
PACIFIC JOURNAL OF MATHEMATICS
Vol. 17, No. 3, 1966

HOMOMORPHISMS AND SUBDIRECT DECOMPOSITIONS
OF SEMIGROUPS

B. M. SCHEIN [SAIN]

Dedicated to Professor Alexander Doniphan Wallace
on the occasion of his sixtieth birthday

Subdirect decompositions of rings seem to be an important

tool in the theory of rings promoting the development of this

theory. It is a very natural thing to study subdirect products

of semigroups but to the author's knowledge the only paper

on the topic is that of G. Thierrin [22] where certain properties

of subdirectly irreducible semigroups are considered.

Subdirect decompositions of semigroups are closely con-

nected with homomorphisms of these semigroups, so we describe

in the first section the structure of an arbitrary congruence

on a semigroup. The second section is devoted to certain special

subsets and elements of a semigroup. Main notions of the

section are those of disjunctive element (i.e., an element that

does not form a congruence class modulo any nontrivial con-

gruence) and of core of a semigroup (i.e., a least nonnull

ideal). Subdirectly irreducible semigroups are considered in

the third, fourth and fifth sections. We consider certain

general properties of such semigroups and find characteriza-

tions of special classes of such semigroups (e.g. nilpotent, idem-

potent, commutative). Section 6 treats homomorphically simple

(/^-simple) semigroups, i.e., semigroups having no nontrivial

congruences. Section 7 is devoted to consideration of certain

semigroups having special subdirect decompositions. By analogy

with /-regular rings [3] we introduce /-regular semigroups.

There are considered also completely reductive semigroups, i.e.,

semigroups having no nononreductive homomorphic images.

Several results of this paper have been published without

proofs in our note [18]. Certain results of [18] had been

previously found in [22] but we did not know this when [18]

was published. All concepts of the theory of semigroups that

are not defined here are defined in [6,12], We use the symbols

A, —>,<->, A respectively for conjunction, implication, (logical)

equivalence, universal quantifier and follow the ordinary

agreement as to the use of brackets in statements. If ε is an

equivalence relation, then ε(g} is the ε-class containing g and

Qi Ξ 02(ε) or 0i Ξ g2 means that gι and g2 are in the relation ε.

If G is a semigroup then G1 denotes G with adjoined identity

(unless G already has an identity), G° denotes G with ad-

joined zero (unless G already has a zero). Variables g and h

(with or without indices) take values in the set of all elements

Received October 9, 1964.

529



530 B. M. SCHEIN [SAIN]

of G, variables x and y take values in the set of all elements
of G1 (i.e., x and y may be void symbols ([12], p. 7)). A one-
element set is often denoted in the same way as its element.
As a rule, one-element semi-groups are excluded from con-
sideration. ΔG is the identity relation on the set G.

Congruences on semigroups* It is known that the consideration
of homomorphisms may be limited to the consideration of congruences
on semigroups (it is necessary to emphasize that such a limitation can
lead to an essential loss of information—e.g., when one considers
automorphisms).

Let Θ(G) denote the complete lattice of all congruences on a semi-
group G. A minorant basis of Θ(G) is any subset B of Θ(G) such
that each element of Θ(G) is the greatest lower bound (i.e., the inter-
section) of some subset of J3.

If H is a subset of a semigroup G then the equivalence r^π

defined as follows:

(1.1) gx = g2(^3) <-> (A*, y)[xgiVeH+->xg2y e H]

is a congruence [17, 21]-the principal congruence determined by
H. R. Pierce [14] and R. Croisot [7] define ^ B in another way (they
do not allow x and y in (1.1) to be void). Clearly ^H — ^B>, where
Ή.' is the complementation of H in G. E.g., ^ = ^ = 6 x 6 ,

Let ε be an equivalence on a semigroup G. The greatest congru-
ence included in ε is called the stable opening of ε (cf. [16]). We
omit the straightforward proof of the following

LEMMA 1.1. Every equivalence ε on a semigroup G possesses a
stable opening έ and ε =

Every congruence coincides with its stable opening, so every
congruence ε coincides with intersection of the family of principal
congruences generated by ε-classes.

THEOREM 1.2. The set of all principal congruences on a semi-
group forms a minorant basis of the lattice of all congruences.

This theorem is no longer true if principal congruences are un-
derstood in the sense of R. Croisot [7].

Let G be a subsemigroup of a ring R. Then every congruence
of the ring R induces a congruence on G. It is easy to prove that
if R is the semigroup ring of G over the ring of integers, then every
congruence of G is induced by some congruence of R.
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2* Disjunctive element and cores of semigroups* A subset H

of a semigroup G is called indivisible by an equivalence ε (by a sub-

set F) if H is contained in some ε-class (^-class) . H is called

saturated for ε, if H is the union of a family of ε-classes. M. Teissier

[21] has proved that ^ B is the greatest congruence for which H is

saturated.

Let us associate with every subset H the subset r(H) defined

by the formula

(2.1) ger(H)~(Ax,y)[xgy£H]

r(H) is called the (bilateral) residue of H in G. It is an ideal of G

and, if nonempty, an ^^-class. If # a n d 2/ i n (2.1) are not permitted

to be void, one comes to the definition of residue in the sense of

R. Croisot [7]. In our previous papers we designated <^P

H by ε and
H

r{H) by WH. It follows from (2.1) that r{H) c H', i.e., r(H) Π H = φ.

H is called neat if r{H) = ψ. If G contains a zero 0 and 0 g £Γ

then i ϊ cannot be neat because Oer(£Γ). if is called 0-neat if r(iϊ)

contains at most one element (i.e., r{H) coincides with φ or with {0}).

Both notions are identical for a semigroup without zero.

A subset H is called disjunctive if the only subsets indivisible by
cέ?Ή are empty and one-element. This means that

(2.2) &π = Δa .

Disjunctive subsets were considered by E. J. Tully, Jr. [23],

M. P. Schiitzenberger [20] and (in a slightly different sense) by

R. Pierce [14].

An element g is called 0-neat (disjunctive) if {g} is 0-neat (dis-

junctive). In [18] disjunctive elements were called separative.

The least nonempty ideal of a semigroup G (if it exists) is called

the kernel of G. The kernel of a semigroup with zero is trivial. We

call an ideal nonnull if it contains at least two elements. The least

nonnull ideal (if it exists) is called the core of G. The core and the

kernel of a semigroup without zero coincide.

THEOREM 2.1. Let G be a semigroup with disjunctive zero.

Then an element of G is disjunctive if and only if it is 0-neat.

Proof. If an element k is disjunctive then by (2.2) r(k) contains

at most one element. Hence k is 0-neat. Now let k be 0-neat. If

k — 0 then k is disjunctive, so let k Φ 0. For every gu g2eG there

exist x, y such that exactly one of elements xgλy, xg2y is equal to 0

(this follows from disjunctivity of 0). Let xgxy Φ 0. Then there
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exist xu y1 such that xιxg1yy1 = k. But xg2y — 0, so x^g^VVi = 0 Φ k,
and g1 Ξ£ g2(^k), i.e., k is disjunctive.

Let K be the core of G. Since i£2 is an ideal, one has two
alternatives: K2 — K or if2 = 0. In the first case we call K globally
idempotent, in the second case K is called nilpotent.

The set of all right annihilating elements of a semigroup G (i.e.,
such elements g that Gg — 0) is called the right annihilator of G.
The ie/£ annihilator is defined dually. The set of all (left and right)
annihilating elements is called the annihilator of G. The right an-
nihilator is called trivial if it contains at most one element.

A core K is called primitive if it contains exactly one nonzero
element.

THEOREM 2.2. // a semigroup G having a core K contains a
nonzero element g such that GgG = 0, then K is included in the
right or in the left annihilator of G. If K is included in both,
then K is primitive and coincides with the annihilator. In every
case the core K is nilpotent.

Proof. Let M(G) be the set of all geG such that GgG = 0.
M(G) is a nonnull ideal, so KaM(G) and GKG = 0. Therefore GK
and KG are ideals. If GK is nonnull, then KaGK, so GK = K and
KG — 0, i.e., K is contained in the left annihilator. Analogously, if
KG is nonnull, then K is contained in the right annihilator. If GK —
KG — 0 then K is contained in the annihilator. Every subset of the
annihilator is an ideal, hence the annihilator cannot contain more than
two elements. So K coincides with the annihilator and is primitive.
Clearly, in every case K2 = 0.

It is easy to prove that if the core K is globally idempotent then
KgK — K for every nonzero geG.

3* General properties of subdirectly irreducible semigroups*
Let (Gi)ieI be a nonempty family of semigroups. Its direct product
is a semigroup XίCr^e/ whose set of elements is the Cartesian product
of the family of sets of elements G, , the operation is defined component-
wise.

A subsemigroup G of the semigroup X(G )̂ is called a subdirect
product of the family (Gi)iel of semigroups if pr^G) — Gi for all i e I
(here pr{ denotes the natural projection of X(G )̂ on G^. Clearly, all
pr{ are homomorphic mappings of G.

We say that a semigroup S is decomposable as a subdirect product
of a family {G^ieI of semigroups if S is isomorphic to the subdirect
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product of (Gi)i. This isomorphism is called a subdirect decomposition

of S.
If the subdirect decomposition followed by some one of the pro-

jections pr{ is an isomorphism of S with Giy then this decomposition
is called trivial. A semigroup is called subdirectly irreducible if each
of its subdirect decompositions is trivial. In the same way direct
decompositions and directly irreducible semigroups are defined.

Two following theorems are true ([2], Th. 10, p. 92; [1], p. 765):

THEOREM 3.1. Every semigroup is decomposable as a subdirect
product of a family of subdirectly irreducible semigroups.

THEOREM 3.2. A semigroup G is subdirectly irreducible if and
only if it possesses the least nonidentical congruence.

If a family (e^ of congruences on G has Aa as its intersection,
then G is decomposable as a subdirect product of a family (G/ε,) of
semigroups ([2], Th. 9, p. 92).

THEOREM 3.3. Every subdirectly irreducible semigroup has at
least two different disjunctive elements.

Proof. Consider the congruence Π ((^g)oee on a subdirectly irre-
ducible semigroup G. Each of {g} is a ^-class, so our congruence is
equal to JG. Since G is subdirectly irreducible, ^Ol = ΔQ for some gx

(by Theorem 3.2). Now consider the congruence Π {<^g)gΦg1 Every
g Φ g1 forms its congruence class, so our congruence is equal to Δa

and there exists g2 Φ g1 such that <ĝ 2 ~ ΔQ. gx and g2 are two different
disjunctive elements, by (2.2).

Disjunctive elements are 0-neat, every nonzero 0-neat element
belongs to every nonnull ideal, i.e., belongs to a core.

COROLLARY 3.3.1. [22], Every subdirectly irreducible semigroup
has a core.

All disjunctive elements of a semigroup belong to its core. But
a semigroup having a core need not be subdirectly irreducible (as it
is for rings).

THEOREM 3.4. Let έ%f be a family of subsets of a subdirectly
irreducible semigroup and let the intersection f\ H or the union
U H of this family be disjunctive. Then at least one subset in the
family Sίf is disjunctive.
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Proof. It is easy to prove (cf. [17], p. 387) that

(3.i) n easier c 9fn(1Γ.,.€,, n

If ^ = (Hi) and f | ^ o r ( J ^ are disjunctive, then fl %

Hence there exists £e J such that (^?
Bi — ΔQ, i.e., if; is disjunctive.

COROLLARY 3.4.1. Let G be a subdirectly irreducible semigroup,
K its core, ε0 the least nonidentical congruence on G, k a disjunctive
element of G, HaG. Every disjunctive subset of G contains at
least one disjunctive element. H is saturated for ε0 if and only if
it is not disjunctive. H is disjunctive if and only if H Π K is
such. If geG and {k, g] is not disjunctive, then every subset of G
containing k but not g is disjunctive; excluding at most one, every
two-element subset containing k is disjunctive.

This follows from Theorem 3.4 and evident equality H =
(H f] K) U (H\K). If {k, g} is not disjunctive then every subset con-
taining k but not g intersects with {k, g] by {k}.

Let g, h be elements of a semigroup G. If gh — h then g is called
a left unit for h. If gh — hg — h, then g is called a unit for h. An
element e is called central if eg = ge for every geG.

THEOREM 3.5. Let G be a subdirectly irreducible semigroup and
e a central element of G. If e is a unit for some nonzero element
then e is the identity of G.

Proof. Let e be a unit for g Φ 0, K be the core of G and ke K.
There exist x, y such that xgy = k (since k is 0-neat), so ke — k,
since e is central. So for every ke K ke — k and for an arbitrary
positive nken = k. Consider a binary relation ε(β) defined by the formula:
gx ΞΞ g2(ε{e)) <--> gxe

m — g2e
n for some positive integers m and n. Clearly,

ε(e) is a congruence and it induces on K the identical congruence. Let
eκ — K x K U 4? be the congruence generated by K. Then ε^ Π ε(e) =
ΔQ. Since G is subdirectly irreducible and eκ Φ AQ, ε(e) = ΔQ. For
e v e r y geG g = ge(e{e)), so g = ge.

Every central idempotent is a unit for itself. So we have:

COROLLARY 3.5.1. [22]. A subdirectly irreducible semigroup does
not contain central idempotents different from zero and identity.

THEOREM 3.6. Semigroups G and G1 (G and G°) are simultaneously
subdirectly irreducible or reducible.
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Proof. If G has an identity, then G = G1 and there is nothing
to prove. Let G be a semigroup without identity. If ε is a congruence
on G, then ε1 = ε (J {(1, 1)} is a congruence on G1. If ε0 is the least
nonidentical congruence on G\ then it induces the least nonidentical
congruence on G, It is easy to prove that if ε0 is the least nonidentical
congruence on G then εj is the least nonidentical congruence on G\
The proof for G and G° is analogous.

THEOREM 3.7. A semigroup G with disjunctive zero is subdirectly
irreducible if and only if it satisfies one of the following conditions
(which are equivalent):

(1) G contains at least two different 0-neat elements.
(2) G contains at least two different disjunctive elements.
(3) G has a core.

Proof. By Theorem 2.1, conditions (1)~(3) are equivalent. They
are necessary for subdirect irreducibility (Theorem 3.3). Now let G
satisfy (1)~(3), & be a 0-neat element different from 0. If ε is a non-
identical congruence, then {0} cannot be an ε-class (otherwise ε cz <ĝ 0 =
ΔG). So 0 = g(ε) for some nonzero g. Since k is 0-neat there exist
x and y such that xgy — k, so 0 = xOy = xgy — k. This is true for
every ke K, so εκas and the congruence εκ generated by K is the
least nonidentical congruence on G. G is subdirectly irreducible, by
Theorem 3.2.

COROLLARY 3.7.1. A semigroup with primitive core is subdirectly
irreducible if and only if its zero is disjunctive.

A subset H of a semigroup G is called a left reductor if it has
the property:

If 9i, 9 2 e G a n d hgx = hg2 for every he H, then gλ~ g2.

H is a right reductor if it satisfies the dual property.
We define the congruences εr and ε1 by the formulas

(3.2) gx = g2(εr) <

(3.3) gt = #2(εx) — (Ag)[99i = 99*] -

G is called right (left) reductive if εr = ΔQ (εx = ΔG).
Let G be a subdirect product of a family (G{) of right reductive

semigroups and gxg = g2g for every g e G. Then pr^gjpr^g) =
pr^g^pr^g). The elements pr{(g) run over the whole set Giy so
pr*(9i) = P^i(92)j i . e > 9i = &. We have proved:

THEOREM 3.8. A subdirect product of a family of right (left)
reductive semigroups is right (left) reductive.
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Let G be subdirectly irreducible, K its core. Denote the con-
gruence εr Π βi Π εκ by ε. Let g1 = g2(e). If g1 or g2 does not belong
to K, then gλ — g2. Let gu g2 e K. Then

(3.4) (AQ)ldi9 = 9& Λ gg1 = gg2] .

Let k be disjunctive and different from gί and g2. If X^T/ = fc, then
x or ?/ is not void, so a;̂ ?/ = xg2y = k. Therefore g1 Ξ= # 2 ( ^ ) , i.e.,
^ = g2. Two alternatives are possible: 1) ε = ΔQ. Therefore er or εx

is identical, i.e., G is right or left reductive. 2) ε Φ Δa. Then there
exist gx Φ g2 such that gx = βr2(ε). G has no disjunctive elements
different from gu g2. So gx and g2 are disjunctive (by Theorem 3.3).
We have proved:

THEOREM 3.9. If a subdirectly irreducible semigroup is neither
right nor left reductive, then it contains exactly two disjunctive
elements gx and g2 and these elements satisfy (3.4).

4* Special classes of subdirectly irreducible semigroups* A
homogroup is a semigroup which contains a kernel that is a group
[5,6]. A semigroup is a homogroup if and only if the intersection of
all right, left and two-sided ideals of the semigroup is not empty.
Every semigroup with zero is a homogroup. If K is the kernel of a
homogroup G then the identity of the group K is a central idempotent
of <?([12], p. 252). If G is subdirectly irreducible, then this central
idempotent is a zero or an identity of G, by Corollary 3.5.1. In the
second case G — K. So we have:

THEOREM 4.1. Every subdirectly irreducible homogroup without
zero is a group.

It follows that a subdirectly irreducible semigroup which is not a
group does not contain nonzero zeroid elements in the sense of [5],
It follows also that the core of this semigroup is not a group.

A semigroup is called a nilsemigroup if some power of every
element is equal to zero (the power may be different for different
elements).

LEMMA 4.2. // a nilsemigroup has a core, this core is primi-
tive and coincides with the annihilator of the semigroup.

Proof. Let G be a nilsemigroup and K its core, kl9 k2 be two
nonzero elements of K. Since kλ and k2 are 0-neat, there exist x, y,
xlf y1 such that xkxy — k2 and xxk2yx — kx. So {XixYkJ^yy^ = kx for
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every n, i.e., (x^x)71 Φ 0 and {yy^)n Φ 0. Hence, x, y, xu y1 are void
and k± — k2, i.e., K contains a single nonzero element, say, k. If
GK = GK U {0} is not equal to 0, then GK = K and gk = k for some
g eG. So gnk — k for every n. But #* = 0 for some n. So GiΓ = 0.
Analogously, KG — 0. Hence K is the annihilator, by Theorem 2.2.

By this lemma and Corollary 3.7.1,

THEOREM 4.3. A nilsemigroup is subdirectly irreducible if and
only if it contains a disjunctive zero and has the core.

LEMMA 4.4. / / a semigroup with a nontrivial annihilator
contains a disjunctive element, then this semigroup has a disjunctive
zero.

Proof. If 0 is disjunctive, there is nothing to prove. Let k be
a nonzero disjunctive element, k is 0-neat, so G has the core. The
core necessarily coincides with the annihilator, so k is annihilating.
Let g1 and g2 be two different elements. Then there exist x and y
such that exactly one of elements xgλy, xg2y is equal to k. Let xgxy =
k. If xg2y Φ 0, then for some xu yx x1xg2yyι — k, since k — 0-neat.
So x1 and yγ are not both void. The element k is annihilating, there-
fore x1xg1yy1 — Xιkyx = 0. So 0 is disjunctive.

THEOREM 4.5. A nilsemigroup is subdirectly irreducible if and
only if it contains a nonzero disjunctive element.

Proof. Such a semigroup has a core. The semigroup is sub-
directly irreducible, by Lemmas 4.2, 4.4 and Theorem 4.3.

Homomorphic images of nilsemigroups are nilsemigroups, so every
nilsemigroup is decomposable as a subdirect product of a family of
subdirectly irreducible nilsemigroups.

A semigroup G is called nilpotent if Gn = 0 for some positive n.
A subdirect product of nilpotent semigroups need not be nilpotent,
but it is easy to prove that a semigroup G is isomorphic to a sub-
direct product of a family of nilpotent semigroups if and only if
the ideal Π Gn (for aU positive n) is null.

THEOREM 4.6. A nilpotent semigroup is subdirectly irreducible
if and only if it contains a disjunctive element.

Proof. By Theorem 4.5, it is sufficient to prove that a nilpotent
semigroup with disjunctive zero is subdirectly irreducible.

If Gn = 0 and Gn~ι φ 0, then Gn~λ is included in the annihilator
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of G. Let ku k2 be nonzero annihilating elements. xkλy = 0 means,
that x or y is not void. Therefore, k1 = k2(^Ό), i.e., k1 = k2. So G"*1

is the annihilator containing exactly two elements. Clearly, Gn~ι is a
core, hence G is subdirectly irreducible, by Theorem 4.3.

COROLLARY 4.6.1. A nilpotent semigroup is subdirectly irre-
ducible if and only if it has a disjunctive zero.

THEOREM 4.7. Let G be a subdirectly irreducible idempotent
semigroup, K be a core of G. If G is a semigroup without zero,
then one of the following two properties hold:

( 1 ) K is the set of all right zeros of G and a left reductor.
( 2 ) K is the set of all left zeros of G and a right reductor.

If G has a zero, then the complementation of the zero is a sub-
semigroup satisfying (1) or (2).

Proof. Let G have a zero. Then K is 0-simple, hence K is a
completely 0-simple semigroup ([6], Corollary 2.56). Completely 0-simple
idempotent semigroups are rectangular bands with adjoined zeros (cf.
[6], Exercise 2.7.9). Let gλg2 = 0 , gxφ 0, g2 Φ 0. Then Kg±K= K
(see the last sentence of §2). Therefore KgγΦ 0 and g2K Φ 0, i.e.,
there exist kl9 k2e K such that kxgx Φ 0 and g2k2 Φ 0. So k1g1 g2k2 —
0. This equality contradicts to the fact that K is a rectangular
band with adjoined zero. Hence, gx ~ 0 or g2 = 0, i.e., the comple-
mentation of 0 is a subsemigroup. This subsemigroup is subdirectly
irreducible, by Theorem 3.6. K\{0} is the core of this subsemigroup,
so it does not contain zero.

Now let G be a subdirectly irreducible idempotent semigroup
without zero. We have just seen that if is a rectangular band. Define
two equivalences εx and ε2 on G. gx = g2(^ means that gλ = g2 or
that gl9 g2e K and gxg2 = g2 (the last equality implies g2gx — gj. Let
ΰi = flφi). If 9i = 9i, then ggλ = gg2{ex) and g,g = gMε,). If g1 Φ g2

then gu g2e K and gλg2 = g2. Therefore ggxgg2 = gg^g^g^ = gg^2 = gg*
and gg1 = gg^e,). g1gg1 = g1-g1gg1-g1 = gl9 since K is a rectangular
band and g1gg1 e K. Hence, gxgg2g = gxggxg2g = g^^g = g2g and g,g ~
^g(ε t). So eί is a congruence. ε2 is defined in a dual way (gxg2 = gx,
if Qi, $2^ K) Clearly, ^ ίl £2 = 4 . This means that εx or ε2 is identical,
i.e., K is a right zero semigroup or a left zero semigroup. Let K be
a right zero semigroup, i.e., kλk2 — k2 for klfk2e.K. Then gά =
gk k = k for every keK and geG, i.e., i ί is a set of right zeros of
(?. If g is a right zero, then g = Kg a K, i.e., if is the set of all
right zeros. Define gx = g2(s) if and only if kgγ = kg2 for all keK.
ε is a congruence, since K is an ideal. Clearly, e Π ε*7 = AGi so ε = z/^
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This means that K is a left reductor.
Semigroups satisfying (2) were considered by E. S. Ljapin [11].

5* Commutative subdirectly irreducible semigroups* Com-
mutative subdirectly irreducible rings have been described in [13].
We shall consider now commutative subdirectly irreducible semigroups.
We distinguish three kinds of such semigroups.

Semigroups of the first kind are subdirectly irreducible abelian
groups (with or without adjoined zero).

THEOREM 5.1. An abelian group is subdirectly irreducible if
and only if it is a subgroup of p^-group (i.e., if it is a p™-group
or a cyclic group of order pn, where p is a prime).

Proof. A subdirectly irreducible abelian group G has a least non-
unit subgroup A, by Theorem 3.2. Since A does not contain any
proper nonunit subgroup, it is a cyclic group of a prime order p. If
g Φ 1 and [g] is the cyclic subgroup of G generated by g, then A a [g],
so g is an element of a finite order pm. Therefore the group [g] has
a subgroup of order m. In the same manner we prove that m = 1 or
m is a multiple of p. So g is an element of order pn, i.e., G is a
p-group. It is well-known ([10], §25, p. 164) that every directly
irreducible p-group is a £>°°~group or cyclic. So G coincides with one
of the groups listed in Theorem 5.1. Clearly, these groups possess
least nonunit subgroups and are subdirectly irreducible.

Thus, the concepts of direct and subdirect irreducibility are identical
for periodic Abelian groups. However, these concepts differ in the
general case. E.g., a directly irreducible Abelian torsion-free group is
not subdirectly irreducible.

Semigroups of the first kind are exactly subdirectly irreducible
commutative semigroups with globally idempotent cores. The comple-
mentation of zero in a commutative semigroup with globally idempotent
core is a subsemigroup (otherwise the core is nilpotent). And a sub-
directly irreducible commutative semigroup without zero and with
globally idempotent core is a group, by Theorem 4.1.

Semigroups of the second kind are subdirectly irreducible com-
mutative semigroups having nontrivial annihilator. By Theorem 2.2,
the core of such a semigroup is primitive and coincides with the an-
nihilator. By Lemma 4.4,

THEOREM 5.2. A commutative semigroup with a nontrivial anni-
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hilator is subdίrectly irreducible if and only if it contains a nonzero
disjunctive element.

COROLLARY 5.2.1. A commutative semigroup is a semigroup of
the second kind if and only if contains a nonzero annihilating dis-
junctive element.

COROLLARY 5.2.2. Subdirectly irreducible commutative nilsemi-
groups are semigroups of the second kind.

Subdirectly irreducible commutative semigroups different from the
semigroups of the first two kinds are semigroups of the third kind.
Hence, semigroups of the third kind are subdirectly irreducible com-
mutative semigroups with a nilpotent core and trivial annihilator.

A divisor of zero is called nontrivial if it is different from zero.
The set of all nondivisors of zero of a commutative semigroup is either
empty or forms a subsemigroup.

THEOREM 5.3. A commutative semigroup is a semigroup of the
third kind if and only if it contains an identity, a nontrivial
divisor of zero and a nonzero disjunctive element, and the set of all
nondivisors of zero forms a subdirectly irreducible group.

Proof. Let G be a semigroup of the third kind with a core K,
F be the set of all elements annihilating the core, i.e., fe F +-> Kf — 0.
Since K2 = 0, KaF. Clearly, F is an ideal. G is not of the second
kind, so K is not the annihilator. Therefore G Φ F. Let A be the
complementation of F in G, Ko be the set K\{0}, Fo be the set F\K.
So {{0}, Ko, FO, A} is a partition of G (Fo may be empty). If aeA,
then aKΦ 0, i.e., aK = K, because aK is an ideal of G. The set of
all g such that ag = 0 forms an ideal. K is not included in this ideal,
therefore this ideal is null, i.e., a is not a divisor of zero. Since
elements of F are divisors of zero, A is the set of all nondivisors of
zero. G has the trivial annihilator, so for every ke Ko K — GK =
Ak U {0}, i.e., there exists such an element eeA that ek — k. By
Theorem 3.5, e is an identity of G. Let aeA and keK0. Then
Aak — Ko, so there exists aλe A such that aλak — k. By Theorem 3.5,
axa — e, so a1 is the inverse of a and A is a subgroup of G. Let
axk — a2k for k e Ko, aly a2 e A. Then k — aγλa2k, aγxa2 — e and aγ — a2.

Ak — Ko, therefore the sets A and Ko have the same cardinality.

Let ε be a congruence on a group A generated by subsemigroup
α. Define a binary relation εa by the formula: gx = g2(ea) <-» g1 e g2a.
It is easy to verify that εα is a congruence on G that induces on A
the congruence ε. Let (ε{) be a family of congruences on A with



HOMOMORPHISMS AND SUBDIRECT DECOMPOSITIONS OF SEMIGROUPS 541

identical intersection and (εαi) be the family of corresponding congru-
ences on G. If ku k2 e Ko, then kx — ak2 for some ae A. Therefore
k± = k2(εai) means that kx e k2^ or that there exists a{ e α< such that
k± = k2a{, or that k2a = k2aiy or a = ai9 or ae αί# So fe4 = &2(Π (eαί)) <-»
^ e Π (αί) *-> α — 1 ^ &! = Λ2. Therefore ε* Π (Π (εβi)) = z/# and, since
G is subdirectly irreducible, there exists i such that εa. = Aa and
ei — AA. Hence, A is subdirectly irreducible.

Now let G be a commutative semigroup satisfying the conditions
of our theorem. G has a trivial annihilator and contains a nontrivial
divisor of zero. Hence, G is not a semigroup of the first or the
second kind. It is sufficient to prove the subdirect irreducibility of G.

Let A be the set of all nondivisors of zero, k0 be a nonzero dis-
junctive element and K the core of G (K exists since G has a nonzero
disjunctive element). If g is a nontrivial divisor of zero, then gg1 — 0
for some g1 Φ 0. For every fc e K there exist a; and y such that
#^2/ = k, so #& = xggxy = 0 and & is an annihilating element for the
set F — G\A, i.e., FK — 0. If A is one-element, then the set of all
divisors of zero, i.e., the complementation of A, is a semigroup satis-
fying all conditions of Theorem 5.2, i.e., G — H1 where H is a semi-
group of the second kind. G is subdirectly irreducible, by Theorem 3.6.

Let A have more than one element. Since A is subdirectly irre-
ducible, it has a least nonunit subsemigroup σ. Let ε be a nonidentical
congruence on G. kQ does not form an ε-class, so there exists g Φ k0

such that k0 = g(ε). If g& K, then for some x, y xgy = kQ, whence
xkoy = ko(ε). x and y are not both void. If xy e A, then g ~ (xy)"1^ e K.
So xye A and xkoy = 0. Therefore k0 Ξ= 0(ε) and αfe0 = 0(ε) for every
ae σ, i.e.,

(5.1) ak0 x akoaε .

If g e Ko, then since iΓ = GA0 = Ά&0 U {0}, g = α0A:0 for some aoe A.
In this case the set of all ae A such that ak0 = ko(ε) forms a nonunit
subgroup of A (this subgroup contains aoφ 1). So α is included in
this subgroup and (5.1) is valid. Hence, (5.1) is always valid. Let
ε0 be the intersection of all nonidentical congruences on G. By formula
(5.1), ak0 is not divisible by ε0, so ε0 is not identical and G is sub-
directly irreducible, by Theorem 3.2.

COROLLARY 5.3.1. A semigroup G is of the second kind if and
only if G1 is a semigroup of the third kind in which all elements
different from identity are divisors of zero.

The "if" part has just been proved and the "only if" part follows
from Theorems 3.6 and 5.2.
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COROLLARY 5.3.2. Every semigroup of the third kind has the
following structure: it is the union of four mutually disjoint sets
{0}, Ko, Fo, A, where Fo may be empty, Ko and A are not empty. 0
is a zero, A is the set of all nondivisors of zero; A forms a sub-
directly irreducible Abelian group; K = Ko U {0} is the nilpotent core
and KF = 0, where F = F\K. Sets A and Ko are of the same
cardinality and Ko is the set of all disjunctive elements of a semi-
group (if A is one-element, then 0 is also disjunctive). AF0 = FQ

and F is an ideal of the semigroup. For every a e A and k e KoaKQ =
Ko, Ak = Ko.

The greater portion of these propositions has been proved above.
It follows from the formula Ak — Ko that Ko is the set of all disjunc-
tive elements.

Note that semigroups of the third kind are a particular case of
Rauter's "Ubergruppen" [15].

A semigroup is called periodic if each of its elements generates a
finite subsemigroup. Using the terminology of [4], we may say that
semigroups of the third kind are extensions by semigroups of the first
kind of semigroups all whose elements are divisors of zero. Periodic
semigroups of the third kind are extensions by Abelian groups with
zero of nilsemigroups. Finite commutative nilsemigroups are nilpotent,
so subdirectly irreducible finite commutative semigroups are cyclic
groups (possibly, with zero), finite nilpotent semigroups and extensions
of nilpotent semigroups by cyclic groups with zero.

Though all subdirectly irreducible Abelian groups are periodic,
this is not true for semigroups. We possess examples of nonperiodic
semigroups of the second and of the third kinds.

6* Homomorphically simple semigroups* A semigroup is called
homomorphically simple (or, h-simple) if it has only two congruences:
identical and universal. Clearly, such semigroups are subdirectly irre-
ducible. They have no proper nonnull ideals.

A subset B of a set A is proper, if B Φ 0 and B Φ A.

THEOREM 6.1. A semigroup is h-simple if and only if each of
its proper subsets is disjunctive.

Proof. Let G be h-simple, H be a proper subset of G. Clearly,
^H is not universal. So c^π — ΔG, i.e., H is disjunctive. If every
proper subset of a semigroup is disjunctive, then the semigroup is
^-simple, by Theorem 1.2.

THEOREM 6.2. A semigroup with zero is h-simple if and only
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if each of its elements is disjunctive.

Proof. Every element of an h-simple semigroup is disjunctive, by
Theorem 6.1. If all elements of a semigroup with zero are disjunctive
and ε is a nonidentical congruence, then ε<(0̂ > is a nonnull ideal. Every
disjunctive element belongs to the core, so our semigroup has no
proper nonnull ideals, i.e., ε<Ό)> coincides with the whole semigroup
and ε is universal.

It follows from Theorems 2.1 and 6.2:

COROLLARY 6.2.1. A semigroup with zero is h-simple if and
only if it is 0-simple and contains a disjunctive zero.

This condition is very similar to a somewhat more strong condition
of L. M. Gluskin [8].

THEOREM 6.3. / / a semigroup with disjunctive zero has a
globally idempotent core, this core is an h-simple semigroup.

Proof. Let ku k2 be distinct elements of a core K. Then there
exist x and y such that exactly one of elements xkxy, xk2y (say, xkxy)
is equal to 0. Kxk2yK—K (cf. with the last sentence of §2),
Therefore kzxk2yk± Φ 0 and kzxkλykA — 0 for some &3, &4 e K. Since
k3x, yk4e K, 0 is a disjunctive element of a semigroup K. K has no
proper nonnull ideals (otherwise K is nilpotent). Hence, K is A-simple,
by Corollary 6.2.1.

THEOREM 6.4. An h-simple noncommutative semigroup has no
central elements different from zero and identity.

Proof. Let e be a central element of a noncommutative /^-simple
semigroup G. Consider the congruence ε(e) constructed in the proof of
Theorem 3.5. If ε(e) = AQi then for every g eG g = ge, since g = ge(εie)).
Hence, e is an identity of G.

Now let ε(e) be universal. Consider the congruence εe: g1 == g2(ee) <->
gxe — g2e. If εe is universal, then gxe — g2e for all gu g2eG. In par-
ticular, ge = β2, i.e., the principal ideal generated by e is {e, e2}. G is
not commutative, so this ideal is null, i.e., e is a zero of G. If εe =
AG, then gγe = g2e —> g± — g2. For every gu g2 there exist m and n such
t h a t gte

m = g2e
n. Let m ^ n. Then g,em~n = g2 or g1 — g2. In both

cases gxg2 = g2gt. But this is impossible (G is not commutative).
ίf-simple semigroups are examples of semigroups where every con-

gruence is principal. Other examples of such semigroups are groups.
Let H be a subset of a semigroup G saturated for a congruence ε.
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Then ε = CH if and only if the factor-set H/e is a disjunctive set of
a factor-semigroup G/ε. When H is an ε-class, this was proved in
[21, 23], We omit the analogous proof for the general case. As a
consequence:

PROPOSITION 6.5. A congruence ε on a semigroup G is principal
if and only if the factor-semigroup G/ε has a disjunctive subset.

It follows that the kernel of a homomorphism of G on a subdirectly
irreducible semigroup is a principal congruence generated by at least
two different subsets of G (these subsets are inverse images of dis-
junctive elements).

Another consequence is:

PROPOSITION 6.6. Every congruence on a semigroup is principal
if and only if every homomorphic image of this semigroup possesses
a disjunctive subset.

7* Completely reductive and /-regular semigroups* A semi-
group is called completely right {left) reductive if all its homomorphic
images are right (left) reductive.

Clearly, every completely right reductive semigroup if right
reductive.

PROPOSITION 7.1. A commutative semigroup is not completely
reductive if and only if it can be homomorphically mapped on a semi-
group of the second kind.

Proof. Semigroups of the second kind are not reductive (they
contain two distinct annihilating elements). On the other hand, if G
has no homomorphic images of the second kind, then every homo-
morphic image of G is decomposable as a subdirect product of a family
of semigroups of the first two kinds. Semigroups of these kinds have
identities and are reductive. G is completely reductive, by Theorem 3.8.

THEOREM 7.2. A commutative semigroup G is completely reduc-
tive if and only if it satisfies one of the following equivalent
conditions:

{1) AG = A for every ideal A of G.
( 2) Every element of G has a unit.

Proof. A semigroup of the second kind does not satisfy (1) if A
is the annihilator, and does not satisfy (2) because it has a nonzero
annihilating element. If G satisfies (1) or (2) then all homomorphic
images of G do. G is completely reductive, by Proposition 7.1.
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Suppose G does not satisfy (2). Let g be an element of G having
no unit. Then AG Φ A if A = gG U g. So G does not satisfy (2).
Consider the factor-semigroup G/AG. The subset A/AG of this semi-
group contains more than one element because AG is a proper subset
of A. G/AG is not reductive because it contains different annihilating
elements (all elements of A/AG are annihilating). So G is not com-
pletely reductive.

COROLLARY 7.2.1. A commutative periodic semigroup is com-
pletely reductive if and only if it satisfies one of the following
conditions:

(1) The ideal generated by the set of all idempotents coincides
with the semigroup.

(2) Every element has an idempotent unit.

Proof. Evidently (2) —* (1). It is easy to prove (1) —> (2), so both
conditions are equivalent. (2) implies complete reductivity, by Theorem
7.2. If G is completely reductive, periodic and commutative and g e G,
then gh = g for some heG, by condition (2) of Theorem 7.2. So hn

is a unit for g. But hn is idempotent for some n. So (2) holds.

COROLLARY 7.2.2. A finite commutative semigroup is completely
reductive if and only if it is globally idempotent, i.e., if and only
if G2 = G.

Proof. If G2 φ G, then G does not satisfy condition (1) of Theo-
rem 7.2 when A — G. If G2 = G then every homomorphic image of G
is also globally idempotent. So G cannot be mapped on a semigroup
of the second kind, because finite semigroups of the second kind are
nilpotent. G is completely reductive, by Proposition 7.1.

THEOREM 7.3. The following properties of a semigroup G are
equivalent',

(1) The intersection of any two ideals of G is equal to their
product.

( 2 ) Every ideal is globally idempotent.
(3) // (g) is the principal ideal generated by an element g e G,

then g e {g)\
( 4) Every subdirectly irreducible homomorphic image of G has

a globally idempotent core.
(5) Every homomorphic image of G is decomposable as a sub-

direct product of a family of semigroups with globally idempotent
cores.

Proof. (l) — (2)->(3)->(4)->(5)->(l). We shall prove those
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implications that are not evident. (1) —> (2) because A Π A = A for
every ideal A. (3) is preserved under homomorphisms, so (3) —•» (4)
because elements of a nilpotent core do not satisfy (3). Evidently, a
subdirect product of semigroups with trivial annihilators has a trivial
annihilator. A subdirectly irreducible semigroup with a globally idem-
potent core has a trivial annihilator. If A and B are ideals such that
i Π - B ^ AB, then the factor-semigroup G/AB has a nontrivial anni-
hilator (elements of AZDBJAB are annihilating). So (5)—>(1).

A semigroup satisfying conditions (l)-(5) of Theorem 7.3 is called
f-regular. /-regular semigroups are an obvious analogue of /-regular
rings that satisfy these conditions also [3],

Evidently, regular semigroups are /-regular. Homomorphic images
of /-regular semigroups are /-regular.

THEOREM 7.4 Commutative f-regular semigroups are regular.

Proof. Let A be a right ideal and B a left ideal of a commuta-
tive /-regular semigroup G. Then A and B are ideals, so A Π B — AB
Therefore G is regular [9].

COROLLARY 7.4.1. A semigroup is a commutative regular semi-
group if and only if each of its homomorphic images is emheddable
in a commutative regular semigroup.

Proof. The "only if" part is evident.

Clearly, subdirectly irreducible commutative regular semigroups
are of the first kind (i.e., are periodic groups with or without zeros).
Let G be a subdirectly irreducible semigroup embeddable in a com-
mutative regular semigroup Gl9 Gx is decomposable as a subdirect
product of a family of periodic groups (with or without zeros). This
decomposition induces a decomposition of G. But all decompositions of
G are trivial. So G is embeddable in a periodic group (with or with-
out zero). Hence, G is a group (possibly, with a zero). Therefore G
has a globally idempotent core. Now let G be a semigroup all of
whose homomorphic images are embeddable in commutative regular
semigroups. Since G is a homomorphic image of itself, it is com-
mutative. G satisfies condition (4) of Theorem 7.3, so it is /-regular.
G is a commutative regular semigroup, by Theorem 7.4.
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