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ON TOPOLOGICALLY INDUCED GENERALIZED
PROXIMITY RELATIONS II

MICHAEL W. LODATO

In the theory of proximity spaces of Efremovic, (The
geometry of proximity, Mat. Sbornic, N.S. 31 (73), (1952),
189-200,) the result:

A set X with a binary relation "A close to B" is a
proximity space if and only if there exists a compact Haus-
dorff space Y in which X can be imbedded so that A is close
to B in X if and only if A meets B in Y (Ά denotes the
closure of the set A) (Y". M. Smirnov, on proximity spaces,
Mat. Sbornic, N.S. 31 (73), (1952), 543-574.)
Raises the question: Can we display a set of axioms for a
binary relation δ on the power set of a set X so that the
system (X, δ) satisfies these axioms if and only if there is a
topological space Y in which X can be imbedded so that

(1.1) AδB in X if and only if A Π B Φ φ in Y.

In (M.W. Lodato, On topologically induced generalized pro-
ximity relations, Proc. Amer. Math. Soc. vol. 15, no. 3, June
1964, pp. 417-422), it is shown that an affirmative answer can
be given if Y is Tι and if X is regularly dense in Y. The
clusters of S. Leader, On clusters in proximity spaces, Fund.
Math. 47 (1959), 205-213, were used in (M.W. Lodato, On
topologically induced generalized proximity relations, Proc.
Amer. Math. Soc. vol. 15, no. 3, June 1964, pp. 417-422). The
present paper generalized this notion and thus relaxes the condi-
tion that X be regularly dense in Y. We actually characterize
every system (X, δ) for which there exists a mapping / (not nec-
essarily one-to-one) of X into a Hausdorff space Y such that

(1.2) AδB in X if and only if Af n fB Φ φ in Y.

2* Ps-Sρaces* Recall from [3] that a symmetric generalized
proximity space or Ps-space is a system (X, δ) where δ is a binary
operation on the power set of X satisfying

(P. 1) Aδ(B U C) implies that either AδB or AδC
(P. 2) AδB implies that A Φ φ and B Φ φ
(P. 3) AΠBΦ φ implies AδB
(P. 4) AδB and bδC for all points b in B imply that AδC
(P. 5) AδB implies BδA
We read the symbols " AδB " as " A is close to B"; and we say

that " A is remote from B"-in symbols, " AφB "-if 4̂ is not close to B.
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(2.1) The following facts are evident: (1) If AδB, AaC, and
BdD then CδD. (2) Define

Aδ = {xeX: xδA}

then in a Ps-space (A*)δ(B8) if and only if AδB.
3* Bunches* Let X be a Ps-space. A bunch over X is a class

σ of subsets of X satisfying:
(B.I) AδB for all A, Beσ
(B. 2) i u δ e α implies that Aeσ or BG(7
(B.3) Xeσ
(B. 4) If A e <7 and α<?£ for all a m A then B e σ.

(3.1) The following facts are easily established:
(1) Every cluster is a bunch.
(2) For x, a point in a Ps-space X, the class σx of all subsets J.

of X such that #&4 is a bunch over X.
(3) If a point cc of X belongs to a bunch σ, then (7 is identical

to the class σx of all subsets A of X such that #δA.
(4) Any bunch σ from a Ps-space (X, δ) is closed under the opera-

tion of supersets: If σ is a bunch from X, Aeσ and i g S , then

4* Extensions characterized by bunches*

(4.1) THEOREM. Given a set X and some binary relation δ on
the power set of X, the following are equivalent:

(I) There exists a T2 topological space Y and a mapping f of
X into Y with fx=^Y and such that (1.2) holds.

(II) δ is a Ps-relation satisfying the additional axiom:
(P. 7) There exists a family Σ of bunches from X such that
(i) AδB implies that there exists a σeΣ such that A, BeσΫ

and
(ii) if σ and σf are in Σ and either Aeσ or Be σf for all sub-

sets A and B of X such that A U B — X, then σ = σ'.

Proof. Suppose that (I) holds and define δ by (1.2). (P. 1), (P. 2),
(P.3), and (P. 5) are trivial consequences of the properties of closure.
For (I\_4) suppose that AδB and bδC for all 6 in B. Then fAΠfBφφ
fbΠfC^φ for all δ in B, which _since _Γ is Γ2, implies that fbefC
for all b in B. Thus fB c fC or fB c fC so that fAΠfCφφ show-
ing that AδC. For (P. 7), define σy = {A g X : yefA) for each point
yeY. Clearly, σy is a bunch.

Now let Σ = {σy; y e Y} and we will show that Σ satisfies (i) and
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(i) If AδB, then fA meets fB in Y so we can take a point y in
fA Π fB and σy will be a bunch containing both 4̂ and B.

(ii) Suppose σxφ σy. Then a? ̂  7/ in Γ so that, using the T2

property, there exist disjoint open sets U and V, containing x and y
respectfully. Thus, y<£Y~V = T^Ύ and x £ Y - U = Y - £/ so
that y <£ fX-V and a? g fX~ U. Hence, 4 = f~\fX - V) $ σy and
B = f~\fX - U)$σx and

f(A)jB) = (fX- V)ϋ(fX- U)=fX-(VΠU)=fX

so that A U B = X.
For the converse suppose that (II) holds. Given x in X the class σx~

{A S -3Γ: »SA} is a bunch from X, by (3.1), (2.). Thus for any subset
A of X, let j^f be the set of all bunches σa determined by the points a
in A and let j ^ be the set of all bunches in Σ which have A as a
number. Define the correspondence, f(x) = <7β between X and ^ — /Z"
by identifying each x in X with the bunch ^ determined by it. Let
Y — Σ, the family of bunches satisfying (i) and (ii).

We first show that fX g Σ. Consider any σx in fX. Then since
by (P. 3) xδx, by (i) there exists a σ in Y such that as e σ. But by
(3.1), (3.), σx =σ, hence σ β e Γ and / I g Γ.

By (P. 3), i e σ , for each α in A and so j / c j / .
A subset 4 of X absorbs a subset <? of Y if and only if A belongs

to every bunch in Φ, i.e., if and only if Stf contains ΦΛ For any sub-
set Φ of Y we define the closure, cl (Φ), of Φ by

(4.2) σ e cl(Φ) if and only if every subset E of X which absorbs
Φ is in σ.

We next show that
(4.3) cl{^f) = Jtf.
For if σed{j^f) then since A absorbs j y , Aeσ so that ( j e j / .

On the other hand, if σe s^ then 4 G ( 7 , NOW let P be in every σa

in j y , i.e., PSα for every α in ̂ 4 and hence 4 c P δ , Thus, by (B.4),
Peσ so that σGci(J^).

We now show that the Kuratowski closure axioms are satisfied by
the closure defined by (4.2).

(K.I) Φ(zd(Φ): This is trivial since if E absorbs Φ then Eeσ
for every σ eΦ.

(K. 2) cl(φ) — φ: Suppose σecl(φ). Since it is vacuously true
that every subset of X absorbs φ, we then have that every subset of
X is in σ. In particular, ψ and X are in σ. Thus, φδX, by (B. 1),
contradicting (P. 2).
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(K. 3) cl(cl(Φ)) S cl(Φ): Suppose σecl(cl(Φ)) and that E absorbs
Φ. By (4.2) i? absorbing Φ implies that E absorbs cl(Φ). Hence Eeσ
showing that σecl(Φ).

(K. 4) cl(Φ\JΦ') = cl(Φ)\Jcl(Φ'): Suppose that σecl(Φ{JΦ') and
that A absorbs Φ and A! absorbs Φ'. Then by (3.1), (4.), A \JA' absorbs
Φ U Φ' so that A u A! e σ. But by (B. 2) this means that either A G O Ό Γ

A' e σ, i.e., σ e cl{Φ) or σ e cl{Φf). On the other hand, σ e cl(Φ) U cl(Φr)
implies that either σecl(Φ) or σecl(Φf). Now if E absorbs Φ[JΦ\
then E absorbs Φ and also absorbs Φf. Hence, Eeσ showing that
σ e cl(Φ U Φ') and (K. 4) holds.

Thus, (4.2) defines a topology on Y.

To show that fX is dense in Y, we just note that by (4.3),

d(£f) = £f = Y.

To show that the topology is T2 we must show that if σ and σ'
are in Y such that σ Φ &', then there exist subsets Φ and <£' of Y
such that σ$cl(Φ), σf£cl(Φr) and cl(Φ) [j cl(Φf) = Y.

So suppose o φ σf, then by (ii) there exist subsets A and B of X
such that i g σ , ί?£ σ' and A[jB = X. Thus, J^" and ^ are subsets
of Y such that σ g j^? and σ' g ^ , (since for instance A absorbs J ^
but Agσ) and

To finish the proof we need only show that (1.2) holds: AdB in X

if and only if s*f meets & in F. If AoB there exists, by (i) a

α G F to which both A and B belong. Thus, by definition of J ^ , we

have σe J^f)^?. On the other hand, if σe<J>/f)& then A and B

are in # so that by (B. 1), AδB.

The proof is now complete.

5* Symmetric P^Spaces. A Ps-Spaces (X, δ) in which δ satisfies
the additional axiom.

(5.1) xδy implies x — y
is called a symmetric P^space (see [4]). The following theorem follows
directly from (B. 1) and (5.1).

(5.2) THEOREM. Every bunch σ from a symmetric Pi-space
(X, δ) possesses at most one point.

(5.3) THEOREM. Given a set X and a binary relation, S, on the
power set of X, the following are equivalent:

(Γ) There exists a T2 topological space Y in which X can be
imbedded so that (1.1) holds.

(II') δ is a symmetric P\-relation satisfying (P. 7).
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Proof. The demonstration is very similar to that of theorem (4.1).
To see that (Γ) implies (5.1), note that x Π y Φ Φ implies that
# Π y Φ φ, or x = y.

Finally we note that, because of (5.2), the correspondence between
X and gf induced by the identification of x with the bunch σx deter-
mined by it is one-to-one.
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