TOPOLOGICAL METHODS FOR NON-LINEAR ELLIPTIC EQUATIONS OF ARBITRARY ORDER

Abstract

Felix E. Browder

Consider a strongly elliptic nonlinear partial differential equation (e): $F\left(x, u, D u, \cdots, D^{2 m} u\right)=0$, of order $2 m$ on a bounded, smoothly bounded subset Ω of R^{n}. For second-order operators, Leray and Schauder, using the theory of the topological degree for completely continuous displacements of a Banach space, showed that the existence of solutions of the Dirichlet problem for (e) could be proved under the assumption of suitable a-priori bounds for solutions of the type of (e). In the present paper, using precise results on the solutions of linear elliptic differential operators with Hölder continuous coefficients as well as a variant of the Leray-Schauder method, we extend this result to equations of arbitrary even order. We also obtain results on uniqueness in the large under hypotheses of local uniqueness.

Theorem 1 is our general result of Leray-Schauder type for the most general sort of strongly elliptic nonlinear equation. Its proof is based upon Theorems 2 and 3 which concern equations for which one has local uniqueness of solutions. Theorem 2, which extends a result of Schauder [16] for second order equations, asserts the solvability of the equation $F(u)=f$ for f near f_{0} with u near u_{0} if the solution is locally unique. Under similar hypotheses and an additional a priori bound, Theorem 3 asserts the existence and uniqueness of the solution for all f. Theorem 4 and 5 specialize Theorem 1 with a drastic simplification of hypotheses to quasi-linear equations of order $2 m$ and to nonlinear second-order equations. Theorem 4, in particular, gives a simple and very general extension of the Leray-Schauder method as given in [9] for quasi-linear equations of second order.

The writer is indebted to Stephen Smale for a number of conversations which stimulated his interest in giving a systematic treatment of the Leray-Schauder theory for general non-linear elliptic equations.

1. Let Ω be a bounded, smoothly bounded open subset of the Euclidean space R^{n}, Γ its boundary in $R^{n}, \bar{\Omega}$ its closure in $R^{n},(n \geqq 1)$. We denote the general point of Ω by $x=\left(x_{1}, \cdots, x_{n}\right)$ and for each n-tuple $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right)$ of nonnegative integers, we set

$$
D^{\alpha}=\prod_{j=1}^{n}\left(\frac{\partial}{\partial x_{j}}\right)^{\alpha_{j}}, \quad|\alpha|=\sum_{j=1}^{n} \alpha_{j}
$$

Received October 23, 1964.

For a given integer $m \geqq 1$, we consider vectors $p=\left\{p_{\alpha} /|\alpha| \leqq 2 m\right\}$ with a real component for each partial derivative of order $\leqq 2 m$. They form a real vector space R^{M} for some integer M, which we shall not give explicitly. We assume that we are given a function

$$
F^{\prime}: \bar{\Omega} \times R^{H} \rightarrow R^{1}
$$

which is twice continuously differentiable on $\Omega \times R^{M}$ and whose derivatives up to second order are uniformly bounded on compact subsets of $\bar{\Omega} \times R^{M}$. Using this function F and the mapping $p_{x}: C^{2 m}(\Omega) \rightarrow R^{M}$ given by

$$
p_{x}(u)=\left\{D^{\alpha} u(x) /|\alpha| \leqq 2 m\right\}
$$

we may form the general partial differential operator (not necessarily linear) of order $2 m$ by

$$
F(u)(x)=F\left(x, p_{x}(u)\right), x \in \Omega, u \in C^{2 m}(\Omega)
$$

and consider the partial differential equation

$$
\begin{equation*}
F(u)=0, \quad u \in C^{2 m}(\Omega) . \tag{1}
\end{equation*}
$$

For a given real number λ with $0<\lambda<1$, and any nonnegative integer j,

$$
\begin{align*}
& C^{j, \lambda}(\Omega)=\left\{u \mid u \in C^{j}(\Omega) .\right. \text { There exists a constant } \\
& c>0 \text { such that }\left|D^{\alpha} u(x)-D^{\alpha} u(y)\right| \leqq c|x-y|^{\lambda} \tag{2}\\
& x, y \in \Omega,|\alpha| \leqq j\}
\end{align*}
$$

$C^{j, \lambda}(\Omega)$ is a Banach space (and indeed a Banach algebra) with respect to the norm

$$
\begin{align*}
\|u\|_{a^{j}, \lambda}= & \sum_{|\alpha| \leq j} \sup _{x \in \Omega}\left|D^{\alpha} u(x)\right| \\
& +\sum_{|\alpha|=j} \sup _{x, y \in \Omega ; x \neq y}\left\{|x-y|^{-\lambda}\left|D^{\alpha} u(x)-D^{\alpha} u(y)\right|\right\} . \tag{3}
\end{align*}
$$

If we assume (as we shall henceforward) that Γ is locally a manifold of class $C^{2 m, \lambda}$ then there is an obvious and unequivocal sense that can be given to $\left.D^{\alpha} u\right|_{r}$ for any u in $C^{2 m, \lambda}(\Omega)$ and any α with $|\alpha| \leqq 2 m$.

We may therefore form the closed subspace $C_{0}^{2 m, \lambda}(\Omega)$ of $C^{2 m, \lambda}(\Omega)$ which consists of all u in $C^{2 m, \lambda}(\Omega)$ which satisfy the homogeneous Derichlet boundary condition of order m on Γ, i.e.

$$
\begin{equation*}
\left.D^{\beta} u\right|_{\Gamma}=0, \quad|\beta| \leqq m-1 . \tag{4}
\end{equation*}
$$

For u in $C^{2 m, \lambda}(\Omega), F(u)$ lies in $C^{0, \lambda}(\Omega)$ as follows by a routine argument using the fact that $F(x, p)$ satisfies a Hölder condition with exponent λ in all arguments on compact subsets of $\bar{\Omega} \times R^{M}$. More-
over, the mapping $u \rightarrow F(u)$ is continuous from $C^{2 m, \lambda}(\Omega)$ to $C^{0, \lambda}(\Omega)$, and indeed continuously Frechet differentiable with Frechet derivative at u in $C^{2 m, \lambda}(\Omega)$ given by

$$
\begin{equation*}
F^{\prime}(u)(\eta)=\sum_{|\alpha| \leq 2 m} F_{\alpha}(x, p(u)) D^{\alpha} \eta \tag{5}
\end{equation*}
$$

where $F_{\alpha}=\partial F / \partial p_{\alpha}$.
We say that the nonlinear differential operator $F(u)$ is strongly elliptic if for each $p \in R^{M}$, the linear differential operator A_{p} given

$$
\begin{equation*}
A_{p}(\eta)=\sum_{|\alpha|=2 m} F_{\alpha}(x, p) D^{\alpha} \eta \tag{6}
\end{equation*}
$$

is uniformly strongly elliptic on Ω.
Let $C_{0}^{2 m-1, \lambda}(\Omega)=\left\{u\left|u \in C^{2 m-1, \lambda}(\Omega) ; D^{\beta} u\right|_{r}=0\right.$ for $\left.|\beta| \leqq m-1\right\}$.
Theorem 1. Let F be a C^{2}-function $\bar{\Omega} \times R^{n}$ which defines a strongly elliptic nonlinear partial differential operator $F(u)$ of order $2 m$ on Ω. Let $0<\lambda<1$, and for $0 \leqq t \leqq 1$, let

$$
F(x, p, t)=t F(x, P)+(1-t) \Sigma_{|\alpha|}\left|p_{\alpha}\right|^{2}
$$

$F_{t}(u)$ the corresponding partial differential operator of order $2 m$. Suppose that all of the following conditions are satisfied:
(1) For each $R>0$, there exists a constant μ with $0<\mu<\lambda<1$ and a differential operator H of order $\leqq 2 m-1$ (possibly nonlinear) on Ω such that for each $u \in C_{0}^{2 m-1, \lambda}(\Omega), v \in C_{0}^{2 m, \mu}(\Omega)$ with $\|u\|_{0^{2 m-1, \lambda}} \leqq R$, and

$$
\left\{p_{x}(u, v)\right\}_{\alpha}= \begin{cases}D^{\alpha} u(x), & |\alpha|<m \\ D^{\alpha} v(x), & |\alpha|=m\end{cases}
$$

the linear equation

$$
\sum_{|\alpha|=2 m} F_{t \alpha}\left(x, p_{x}(u, v)\right) D^{\alpha} \eta+\sum_{|\alpha| \leq 2 m-1} t H_{\alpha}\left(x, p_{x}(u)\right) D^{\alpha} \eta=0
$$

has only $\eta=0$ as a solution in $C_{0}^{2 m, \mu}(\Omega), 0 \leqq t \leqq 1$.
(2) For given $R>0$ and the corresponding function H of condition (1), there exists a function $R_{1}(s)$ such that for u in $C_{0}^{2 m-1, \lambda}(\Omega)$ with $\|u\|_{0^{2 m-1, \lambda_{(\Omega)}}} \leqq R$ and any v in $C_{0}^{2 m, \lambda}(\Omega)$ such that

$$
F_{t}(p(u, v))+t H(p(u, v))=f
$$

for some t in $[0,1]$ and $f \in C^{0, \lambda}(\Omega)$ with $\|f\|_{0^{0, \lambda(\Omega)}} \leqq s$, we have

$$
\|v\|_{a^{2 m, \lambda}} \leqq R_{1}(s)
$$

(3) There exists a constant $R_{0}>0$ such that for any t in $[0,1]$ and $v \in C_{0}^{2 m, \lambda}(\Omega)$, if

$$
F_{t}(v)=0,
$$

we have

$$
\|v\|_{\sigma^{2 m-1, \lambda(\Omega)}}<R_{0}
$$

Then the equation

$$
F(u)=0
$$

has a solution u in $C_{0}^{2 m, \lambda}(\Omega)$.
THEOREM 2. Let F be a C^{2}-function on $\bar{\Omega} \times R^{M}$ such that the corresponding partial differential operator $F(u)$ of order $2 m$ is strongly elliptic. Suppose that for a given u_{0} in $C_{0}^{2 m, \lambda}(\Omega)$, the mapping $u \rightarrow F(u)$ of $C_{0}^{2 m, \lambda}(\Omega)$ into $C^{0, \lambda}(\Omega)$ is one-to-one on some neighborhood of u_{0} in $C_{0}^{2 m, \lambda}(\Omega)$.

Then F is an open mapping on some neighborhood of u_{0}.
Theorem 3. Let F be a C^{2}-function on $\bar{\Omega} \times R^{M}$ with $F(u)$ strongly elliptic. Suppose that both of the following conditions are satisfied:
(i) There exists μ with $0<\mu<\lambda<1$ such that for each u in $C_{0}^{s m, \mu}(\Omega)$, the linear equation

$$
\sum_{|\alpha| \leq 2 m} F_{\alpha}\left(x, p_{x}(u)\right) D^{\alpha} \eta=0, \quad \text { in } \quad \Omega
$$

has only $\eta=0$ as a solution in $C_{0}^{2 m, \mu}(\Omega)$.
(ii) For each f_{0} in $C^{\lambda}(\Omega)$, there exists constants $k\left(f_{0}\right), \varepsilon\left(f_{0}\right)>0$ such that for every solution u of $F(u)=f$ with $u \in C_{0}^{2 m, \lambda}(\Omega)$ and $\left\|f-f_{0}\right\|_{0^{0, \lambda_{(\Omega)}}}<\varepsilon\left(f_{0}\right)$,

$$
\|u\|_{o^{2 m, \lambda(\Omega)}} \leqq k\left(f_{0}\right) .
$$

Then the equation $F(u)=f$ has one and only one solution u in $C_{0}^{2 m, \lambda}(\Omega)$ for each f in $C^{0, \lambda}(\Omega)$.

We shall prove Theorems 2, 3, and 1 in that order. The proofs depend upon precise results on the Dirichlet problem for strongly elliptic linear operators which are discussed in detail in §2, combined with topological arguments concerning nonlinear mappings of Banach spaces.
2. Let

$$
A=\sum_{|\alpha| \leq 2 m} a_{\alpha}(x) D^{\alpha}
$$

be a linear elliptic differential operator of order $2 m$ on Ω with real
coefficients in $C^{0, \lambda}(\Omega) . \quad A$ is said to be uniformly strongly elliptic on Ω if there exists a positive constant $c(c>0)$ such that

$$
\sum_{|\alpha|=2 m} a_{\alpha}(x) \xi^{\alpha} \geqq c_{0}|\xi|^{2 m}
$$

for all $x \in \Omega, \xi \in R^{n}$, (where $\xi^{\alpha}=\prod_{j=1}^{n} \xi_{j}^{\alpha} j$).
The first basic fact that we shall employ about the Dirichlet problem for the strongly elliptic operator A is the estimate of Schauder type ([1], Theorem 7.3) given in the following Lemma:

Lemma 1. There exists a constant $C>0$ depending on C_{0}, Ω and the $C^{0, \lambda}(\Omega)$-norms of the functions a_{α}, such that for all u in $C^{2 m, 1}(\Omega)$

$$
\|u\|_{0^{2 m, \lambda(\Omega)}} \leqq\left\{\|A u\|_{0^{0, \lambda}(\Omega)}+\|u\|_{0^{0, \lambda}(\Omega)}\right\} .
$$

The second fact that we shall employ concerns the spectrum and resolvent of the operator A under null Dirichlet boundary conditions:

Lemma 2. Let μ be any number with $0<\mu<\lambda<1$. There exists a constant k_{0} depending only on Ω, c_{0}, and the $C^{0, \mu}(\Omega)$-norms of the coefficients a_{α} such that:
(a) For $k \geqq k_{0}$, and any f in $C^{0, \lambda}(\Omega)$, the equation

$$
A u+k u=f
$$

has a solution u in $C_{0}^{2 m, \lambda}(\Omega)$.
(b) The solution u of the equation

$$
A u+k u=f
$$

with $u \in C_{0}^{2 m, \lambda}(\Omega), f \in C^{0, \lambda}(\Omega)$, satisfies an inequality of the form

$$
\|u\|_{L^{2}(\Omega)} \leqq c_{1}\|A u+k u\|_{L^{2}(\Omega)}
$$

with c_{1} dependent only on Ω, c_{0}, and the $C^{0, \mu}(\Omega)$-norms of the a_{μ}.
Proof of Lemma 2. By Theorem 15 of [2], (p. 75) there exists k_{0} depending only on Ω, c_{0}, and $C^{0, \mu}(\Omega)$ coefficients of the a_{α} such that for $k \geqq k_{0}$ and all f in $L^{2}(\Omega)$, there exists u in the space $W^{2 m, 2}(\Omega)$ where

$$
W^{2 m, 2}(\Omega)=\left\{u \mid D^{\alpha} u \in L^{2}(\Omega) \text { for }|\alpha| \leqq 2 m\right\}
$$

with

$$
A u+k u=f
$$

and u lying in the domain $D\left(A_{2}\right)$ of the realization of A in $L^{2}(\Omega)$ under null Dirichlet boundary conditions (in the sense of $\S 2$ of [2]). For
such u and k, we have the inequality

$$
\|u\|_{L^{2}(\Omega)} \leqq\|A u+k u\|_{L^{2}(\Omega)}
$$

of assertion (b). Since $C_{0}^{2 m, \lambda}(\Omega) \subset D\left(A_{2}\right)$, the validity of assertion (b) follows.

If $R(G)$ is the restriction to Ω of the family of C^{∞} functions with compact support in $R^{n}, R(G)$ is dense in $C^{0, \lambda}(\Omega)$. For every f in $R(G)$, the solution u in $D\left(A_{2}\right)$ of the equation $A u+k u=f$ lies in $C_{0}^{2 m, \lambda}(\Omega)$ by Theorem 8 of [2] (page 65). For this solution, we have by Lemma 1,

$$
\begin{aligned}
\|u\|_{0^{2 m, \lambda(\Omega)}} & \leqq c\left\{\|A u\|_{0^{0, \lambda}(\Omega)}\right\}+\|u\|_{0^{0, \lambda(\Omega)}} \\
& \leqq c\left\{\|A u+k u\|_{0^{0, \lambda}(\Omega)}+(k+1)\|u\|_{0^{0, \lambda}(\Omega)}\right\} .
\end{aligned}
$$

Moreover, since the injection maps of $C^{2 m, \lambda}(\Omega)$ into $C^{0, \lambda}(\Omega)$ and $L^{2}(\Omega)$ are compact, for each $\varepsilon>0$, there exists $k(\varepsilon)$ such that

$$
\|u\|_{o^{0, \lambda}(\Omega)} \leqq \varepsilon\|u\|_{o^{2 m, \lambda}(\Omega)}+k(\varepsilon)\|u\|_{L^{2}(\Omega)} .
$$

Hence

$$
\begin{aligned}
\|u\|_{\sigma^{2 m, \lambda_{(\Omega)}}} \leqq & c\|A u+k u\|_{0^{0, \lambda}(\Omega)} \\
& +c(k+1) \varepsilon u\left\|_{\sigma_{2 m, \lambda(\Omega)}}+c(k+1) k(\varepsilon)\right\| u \|_{L^{2}(\Omega)}
\end{aligned}
$$

Choosing $\varepsilon>0$ so small that $c(k+1) \varepsilon<1 / 2$, we have

$$
\begin{aligned}
\|u\|_{0^{2 m, \lambda(\Omega)}} & \leqq 2 c\|A u+k u\|_{0^{0, \lambda}(\Omega)}+2 c(k+1) k(\varepsilon)\|u\|_{L^{2}(\Omega)} \\
& \leqq c_{2}\|A u+k u\|_{0^{0, \lambda(\Omega)}}+c_{3}\|A u+k u\|_{L^{2}(\Omega)} \\
& \leqq c_{4}\|A u+k u\|_{0^{0, \lambda(\Omega)}}
\end{aligned}
$$

i.e.

$$
\|u\|_{0^{2 m, \lambda(\Omega)}} \leqq c_{4}\|f\|_{0^{0, \lambda}(\Omega)}
$$

for such f and u. Hence the mapping $f \rightarrow u$ from the dense subset $R(G)$ of $C^{0, \lambda}(\Omega)$ into $C_{0}^{2 m, \lambda}(\Omega)$ can be extended by continuity to a bounded linear map S of $C^{0, \lambda}(\Omega)$ into $C^{2 m, \lambda}(\Omega)$ such that

$$
(A+k I) S f=f, \quad f \in C^{0, \lambda}(\Omega)
$$

Hence assertion (a) is proved.

The proof of Lemma 2 also established the following:
Lemma 3. The solution u in Lemma 2 of the equation $A u+$ $k u=f, u \in C^{\circ m, \lambda}(\Omega)$, for $k \geqq k_{0}$, satisfies an inequality of the form

$$
\|u\|_{o^{2 m, \lambda(\Omega)}} \leqq c_{4}\|f\|_{o^{0, \lambda}(\Omega)}
$$

where c_{4} depends only on $|k|, \Omega, c_{0}$, and the $C^{0, \lambda}-n o r m s$ of the coefficients a_{α}.

Lemma 4. A is a Fredholm operator of index zero from $C^{2 m, \lambda}(\Omega)$ to $C^{0, \lambda}(\Omega)$. In particular if A is one-to-one, A is an isomorphism.

Proof of Lemma 4. Let S be the inverse of $(A+k I)$ as above. Then for $f \in C^{0, \lambda}(\Omega)$,

$$
\begin{aligned}
A S f & =(A+k I) S f-h S f \\
& =(I-k S) f
\end{aligned}
$$

i.e.

$$
A=(I-k S)(A+k I)
$$

Since $(I-k S)$ is a Fredholm operator of index zero from $C^{0, \lambda}(\Omega)$ to $C^{0, \lambda}(\Omega)$ and $(A+k I)$ is an isomorphism of $C_{0}^{2 m, \lambda}(\Omega)$ onto $C^{0, \lambda}(\Omega), A$ is a Fredholm operator of index zero from $C_{0}^{2 m, \lambda}(\Omega)$ to $C^{0, \lambda}(\Omega)$.
3. Proof of Theorem 2. Let $u_{0} \in C_{0}^{2 m, \lambda}(\Omega)$ and suppose that F is one-to-one on an open neighborhood N of u_{0} in $C_{0}^{2 m, \lambda}(\Omega)$. We may take N of the form

$$
N=\left\{u \mid u \in C_{0}^{2 m, \lambda}(\Omega),\left\|u-u_{0}\right\|_{0^{2 m, \lambda}}<\varepsilon\right\}
$$

Let A be the linear differential operator on Ω given by

$$
A \eta=\sum_{|\alpha| \leq 2 m} F_{\alpha}\left(p\left(u_{0}\right)\right) D^{\alpha} \eta
$$

Since F satisfies condition (a) of Theorem $1, A$ is uniformly strongly elliptic on Ω. Since the F_{α} are C^{1} on $\bar{\Omega} \times R^{\mu}$ and therefore satisfy a Hölder condition with expondent λ on compact subsets of $\bar{\Omega} \times R^{M}$, the coefficients of A lie in $C^{0, \lambda}(\Omega)$. Hence by Lemmas 2 and 3 , there exists $k>0$ such that the linear mapping

$$
u \rightarrow A u+k u
$$

of $C_{0}^{2 m, \lambda}(\Omega)$ into $C^{0, \lambda}(\Omega)$ is an isomorphism of the two spaces. Let S be the inverse mapping, so that S is a bounded linear mapping of $C^{0, \lambda}(\Omega)$ into $C^{2 m, \lambda}(\Omega)$.

Let u and v lie in N. Then

$$
\begin{aligned}
F(u)-F(v) & =\int_{0}^{1} F^{\prime}(\lambda u+(1-\lambda) v)(u-v) d \lambda \\
& =F^{\prime}\left(u_{0}\right)(u-v)+R\left(u_{0}, u, v\right)
\end{aligned}
$$

where

$$
R\left(u_{0}, u ; v\right)=\int\left\{F^{\prime}(\lambda u+(1-\lambda) v)(u-v)-F^{\prime}\left(u_{0}\right)(u-v)\right\} d \lambda .
$$

Given $\delta>0$, we can choose $\varepsilon>0$ so small that for $u, v \in N, 0 \leqq \lambda \leqq 1$,

$$
\left\|F^{\prime}(\lambda u+(1-\lambda) v)-F^{\prime}\left(u_{0}\right)\right\|<\delta .
$$

Then

$$
\left\|R\left(u_{0}, u, v\right)\right\|_{0^{0, \lambda,(\Omega)}} \leqq \delta\|u-v\|_{0^{2} m, \lambda_{(\Omega)}} .
$$

Let

$$
R_{u_{0}}(u)=F(u)-F^{\prime}\left(u_{0}\right) u, \quad u \in N .
$$

Then

$$
\begin{aligned}
\left\|R_{u_{0}}(u)-R_{u_{0}}(v)\right\|_{0^{0, \lambda},(\Omega)} & =\left\|R\left(u_{0}, u, v\right)\right\|_{L_{0}, \lambda(\Omega)} \\
& \leqq \delta\left\|u^{\prime}-v\right\|_{0^{2} m, \lambda_{(\Omega)}}
\end{aligned}
$$

We form a mapping G of $C^{0, \lambda}(\Omega)$ into $C^{0, \lambda}(\Omega)$ by setting

$$
G(f)=F\left(S u+u_{0}\right) .
$$

There exists a neighborhood N_{1} of 0 in $C^{0, \lambda}(\Omega)$ mapped by $u \rightarrow S u+u_{0}$ into N. To show that F is open at u_{0}, it suffices to show that G is open at zero. However

$$
\begin{aligned}
G(f) & =\left(F^{\prime}\left(u_{0}\right)+R_{u_{0}}\right)\left(S f+u_{0}\right) \\
& =(A+k I)(S f)-k S f+R_{u_{0}}\left(S f+u_{0}\right) \\
& =f-k S f+R_{u_{0}}\left(S f+u_{0}\right) .
\end{aligned}
$$

Here $k S$ like S itself is a continuous linear map of $C^{0, \lambda}(\Omega)$ with $C^{2 m, \lambda}(\Omega)$ and since the injection map of $C^{2 m, \lambda}(\Omega)$ into $C^{0, \lambda}(\Omega)$ is compact, $k S$ is a compact linear mapping of $C^{0, \lambda}(\Omega)$ into $C^{0, \lambda}(\Omega)$.

For f and f_{1} in N_{1}, we know that

$$
\begin{aligned}
&\left\|R_{u_{0}}\left(S f+u_{0}\right)-R_{u_{0}}\left(S f_{1}+u_{0}\right)\right\|_{00, \lambda(\Omega)} \\
& \leqq \delta\left\|\left(S f+u_{0}\right)-\left(S f_{1}+u_{0}\right)\right\|_{o^{2} m, \lambda(\Omega)} \\
& \leqq c_{5} \delta\left\|f-f_{1}\right\|_{0_{0}, \lambda_{(\Omega)}}
\end{aligned}
$$

If we choose $\delta>0$ so small that $c_{\delta} \delta<1$, the mapping

$$
f \rightarrow f-R_{u_{0}}\left(S f+u_{0}\right)
$$

is a bicontinuous mapping of N_{t} on an open neighborhood N_{2} of zero in $C^{0, \lambda}(\Omega)$ and is T is the inverse of this mapping, $G T=I \cdots k S T$ has the same image on N_{2} as G has on N_{1}. Moreover $G T$ is one-to-one on N_{2} since G is one-to-one on N_{1}.

Finally

$$
G T=I-C
$$

where C is a compact mapping of N_{2} into $C^{0, \lambda}(\Omega)$. Since $G T$ is one-to-one, it has an open image by the Schauder theorem on invariance of domain for compact displacements in Banach spaces (see Schauder [15], Leray [18], Nagumo [12]).

Proof of Theorem 3. By the construction of the proof of Theorem 2, for each u_{0} in $C_{0}^{2 m, \lambda}(\Omega)$, there is a homeomorphism h of a neighborhood N of u_{0} with an open neighborhood N_{2} of the origin in $C^{0, \lambda}(\Omega)$ such that for f in N_{2}

$$
\left(F \circ h^{-1}\right) f=F\left(u_{0}\right)+f-C f
$$

where C is a compact (possibly nonlinear) map of N_{2} into $C^{0, \lambda}(\Omega)$.
Let u be an element of $C_{0}^{2 m, \mu}(\Omega)$. The Frechet differential of F as a map of $C_{0}^{2 m, \mu}(\Omega)$ into $C^{0, \mu}(\Omega)$ is given by the linear operator

$$
A_{u}(\eta)=\sum_{|\alpha| \leq 2 m} F_{\alpha}(u) D^{\alpha} \eta, \quad \eta \in C_{0}^{2 m, \mu}(\Omega)
$$

By the hypotheses of Theorem 3, A_{u} is uniformly strongly elliptic on Ω, has coefficients in $C^{0, \mu}(\Omega)$, and is one-to-one on $C_{0}^{2 m, \mu}(\Omega)$. Hence A_{u} is an isomorphism of $C_{0}^{2 m, \mu}(\Omega)$ onto $C^{0, \mu}(\Omega)$. By the implicit function theorem, F is a local homeomorphism of $C_{0}^{2 m, \mu}(\Omega)$ into $C^{0, \mu}(\Omega)$, i.e., it maps some neighborhood of each point u homeomorphically onto a neighborhood of $F(u)$.

The inverse A_{u}^{-1} of A_{u} is a bounded linear mapping of $C^{0, \mu}(\Omega)$ into $C_{0}^{2 m, \mu}(\Omega)$ and its norm $\left\|A_{u}^{-1}\right\|$ between this pair of spaces is bounded for u on compact subset of $C^{2 m, \mu}(\Omega)$. Hence so is the norm of A_{u}^{-1} as a linear map of $C^{0, \lambda}(\Omega)$ into $C^{0, \lambda}(\Omega)$. Let u run through a bounded subset B of $C_{0}^{2 m, \lambda}(\Omega)$. Since B is precompact in $C_{0}^{2 m, \mu}(\Omega)$, it follows that there exists a constant c such that for all u in $B, \eta \in C^{0, \lambda}(\Omega)$

$$
\|\eta\|_{0^{0, \lambda}(\mu)} \leqq c\left\|A_{u} \eta\right\|_{0^{0, \lambda(\mu)}}
$$

If we apply Lemma 1 of $\S 2$, we have

$$
\|\eta\|_{\sigma^{2 m, \lambda}(\Omega)} \leqq c^{\prime}\left\|A_{u} \eta\right\|_{0^{0, \lambda(\Omega)}}
$$

with c^{\prime} independent of u on B.
However A_{u} is also the Frechet differential of F as a map of $C_{0}^{2 m, \lambda}(\Omega)$ into $C^{0, \lambda}(\Omega)$ at u, and between this pair of spaces F is a local homeomorphism as before.

We now apply the following theorem of Hadamard and P. Levy [10]: If F is a local homeomorphism of a Banach space X into a Banach space Y and if no curve of infinite length in X is mapped by F onto a line segment in Y, then F is a homeomorphism of X onto Y.

Our given mapping F is a local homeomorphism of $C_{0}^{2 m, \lambda}(\Omega)$ into $C^{0, \lambda}(\Omega)$. Let $t \rightarrow \varphi(t)$ be a curve in $C^{2 m, \lambda}(\Omega)$ covering a line segment in $C^{0, \lambda}(\Omega)$ with respect to F. If the curve is bounded in $C^{2 m, \lambda}(\Omega)$ then since $\left\|\left(F_{u}^{\prime}\right)^{-1}\right\|$ is bounded on bounded subsets of $C^{2 m, \lambda}(\Omega)$, the length of the curve would be finite. Hence it suffices to prove that the inverse image under F of every closed line segment in $C^{0, \lambda}(\Omega)$ is bounded in $C^{2 m, \lambda}(\Omega)$.

By hypothesis, each point f_{0} of the line segment L_{0} has a neighborhood such that $\left\|F^{-1} f\right\|_{0^{2 m,(\Omega)}} \leqq k\left(f_{0}\right)$ in this neighborhood. Covering the compact set L_{0} by a finite number of neighborhoods, we have $\left\|F^{-1}(f)\right\|_{o^{2 m, \lambda(\Omega)}} \leqq k$ for $f \in L_{0}$.

4. Proof of Theorem 1. Let

$$
R=R_{0}, \quad B_{R}=\left\{u \mid u \in C_{0}^{2 m-1, \lambda}(\Omega),\|u\| \leqq R\right\}
$$

Let H be the function corresponding to R by condition (1) of the hypothesis of Theorem 1 . For each u in R_{R}, we consider the equation (e):

$$
F_{t}(p(u, v))+t H(p(v))=t H(p(u))
$$

for v in $C_{0}^{2 m, \lambda}(\Omega)$. The linearized form of equation (e) is
(e)': $\quad \sum_{|\alpha|=2 m} F_{t, \alpha}(p(u, v)) D^{\alpha} \eta+\sum_{|\alpha| \leq 2 m-1} t H_{\alpha}(p(u, v)) D^{\alpha} \eta=0$
which by condition (1) has only $\eta=0$ as a solution in $C_{0}^{2 m, \mu}(\Omega)$ for a fixed μ with $0<\mu<\lambda<1$. Moreover by condition (2) of the hypothesis, the solution v of the equation

$$
\begin{equation*}
F_{t}(p(u, v))+t H(p(u, v))=f \tag{e}
\end{equation*}
$$

for $\|u\|_{0^{2 m-1, \lambda}} \leqq R$ and f in $C^{0, \lambda}(\Omega)$ with $\|f\|_{0_{0, \lambda}} \leqq s$, where v lies in $C_{0}^{2 m, \lambda}(\Omega)$, must satisfy the inequality

$$
\|v\|_{o^{2 m, \lambda}} \leqq R_{1}(s)
$$

Hence the hypotheses of Theorem 3 are satisfied for the family of equations $(e)_{f}$ and in particular, equation (e) has one and only one solution v_{t} for each t in [0,1].

We set $C_{t}(u)=v_{t}$. Then C_{t} is a well defined mapping on B_{R} whose range we consider as a subset of $C_{0}^{2 m-1, \lambda}(\Omega)$. Since the map $u \rightarrow H(p(u))$ carries bounded sets of $C_{0}^{2 m-1, \lambda}(\Omega)$ into bounded sets of $C^{0, \lambda}(\Omega)$, it follows from the argument of the preceding paragraph that

$$
\left\|C_{t}(u)\right\|_{0^{2 m, \lambda(\Omega)}} \leqq R_{2}
$$

for all u in B_{R} and all t in $[0,1]$ with a fixed constant $R_{2}>0$. Since $C_{0}^{2 m, \lambda}(\Omega)$ has a compact injection into $C^{2 m-1, \lambda}(\Omega)$, it follows that

$$
\bigcup_{0 \leqslant t \leq 1} C_{t}\left(B_{R}\right)
$$

is precompact in $C_{0}^{2 m-1, \lambda}(\Omega)$.
We wish now to verify that the mapping

$$
[t, u] \rightarrow C_{t}(u)
$$

is a continuous mapping of $[0,1] \times B_{R}$ into $C^{2 m-1, \lambda}(\Omega)$. Let t_{0} be a fixed number in $[0,1], u_{0}$ a fixed element of B_{R}. For t near t_{0} and u near u_{0}, we have

$$
\begin{aligned}
& F_{t}(p(u, v))+t H_{t}(p(v))-t H_{t}(p(u)) \\
&= F_{t_{0}\left(p\left(u_{0}, v\right)\right)+t_{0} H_{t_{0}}(p(v))+\left\{F _ { t } \left(p(u, v)-F_{t_{0}}\left(p\left(u_{0}, v\right)\right\}\right.\right.} \quad+\left\{t H_{t}(p(v))-t_{0} H_{t_{0}}(p(v))\right\}-t_{0} H_{t_{0}}\left(p\left(u_{0}\right)\right) \\
&+\left\{t H_{t}(p(u))-t_{0} H_{t_{0}}(p(u))\right\} .
\end{aligned}
$$

Furthermore

$$
F_{t_{0}}\left(p\left(u_{0}, v\right)\right)=F_{t_{0}}\left(p\left(u_{0}, v_{0}\right)\right)+F_{t_{0}}^{\prime}\left(p\left(u_{0}, v_{0}\right)\right)\left(v-v_{0}\right)+R\left(u_{0}, v_{0}, t_{0}, v\right)
$$

where $v_{0}=C_{t_{0}}\left(v_{0}\right)$ and

$$
\left\|R\left(u_{0}, v_{0}, t_{0}, v\right)\right\|_{0_{0}, \lambda}=o\left(\left\|v-v_{0}\right\|\right)
$$

as $\left\|v-v_{0}\right\| \rightarrow 0$. (The norm of $v-v_{0}$ will be taken in $C_{0}^{2 m, \lambda}(\Omega)$ throughout this argument.) Similarly

$$
t_{0} H_{t_{0}}(p(v))=t_{0} H_{t_{0}}\left(p\left(v_{0}\right)\right)+t_{0} H_{t_{0}}^{\prime}\left(p\left(v_{0}\right)\right)\left(v-v_{0}\right)+R_{1}\left(u_{0}, v_{0}, t_{0}, v\right)
$$

where

$$
\left\|R_{1}\left(u_{0}, v_{0}, t_{0}, v\right)\right\|_{0, \lambda}=o\left(\left\|v-v_{0}\right\|\right)
$$

as

$$
\left\|v-v_{0}\right\|_{o^{2 m, \lambda}} \rightarrow 0 .
$$

It follows that for v near v_{0} in $C_{0}^{2 m, \lambda}(\Omega)$ we have

$$
\begin{aligned}
& F_{t}(p(u, v))+t H_{t}(p(v))-t H_{t}(p(u)) \\
& =\left\{F_{t_{0}}\left(p\left(u_{0}, v_{0}\right)\right)+t_{0} H_{t_{0}}\left(p\left(v_{0}\right)\right)-t_{0} H_{t_{0}}\left(p\left(u_{0}\right)\right)\right\} \\
& +\left[F_{t_{0}}^{\prime}\left(p\left(u_{0}, v_{0}\right)\right)+t_{0} H_{t_{0}}^{\prime}\left(p\left(v_{0}\right)\right)\right]\left(v-v_{0}\right) \\
& +R_{2}\left(u_{0}, v_{0}, t_{0}, t, u, v\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& \left\|R_{2}\left(u_{0}, v_{0}, t_{0}, t, u, v\right)\right\|_{0_{0, \lambda(\Omega)}} \\
& \quad \leqq \sigma\left(v-v_{0}\right)\left\|v-v_{0}\right\|_{0^{2 m, \lambda}}+\sigma_{3}\left(u_{0}, u, t, t_{0}\right),
\end{aligned}
$$

and

$$
\sigma_{3}\left(u_{0}, u, t, t_{0}\right) \rightarrow 0
$$

as

$$
\left\|u-u_{0}\right\|_{a^{2 m-1}, \lambda}+\left|t-t_{0}\right| \rightarrow 0
$$

while

$$
\sigma\left(v-v_{0}\right) \rightarrow 0 \quad \text { as } \quad\left\|v-v_{0}\right\|_{o^{2 m, \lambda}} \rightarrow 0
$$

The condition that

$$
\begin{equation*}
F_{t}(p(u, v))+t H_{t}(p(v))-t H_{t}(p(u))=0 \tag{i}
\end{equation*}
$$

can therefore be satisfied if

$$
\left[F^{\prime}\left(p\left(u_{0}, v_{0}\right)\right)+t_{0} H_{t_{0}}^{\prime}\left(p\left(v_{0}\right)\right)\right]\left(v-v_{0}\right)=-R_{2}\left(u_{0}, v_{0}, t_{0}, t, u, v\right)
$$

The operator in square brackets is an isomorphism of $C_{0}^{2 m, \lambda}(\Omega)$ with $C^{0, \lambda}(\Omega)$ by condition (1) of the hypothesis. Hence for $\left\|u-u_{0}\right\|+\left|t-t_{0}\right|$ sufficiently small, we may find a solution v of equation (i) in a prescribed neighborhood of v_{0} in $C_{0}^{2 m, \lambda}(\Omega)$ with

$$
\left\|v-v_{0}\right\|_{0^{2 m, \lambda}} \leqq \rho\left(\left\|u-u_{0}\right\|+\left|t-t_{0}\right|\right)
$$

where

$$
\rho(s) \rightarrow 0 \quad \text { as } \quad s \rightarrow 0 .
$$

Since the solution of (i) is unique, $v=C_{t}(u)$. Hence C_{t} maps $[0,1] \times B_{R}$ continuously into $C_{0}^{2 m, \lambda}(\Omega)$ and afortiori into $C_{0}^{2 m-1, \lambda}(\Omega)$.

We now apply the theory of the Leray-Schauder degree ([9], [12]) to the family of mappings $I-C_{t}, 0 \leqq t \leqq 1$. For $t=0, C_{t}=0$ since then v is a solution of

$$
\sum_{|\alpha|=m} D^{\alpha} D^{\alpha} v=0
$$

Hence the degree of T_{0} over B_{R} with respect to 0 is equal to +1 . For each t in $[0,1], C_{t}$ is a compact map and the degree of T_{t} over B_{R} with respect to 0 is well-defined since for u in B_{R} with $\|u\|_{o 2 m, \lambda(\Omega)}=$ $R, T_{t} u=0$ implies that

$$
F_{t}(p(u))+t H(p(u))=t H(p(u))
$$

i.e.

$$
F_{t}(p(u))=0
$$

and for solutions of the latter equation, condition (3) of the hypothesis assures that $\|u\|_{g^{2 m-1, \lambda}}<R_{0}=R$. The degree of T_{t} over B_{R} with respect to 0 is constant in t by the continuity and compactness of C_{t}
in the pair $[t, u]$. Hence the degree of T_{1} over B_{r} with respect to 0 is equal to +1 and there exists a solution u in B_{R} of $T_{1} u=0$. This is equivalent, however, to

$$
F(p(u))=0
$$

and Theorem 1 is proved.
As an important specialization of Theorem 1, we have the following result for the quasi-linear case.

Theorem 4. Suppose F is a C^{2}-function on $\Omega \times R^{M}$ such that the corresponding differential operator $F(u)$ of order $2 m$ is strongly elliptic and quasi-linear, i.e.

$$
F(u)=\sum_{|\alpha|=2 m} A_{\alpha}\left(x, u, \cdots, D^{2 m-1} u\right) D^{\alpha} u=G\left(x, u, \cdots, D^{2 m-1} u\right)
$$

Suppose that for $F_{t}(u)=t F+(1-t) \Delta^{m}$, we know the existence of $R_{0}>0$ such that for u in $C_{0}^{2 m, \lambda}(\Omega)$, we have $\|u\|_{0^{2 m-1, \lambda}}<R_{0}$ if $F_{t}(p(u))=0$ for some t in $[0,1]$.

Then the equation $F(p(u))=0$ has a solution u in $C_{0}^{2 m, \lambda}(\Omega)$.

Proof of Theorem 4. We apply Theorem 1 with

$$
H(x, p)=k_{R}\left|p_{0}\right|^{2}
$$

Since for $\|u\|_{0^{2 m-1, \lambda}}<R$, the $C^{0, \lambda}(\Omega)$-norms of coefficients in the differential operator

$$
\sum_{|\alpha|=2 m} A_{\alpha}\left(x, u, D u, \cdots, D^{2 m-1} u\right) D^{\|} v
$$

are bounded by a function of R, it follows from Lemmas 2 and 3 of Section 2 that the conditions (1) and (2) of Theorem 1 are satisfied. Since condition (3) is part of the hypothesis of Theorem 4, we may apply Theorem 1 and obtain a solution of $F(u)=0$.

Another interesting specialization is to the case of nonlinear second order equations.

Theorem 5. Let $F(u)$ be a nonlinear strongly elliptic differential operator of second order. Suppose that both of the following hypotheses are satisfied:
(a) There exists a constant $R_{0}>0$ such that if $F_{t}(u)=t F(u)+$ $(1-t) \Delta=0$ for $u \in C^{2 m, \lambda}(\Omega)$, then $\|u\|_{o^{2 m-1, \lambda}}<R_{0}$.
(b) The equation

$$
F_{t}(p(u, v))=f
$$

for $\|u\|_{\sigma_{2 m-1, \lambda}} \leqq R,\|f\|_{\sigma_{0, \lambda}} \leqq s$ has all its solutions v in $C_{0}^{2 m, \lambda}(\Omega)$ bounded by

$$
\|v\|_{0^{2} m, \lambda} \leqq R_{1}(s)
$$

Then the equation $F(u)=0$ has a solution u in $C_{0}^{2 m, \lambda}(\Omega)$.
Proof of Theorem 5. We apply Theorem 1 with $H=0$. The linearized equation

$$
\sum_{|\alpha|=2} F_{\alpha}(p(u, v)) D^{\alpha} \eta=0
$$

has only $\eta=0$ for a solution in $C_{0}^{2, \lambda}(\Omega)$.
5. Historical remarks. The basic work on the Leray-Schauder degree and its application to elliptic boundary value problems is of course the original paper of Leray and Schauder [9]. The result of the latter were only given for equations of second order because of the need for precise results on linear equations not then established for higher order differential operators. Our treatment of the case of strongly nonlinear rather than quasilinear equations follows somewhat different lines from that given in the second part of [9].

Theorem 2 is a generalization of the result of Schauder [15] for second order equations. A partial generalization is given by Agmon-Douglis-Nirenberg ([1], Theorem 12.6).

Theorem 3 is an application of the ideas of the writer's papers [4] and [5].

Systematic accounts of the Leray-Schauder theory of the degree are given by Nagumo [12], Krasnoselski [7], and Cronin [6]. Complete treatments of applications to second order quasilinear equations in R^{2} are given by Nirenberg [13] and Miranda [11].

Bibliography

1. S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic differential equations satisfying general boundary conditions, I., Comm. Pure App. Math. 12 (1959), 623-727.
2. F. E. Browder, On the spectral theory of elliptic differential operators, I, Math. Annalen, 142 (1961), 22-130.
3. - Estimates and existence theorems for elliptic boundary value problems, Proc. Nath. Acad. Sci. 45 (1959), 365-372.
4. -, Covering spaces, fibre spaces, and local homeomorphisms, Duke Math. Jour. 21 (1954), 324-336.
5. -, Non-linear functional equations in locally convex spaces, Duke Math. Jour. 24 (1957), 579-590.
6. J. Cronin, Fixed points and topological degree in nonlinear analysis, Providence, 1964.
7. M. A. Krasnoselski, Topological methods in the theory of nonlinear integral equations:

Moscow, 1956. (Trans. into English, Pergamon Press, 1964)
8. J. Leray, Topologie des espaces abstraits de M. Banach, C.R. Acad. Sci., Paris, 200 (1935), 1082-1084.
9. J. Leray and J. Schauder, Topologic et équations fonctionelles, Ann. Sci. Ecole Norm. Sup. (3), 51 (1934), 45-78.
10. P. Levy, Sur les fonctions lignes implicites, Bull. Soc. Math. France, 48 (1920), 13-27.
11. C. Miranda, Equazioni alle Derivate Parziali di Tipo Ellitic, Springer, Berlin, 1955.
12. M. Nagumo, Degree of mapping in convex linear topological spaces, Amer. Jour. Math. 73 (1951), 497-511.
13. L. Nirenberg, Nonlinear elliptic partial differential equations and Hölder continuily, Comm. Pure App. Math. 6 (1953), 103-157.
14. J. Schauder, Der Fixpunktsatz in Funktionalräumen, Studia Math. 2 (1930), 171180.
15. -, Invarianz des Gebietes in Funktionalräumen, Studia Math. 1 (1929), 123139.
16. - Über den Zusammenhang zwischen der Eindeutigkeit und Lösbarkeit partiellen Differentialgleichungen zweiter Ordung vom elliptischen Typus, Math. Ann. 106 (1932), 661-721.

University of Chicago

