \in | \operatorname{Ker} | (E)\}, Y$ be the set of level sets (sets of constancy) of $M = E[C_0(X)], X_1 = \bigcup \{A \in Y: A \cap X_0 \neq \emptyset\}$, and let $Z = \bigcap \{x^{-1}[\{0\}]: x \in M\}$. Then

(i) M with the norm and order it inherits from $C_0(X)$ is a Banach lattice;

(ii) $x \to x \mid X_0$ is an isometric vector lattice homomorphism from M to $C_0(X_0)$;

(iii) for $x, y \in M$, $xy \mid X_0 = E(xy) \mid X_0$; in particular, $\{x \mid X_0 : x \in M\}$ is a subalgebra of $C_0(X_0)$;

(iv) $X_1 \cup Z = \{s \in X: E(xEy)(s) = (ExEy)(s) \text{ for all } x, y \in C_0(X)\}.$

Proof. We saw in the proof of Lemma 3 that M is a vector lattice under the order it inherits from $C_0(X)$. (ii) will imply that M is a Banach lattice. First we prove that $x \to x \mid X_0$ is a vector lattice homomorphism. Let $x \in M$. We have seen that the maximum of x and 0 in M is Ex^+ . Thus we must show that $Ex^+ \mid X_0 = x^+ \mid X_0$. $Ex^+ \ge x$, $0 \Rightarrow Ex^+ \ge x^+$. $Ex^+ - x^+ \ge 0$, $E(Ex^+ - x^+) = 0 \Rightarrow Ex^+ - x^+ \in |\text{Ker}|(E) \Rightarrow$ $Ex^+ - x^+$ vanishes on X_0 . Thus $x \to x \mid X_0$ is a vector lattice homomorphism of M to $C_0(X_0)$. Note that |Ker|(E) is a closed algebraic ideal in $C_0(X)$ and so is equal $\{x \in C_0(X): x \mid X_0 = 0\}$. Let $y \in C_0(X)$ be an extension of $x \mid X_0$ with norm $||x| \mid X_0||$. Since x and y agree on $X_0, Ey = Ex = x$. We thus have $||x| \mid X_0|| = ||y|| \ge ||Ey|| = ||x|| \ge$ $||x| \mid X_0||$. Thus $x \to x \mid X_0$ is an isometry from M into $C_0(X_0)$.

We first prove (iii) under the additional hypothesis that X is compact. $M_0 = \{x \mid X_0 : x \in M\}$ is a closed vector sublattice of $C(X_0)$. By

162

the proof of the Stone-Weierstrass theorem in [4] (p. 8) M_0 is a subalgebra if it contains the constants. For this it is enough to prove $1 | X_0 = E1 | X_0$, $1 - E1 \ge 0$, $E(1 - E1) = 0 \Longrightarrow 1 - E1 \in |\text{Ker}|(E) \Longrightarrow 1 - E1$ vanishes on X_0 . Now let $x, y \in M$. There exists $z \in M$ such that $z | X_0 = xy | X_0$. xy and z agree on X_0 so that E(xy) = Ez = z. Thus $xy | X_0 = E(xy) | X_0$.

Now let us return to the general case. $C_0(X)^{**} = C(\Omega)$ for some compact Ω , and E^{**} is a nonnegative projection of norm 1. By the above $E^{**}(fg) - fg \in |\operatorname{Ker}| (E^{**})$ whenever $f, g \in E^{**}[C_0(X)^{**}]$. In particular, if $x, y \in M$, then $E^{**}(\kappa(x)\kappa(y)) - \kappa(x)\kappa(y) \in |\operatorname{Ker}| (E^{**})$, where $\kappa: C_0(X) \to C_0(X)^{**}$ is the natural embedding. Thus $0 = E^{**}(|E^{**}(\kappa(x)\kappa(y)) - \kappa(x)\kappa(y)|) = E^{**}(|E^{**}(\kappa(xy)) - \kappa(xy)|) = E^{**}(|\kappa(E(xy) - xy)|) = E^{**}(|\kappa(|E(xy) - xy|)) = \kappa(E(|E(xy) - xy|))$ so that E(|E(xy) - xy|) = 0, i.e., $E(xy) - xy \in |\operatorname{Ker}| (E)$. Thus E(xy) and xy agree on X_0 whenever $x, y \in M$.

Let the set on the right in (iv) be denoted by W. Clearly, $Z \subset W$. To prove that $X_1 \subset W$ it is enough to prove that $X_0 \subset W$. Let $x, y \in C_0(X)$. By (iii) ExEy and E(ExEy) agree on X_0 and by Theorem 1 E(ExEy) = E(xEy). Thus ExEy and E(xEy) agree on X_0 . Now let $s \in W \sim Z$. Set $M_0 = \{x \mid X_0 : x \in M\}$. Let $\varphi \in M_0^*$ be defined by $\varphi(x \mid X_0) = x(s), x \in M$. For $x, y \in M, \varphi((x \mid X_0)(y \mid X_0)) = \varphi(xy \mid X_0) = \varphi(E(xy) \mid X_0) = E(xy)(s) = E(xEy)(s) = (ExEy(s) = (xy)(s) = \varphi(x)\varphi(y)$. Thus φ is a nonzero multiplicative linear functional on M_0 . Therefore there exists $t \in X_0$ such that $\varphi(x \mid X_0) = x(t), x \in M$, i.e., the level set of M which contains s intersects X_0 . Thus $s \in X_1$.

DEFINITION. Let X be a locally compact Hausdorff space. For $t \in X$, $\delta_t \in C_0(X)^*$ is evaluation at t.

COROLLARY. Let $u(s) = || E^* \delta_s ||, s \in X$. Then $E[C_0(X)]$ is a vector sublattice of $C_0(X)$ if and only if ExEy = uE(xEy) for all $x, y \in C_0(X)$.

Proof. Suppose $E[C_0(X)]$ is a vector sublattice of $C_0(X)$. Let $s \in X$. $x \mid X_0 \to x(s)$ is a vector lattice homomorphism of M_0 to R so that there exist $t \in X_0$ and $\alpha \in R$ such that $x(s) = \alpha x(t)$ for all $x \in M$. $x \mid X_0 \to x(t)$ is a linear functional of norm 1 on M_0 so that $||E^*\delta_s|| = \sup \{x(s): x \in M, ||x|| \le 1, x \ge 0\} = \alpha \sup \{x(t): x \in M, ||x|| \le 1, x \ge 0\} = \alpha$. Thus $\alpha = u(s)$. Let $x, y \in C_0(X)$. $u(s)E(xEy)(s) = u(s)^2E(xEy)(t) = u(s)^2(Ex)(t)(Ey)(t) = (Ex)(s)(Ey)(s) = (ExEy)(s)$.

Now suppose that ExEy = uE(xEy) for all $x, y \in C_0(X)$. First we show that $x, y \in M, x \wedge_M y = 0 \Rightarrow x \wedge y = 0$. $x \wedge_M y = 0 \Rightarrow (x \mid X_0) \wedge (y \mid X_0) = 0 \Rightarrow xy \mid X_0 = 0, x, y \ge 0 \Rightarrow E(xy) = 0, x, y \ge 0 \Rightarrow 0 = uE(xy) = ExEy = xy, x, y \Rightarrow x \wedge y = 0$. Now let x be any element of M. $Ex^+ = x \vee_M 0$, $Ex^- = (-x) \vee_M 0 \Rightarrow Ex^+ \wedge_M Ex^- = 0 \Rightarrow Ex^+ \wedge Ex^- = 0$. $x = Ex^+ - Ex^-$

and $Ex^+ \wedge Ex^- = 0 \Longrightarrow x^+ = Ex^+$ and $x^- = Ex^-$.³ Thus $x \in M \Longrightarrow x^+ \in M$, i.e., M is a vector sublattice of $C_0(X)$.

EXAMPLES. Let X be the discrete space $\{0, 1, 2\}$, and let $E_i: C(X) \rightarrow C(X)$, i = 1, 2, 3, be defined by

$$(E_1 x)(s) = egin{cases} x(s) & s = 0, 1 \ rac{1}{2} (x(0) + x(1)) \ s = 2 \ \end{array} (E_2 x)(s) = egin{cases} rac{1}{2} x(1) & s = 0 \ x(1) & s = 1, 2 \ \end{array} \ (E_3 x)(s) = egin{cases} 0 & s = 0 \ x(0) + x(1) \ s = 1 \ x(2) & s = 2 \ \end{array}$$

 E_1, E_2 , and E_3 are nonnegative projections on C(X), $||E_1|| = ||E_2|| = 1$, and $||E_3|| = 2$; $E_1[C(X)]$ is not a vector sublattice of C(X); $E_2[C(X)]$ is a vector sublattice of C(X) but not a subalgebra; $E_3[C_3(X)]$ is a subalgebra of C(X), but E_3 does not satisfy the conclusion of Theorem 1.

(i) and (ii) were proved (essentially) by Lloyd [3; p. 172] for X compact. Specifically, let X be compact, and let E, M and Y be as in Theorem 2; let Y_0 be the set of elements of Y at which evaluation is a nonzero extreme point of the nonnegative part of the unit ball of M^* ; then Y_0 is compact (when Y is equipped with the quotient topology), and the natural map of M to $C(Y_0)$ is an order-preserving isometry onto. It can be shown that $Y_0 = \{A \in Y: A \cap X_0 \neq 0\}$ so that (ii) follows from Lloyd's result.

An application. In this section (S, Σ, μ) is a probability space (i.e., (S, Σ, μ) is a totally finite measure space with $\mu(S) = 1$). For Σ_{\circ} a σ -subalgebra of Σ , $E(\cdot, \Sigma_{\circ}): L^{1}(\mu) \to L^{1}(\mu)$ is defined by

$$E(x, \Sigma_0) ext{ is } \Sigma_0 ext{-measurable} \ \int_A E(x, \Sigma_0) d\mu = \int_A x d\mu ext{ for all } A \in \Sigma_0 igg\} x \in L^1(\mu) \ ,$$

that is, $E(x, \Sigma_0)$ is the Radon-Nikodým derivative of $(x \cdot \mu) | \Sigma_0$ with respect to $\mu | \Sigma_0 (x \cdot \mu)$ is defined by $(x \cdot \mu)(A) = \int_A x d\mu, A \in \Sigma$. $E(\cdot, \Sigma_0)$ is the conditional expectation operator of Σ_0 . The object of this section is to characterize all such operators.

LEMMA 4. Let M be an order complete vector sublattice of $L^{\infty}(\mu)$ which contains 1. Then there is a σ -subalgebra Σ_0 of Σ such that $M = \{x \in L^{\infty}(\mu) : x \text{ is } \Sigma_0\text{-measurable}\}.$

164

³ If L is any vector lattice, $x \in L$, $u, v \in L$, $u \wedge v = 0$, and if x = u - v, then $u = x^+$ and $v = x^-$.

Proof. M is an order-complete M-space with unit and so by Lemma 1 is the closed linear space of the set U of extreme points of the nonnegative part of its unit ball. $U = \{x \in M: x \land (1 - x) = 0\}$. Thus $U = \{\chi_A: A \in \Sigma\} \cap M^4$. Set $\Sigma_0 = \{A \in \Sigma: \chi_A \in M\}$. That Σ_0 is a σ -subalgebra of Σ follows easily from the fact that M is an order-complete vector sublattice of $L^{\infty}(\mu)$. The closed linear span of U is thus the set of Σ_0 -measurable members of $L^{\infty}(\mu)$.

LEMMA 5. Let $T: L^{1}(\mu) \rightarrow L^{1}(\mu)$ be a linear map of norm 1 such that T1 = 1. Then T is nonnegative, and $\int Txd\mu = \int xd\mu$ for all $x \in L^{1}(\mu)$.

Proof. Let $x \in L^{1}(\mu)$, $1 \ge x \ge 0$. $1 - \int x d\mu = ||1 - x||_{1} \ge ||T(1 - x)||_{1} = \int ||1 - Tx| d\mu \ge 1 - \int Tx d\mu$ so that $\int x d\mu \le \int Tx d\mu \le \int ||Tx|| d\mu = ||Tx||_{1} \le ||x||_{1} = \int x d\mu$. Thus, $0 \le x \le 1 \Rightarrow \int x d\mu = \int ||Tx|| d\mu = \int Tx d\mu$. The second equality shows that $Tx \ge 0$ whenever $1 \ge x \ge 0$, and it follows immediately that T is nonnegative. The equality of $\int x d\mu$ and $\int Tx d\mu$ for $0 \le x \le 1$ implies equality for all $x \in L^{1}(\mu)$.

THEOREM 3. Let $E: L^{i}(\mu) \rightarrow L^{i}(\mu)$ be a projection of norm 1 such that E1 = 1. Then there is a σ -subalgebra Σ_{\circ} of Σ such that $E = E(\cdot, \Sigma_{\circ})$.

Proof. By Lemma 5 E is nonnegative. Since E1 = 1 and E > 0, E maps $L^{\infty}(\mu)$ into $L^{\infty}(\mu)$. The restriction E_0 of E to $L^{\infty}(\mu)$ is thus a nonnegative projection of norm 1. We first show that $|\operatorname{Ker}|(E_0) = \{0\}$. Let $x \ge 0$, and suppose $E_0 x = 0$. Since $1 \land x = 0 \Rightarrow x = 0$, and since $E_0(1 \land x) = 0$, we may assume $0 \le x \le 1$. $1 - \int x d\mu = ||1 - x||_1 \ge$ $||E_0(1 - x)||_1 = ||E1||_1 = 1$. Thus x = 0. $L^{\infty}(\mu) = C(\Omega)$ for some compact Ω so that we may apply Theorem 2. Thus $E_0(xE_0y) = E_0xE_0y$ for all $x, y \in L^{\infty}(\mu)$, and $E_0[L^{\infty}(\mu)] = M$ is a vector sublattice of $L^{\infty}(\mu)$. We assert that M is an order-complete vector sublattice. Let $\{x_i\}_{i\in I}$ be an increasing net in M with $x = \bigvee_{i\in I} x_i$. $\{x_i\}_{i\in I} L^1$ -converges to x so that $E_0x = L^1$ -lim_i $E_0x_i = L^1$ -lim_i $x_i = x$, i.e., $x \in M$. By Lemma 4 there is a σ -subalgebra Σ_0 of Σ such that $M = \{x \in L^{\infty}(\mu): x \text{ is } \Sigma_0$ measurable}. We conclude the proof by showing that E and $E(\cdot, \Sigma_0)$ agree on $L^{\infty}(\mu)$. Let $x \in L^{\infty}(\mu)$. Ex and $E(x, \Sigma_0)$ are Σ_0 -measurable and so are equal if and only if $\int_A E(x, \Sigma_0) d\mu = \int_A Exd\mu$ for all $A \in \Sigma_0$. Let $A \in \Sigma_0$. $\int_A Exd\mu = \int \chi_A Exd\mu = \int E(\chi_A) Exd\mu = \int E(xE\chi_A) d\mu = \int E(x\chi_A) d\mu =$

⁴ We identify bounded Σ -measurable functions and the corresponding elements of $L^{\infty}(\mu)$.

$$\int x \chi_A d\mu = \int_A x d\mu = \int_A E(x, \Sigma_0) d\mu.$$

COROLLARY. (Moy) Let E: $L^{1}(\mu) \rightarrow L^{1}(\mu)$ be a linear map of norm 1 such that

(a) E1 = 1;

(b) E(xEy) = ExEy for all $x, y \in L^{\infty}(\mu)$. Then there is a σ -subalgebra Σ_{0} or Σ such that $E = E(\cdot, \Sigma_{0})$.

Proof. For $x \in L^{\infty}(\sigma)$, $E^2 x = E(1Ex) = E1Ex = Ex$. Thus E^2 and E agree on $L^{\infty}(\mu)$, i.e. E is a projection.

REMARK. As was mentioned in the introduction, Theorem 3 was inspired by Moy's theorem. In particular, had Moy's theorem required that E be nonnegative, it would never have occurred to me that the condition of nonnegativeness could be dropped. The proof of Theorem 3 can, of course, be much shortened by using Moy's theorem. However, our proof is substantially different from hers and for this reason is given.

References

1. S. Kakutani, Concret representations of abstract M-spaces (a characterization of the spaces of continuous functions), Ann. of Math. 2 (1941), 994-1024.

2. J. L. Kelley, Averaging operators on $C_{\infty}(X)$, III. J. Math. 2 (1958), 214-223.

3. S. P. Lloyd, On certain projections in spaces of continuous functions, Pacific J. Math. 13 (1963), 171-175.

4. L. H. Loomis, Abstract Harmonic Analysis, van Nostrand, New York, 1963.

5. Shu-Teh Chen, Moy, Characterizations of conditional expectation as a transformation on function spaces, Pacific J. Math. 4 (1954), 47-64.

6. I. Namioka, Partially ordered linear topological spaces, Mem. Amer. Math. Soc. No. 24 (1957).

7. M. H. Stone, Boundedness properties in function lattices, Canad. J. Math. 1 (1949), 176-186.

UNIVERSITY OF CALIFORNIA, LOS ANGELES