
PACIFIC JOURNAL OF MATHEMATICS
Vol. 18, No. 2, 1966

nth ORDER INTEGRAL OPERATORS ASSOCIATED
WITH HILBERT TRANSFORMS

G. 0. OKIKIOLU

In this paper, we study the nth order analogues of
certain integral operators allied to the Hubert transform and
to Dirichlet's integrals. Most of the results known to be
true for n = 0 are proved for the general case. Some cases
in which the analogy fails are also considered. Among the
integrals considered are transforms B{

Λ

n)(f) and I{

Λ

n\f) defined
by

B?\f) = (-1)* (2n + Vl (p.v.) [" fit)

(2m+ 1)! dt

^(p.v.)l fit)

_ ( _
(2m)! C°S α (* X) dt

Inversion processes by which / may be expressed in terms of
the B^ and I#n) operators are also obtained. The results
proved in the paper are also shown to be true for integrals
defined with respect to a continuous parameter v. These
integrals reduce to the original ones when v is an integer.

Let the functions c{^(x), s{^(x), cn(x) and sn(x) be defined as

follows:

c™(x) = Σ (

 ( : } X , n ^ 0, c«\{x) = 0 ,
m=o (2m)!

sίί}(a0 = Σ (

/ O V-,,, , Λ ^ 1, βf>(aj) = 0 ,
m=o (2m + 1)!

>. u\ _ (2n)! / i \n ci(αt) cos at

where α is a fixed positive number. Then we define the following

integrals.
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= \~f(t)sn(t - χ)dt,
Joo

Cίn\f)(x) = (2w + 1) Γ /(ί) c*f - X) dt ,

*W)(s) - (2M + 1) (P.V.) Γ /(t) »;(' - f dt ,
J-~ (ί — x)

Iίn)(f)(x) = (2w + 2)(2w + 1) (P.V.) Γ f(t) C;f ~
J_oo (^ _

^iΓ5, Sin\ Cin) and β^ ) are defined for integers n ^ 0, and 2^} for,
w ^ - 1 . The operators .Di0), Si0), CiO),βiO) and Ji0) will be denoted by*
Da, Sa, Ca, Ba and Ia respectively.

The above integrals are generalisations of known integral operators.
Da(f) being the Dirichlet integral, and Sa(f) its well-known 'conjugate'.
Ba(f) was introduced by Boas in [1], and has since been studied by
Goldberg [2], Heywood [3] and Kober [4]. The transform Ia(f) has
been studied by the author elsewhere. The integrals are all related
to Hubert and Fourier transforms, and the properties of Ba(f) and
/«(/) have been obtained from identities involving the transforms and
the operators Da and Sa.

In this paper we obtain results involving D^]{f) and S{

Λ

n){f) similar
to those of Da(f) and Sa(f), and use these in studying the transforms
B[a\f) and Iin)(f). Among the results obtained are inversion processes
by which / may be expressed in terms of B^\f) and I*n)(f). In
Section 7, we show that the exponent n may be replaced by a continuous
real (or complex) variable. This is done by replacing the kernels defining
the integrals by certain others which reduce to the ones already given
when the exponent is an integer. The integrals D^ so obtained define
a semi-group of operators.

We shall consider functions of the class Lp(—ooy oo)(p > 1) only.
This class will in general be denoted by ZΛ The positive numbers p and
pf will be connected by the equation 1/p + 1/p' — 1, and the expression

(i l \f{t)Ydt\h

will be denoted by | | / | | p . Most of the equations and identities of this
paper should be taken as true almost everywhere. This will not be
indicated in each case. The Hubert transform is defined by

H(f)(x) = -^-(P.V.) ί" -M-dt ,
π J-~ t — x
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and the Fourier transform J^(f) of a function feLp (1 ^ p rgΞ 2) is
given by

2- The properties of D^(f) and S£\f). The following lemmas
will be employed in the proofs of the results of this section.

LEMMA 1. (a) H(sn)(x) = -cn(x), (b) H(cn)(x) = βΛ(a?).

Proof. Consider the function

V
o

where g = flr(aj), α? real. g(z) is a regular function for y ^ 0, and tends
to 0 uniformly for 0 5j arg £ g 7Γ as | ̂  | —> oo. Hence by integrating
g(z)/z — ξ round the semi-circle of radius R in the upper half plane
indented at t = ξ, we have

On lett ing δ —> 0 and i? —+ oo, we obtain

H(g)(ξ) - ίg(ξ) .

The results (a) and (b) follow by equating real and imaginary parts of
this identity.

LEMMA 2.

(a) ι/2πsn(x - y) = — ^ Γ (α - \t \fnei{x~y)tdt ,
l/2π J«-

(b) iΛ/2πcn(x - y) = -—1=- Γ (α - | ί |) 2 % - ^ ei{x~y)tdt .

l/2τr J-« ί

Proof. Let

Then it is easy to verify by integrating by parts that

%%n\
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Hence by making appropriate summation and putting 2n for n, we
obtain

A similar expression is obtained by putting — a for a, and the results
of the lemma are then easily verified.

LEMMA 3. Let

h(x) = Γ f(t)g(x - t)dt .
J-co

If fe L*(p ^ 1), g e Lq{q ^ 1), where lip + 1/g ^ 1, then

where 1/r = 1/p + 1/̂  — 1.

Proof. This is a well-known result, a proof of which is given in
Lemma β, p. 97, of [5]. (The case in which p — 1 or q = 1 is obtained
similarly).

In the next theorem, we give expressions for D^n)(f) and S^n)(f)
in terms of /. These results will be applied later in calculating the
integrals for certain special cases.

THEOREM 1. If fe Lp where 1 < p ^ 2, then for n^O,

(a) £<•>(/)(*) - ,JL- \ja - I ί |

(b) SJ >(/)(αO - - ^ L Γ ilL (α - tγ«f{t)e-^dt .
v2π J ί

Proo/. Let

g2(x) -=z (a — I x \)2ne~iyx for a? e ( — α, <x); = 0 otherwise ,

and let

Qί(x) = 1^1 (α — I a? |)2wβ~ίί/:c for a? e ( - α , α); = 0 otherwise .
x

Then gx and ^2 are given in Lemma 2. Hence Theorem 1 follows by
applying the product formula for Fourier transforms (Theorems 49 and
75 of [5]).

COROLLARY 1.1. If feLp where 1 < p ^ 2, then for n^O,
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D£\f) = 0 if and only if f(x) = 0 for xe(-a,a)

and

S^n)(f) = 0 if and only if f(x) = 0 for xe(-a,a).

Proof. This obviously follows from Theorem 1.

COROLLARY 1.2. Let m ^ 0 and n ^ 0. Then

(a) D^(sn)(x) = Si^ίcJίa?) - β.+m(a0 ,
(b) -S<->(s.)(s) - D™(cn)(x) - cw+m(α0 .

Proof. Let ^x and gr2 be defined as in the proof of Theorem 1
with y = 0. Then by Lemma 2, we have

&(α?) = i/2ττ sn(α?) a n d ^2(a?) = Λ ( )

Hence by the inversion for Fourier transforms it follows that

l/2π sn(x) — (a — \ x \fn for x e (—α, a); — 0 otherwise

and

-iV2π cn(x) = - i ^ - (α - | a? |)2% for x e ( —α, α); = 0 otherwise .

By putting sw for / and writing m for ^ in Theorem 1, we have

DLm)(sn)(x) = - ~ - Γ (α - I ί | Γ + ϊ V " d ί = sm+n{x) ,
2π J-«

-\t \Γ^e^dt = -cm+n(x) .ψ(a\t \Γ
-« t

The results involving cn follow by proceeding similarly.

THEOREM 2. If fe Lp where p > 1, then for % ^ 0 , we have

DP(f) G 1/ αmί SP(f) e Lr forr^p.

Also, for geLr'9 we have

Γ g(t)SP(f)(t)dt - - ί~ f(t)SP(g)(t)dt .
J-oo J_oo

Proof. Since sw(α?) = 0(1) as α? ~> 0 and is 0(l/#2) as a; —• c>o if
^ 1, it belongs to Lq for q ^ 1. Hence by Lemma 3, we have
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•D£n)(/) e Lr for r ^ p if % ^

For w = 0,

Da(f)(x) = c o s ^ (P.V.) Γ /(t)sin«t d ί

sinαa; /p y \ f °° /(*) cosnαa; /p y \ f °°
π * * J- t — x

It is thus clear from Theorem 101 of [5] that Da(f)eLp. The rerult
Da(f) e Lr for r > p follows from Lemma 3 since so(x) e Lq for q > 1.
It is easy to verify that en(x) e Lq for q > 1. Hence we also have

Si»>(/) 6 L r for r > p .

In Theorem 4 (below) we prove that Siw)(/) = fΓ{JDin)(/)}. Hence it
follows from Theorem 101 of [5] that S^if) e Lp. Now suppose that
gel/'. Then we have

Γ g(x)DiTKf)(x)dx = Γ (̂a )dα Γ /(ί)s.(ί - α?)dί
J-oo J_oo J_co

- (" f(t)dt\" g(x)sκ(x - t)dx - Γ f(t)D^(g)(t)dt ,
J-oo J-oo J-co

the inversion of the integrals being justified by absolute convergence..
The proof of the second product formula follows similarly.

THEOREM 3. If fe Lp (p > 1), then for m ̂  0, n ^ 0, we have
(a) Dp{D
(b) S<r>{D

Proof. By putting #(&) = sw(a? — y) in the product formulae (1)
and (2) and using Corollary 1.2, we have

Γ sn(x - y)Dir\f)(x)dx = Γ /(«)*.+•(« -
J-eo J-oo

Γ sn(x - y)S<mKf)(x)dx = Γ
J-oo J

i.e.

The other results of the theorem can be obtained by considering cn(x}
in place of sn(x).

C O R O L L A R Y 3 . 1 . L e t f e L p (p > 1) a n d let l^n be integers.

(a) If D«Kf) = 0, then D™(f) = S«)(/) = 0 ,
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(b) If S^(f) = 0, then S«Kf) = D™(f) = 0 .

Proof. These results are obvious consequences of Theorem 3.

REMARK 1. We observe here that Corollary 1.1 implies that if
feL* where 1 < p £ 2, then D^(f) - 0 implies D™(f) = S«>(/) = 0
for all 1^0, and so also for Si%)(/). In Section 6, we show that
this is the case for feLp (p > 1).

THEOREM 4. If fe Lp (p > 1), then for n^O,
(a) D
(b) S

Proof. From the product formula for Hubert transforms (Theorem
102 of [5]) and Lemma 1, we clearly have

Γ sn(t - y)f(t)dt = - Γ H(f)(t)cn(t - y)dt
J_oo J_eo

and

Γ cn(t - y)f(t)dt - Γ H(f)(t)8n(t - y)dt .
J-eo J_eo

We shall now show that Din){H(f)} = H{D{

a

n)(f)}. The corresponding
result for S^n) follows similarly. Let δ > 0 and let b < oo. Then by
the absolute convergence of the integrals involved, we have

\ — I f(t + x — y)sn(t — y)dt = l sn(t - y)dt \ -IQL- dx
Ja:+δ X — y J-b J-6 Jί+δ X — t

and

f(t + x — y)sn(t — y)dt = I sn(t — y)dt \ JK } dt .
-o» x — y

G oo fί~θ\ Γlθ°

+ I ) be denoted by I . Then on letting b —> oo 9 we obtain
ζ + 8 J-eo/ J-oo

{f){x)dx = Γ sM(ί - 2/)dί Γ JM-dx .
J-~ J-0 0 α; — ί)-» x — y

Since sn(t) e Lp for q > 1, and since

lim I I £Γ(/)(ί) - — Γ -Ά-
δ->o I I 7Γ J - « X — ί

o,

the required result follows by letting δ —* 0.
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REMARK 2. It is obvious from Theorem 4 that D^n)(f) = 0 if and
only if D^{H{f)} = 0, with a similar result for S^n)(f).

We shall now consider the equation D^]{f) = Xf. For the case
n = 0, we have Da(f) = £>«{£>«(/)} - λDβ(/), so that λ = 1. It has
been shown (for example see Lemma 3(b) of [4]) that in this case, /
is a member of the class Gl of functions f(x) e Lp such that f(z)
(z = x + iy) is an entire function of exponential order ^ α . For n > 0
however, we show in the next theorem that there is no nontrivial
member of Lv(l < p ^ 2) satisfying the equation. Further, we show
that in any case, we must have | λ | < 1.

THEOREM 5. Suppose that f satisfies the equation

D^n){f) = Xf where n>0 and X Φ 0 .

(a) // fe Lp (1< p ^ 2), ί^e^ / = 0.
(b) // / e Lp (p > 2), ίAβw IX | < 1.

Proof. Suppose that /6 Lp (1< p <£ 2). Then by applying Theorem
l(a), we have

- 4 = Γ (α - I ί \rf(t)e~^dt -
V 27Γ J-«

so that

(a-\x \y»f(x) for

0 for
x\ < a

x\ > a

It is now obvious that / = 0, and hence that / = 0 by the uniqueness
of Fourier transforms.

Now consider the general case in which feLp (p > 1). Then we
clearly have

= XD^(f) = λ2/ ,

and it follows by induction that for every positive integer k,

D«*\f) = Xkf.

Now from Lemma 3, it is clear that

II D«"»(f) 11,^

where q ^ 1,1/p + 1/q ̂  1 and 1/r = 1/p + 1/q — 1. It is however
not difficult to see that for q ^ 1

lim i|β*»||β = 0 ,
k
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SO t h a t

lim || D^kn){f) ||r = 0 for r ^ p .

Since Dikn)(f) = Xkf however, we must have | λ | < l or 11/11* = 0.
The resul t (b) follows.

COROLLARY 5.1. Lei feLp(p<l) and let m > 0 and n^O be
integers. Then D^m+n){f) = D™(f) if and only if Z?iΛ )(/) = 0.

Proof. By Theorem 3(a), we have

The result clearly follows from Theorem 5.

3. Representation theorems for B^n)(f) and Iin)(f). We shall
now obtain results by which B^n){f) and I*n)(f) are expressed in terms
of D^{f) and S^{f).

LEMMA 4. Let fe Lp(p > 1) and let geLpf. If
f(t)—-g(t — x)dt belongs to Lr for some number r > 1, then

dx

7 - Γ f(t)g(t - x)dt = Γ f(t)JLg(fi - x)dt .
dx J-°° J-« αx

Proof. Let x be a fixed finite number. Then by absolute con-
vergence, we have

\'dy\~ f(t)-f~g(t - y)dt = Γ f(t)dt[-£-g(t - y)dy
Jo J-oo dy J-β Jo α?/

and the required result follows immediately.
The following identities can be obtained directly from the definition.

( 3 ) £•>(/) = «2K

( 4 ) ir\f) = H(f) - Sa(f)

( 5 ) -^-βίί»(a5) - — βi"(a;); A βί>(«) = c » l ^ )
ota; αa;

LEMMA 5. If fe L* (p > 1), then Cf\f) e Lr for r ^ p, and
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\f) + 4SϊKf) .
dx

Proof. We have the identity

A cn(t -x) = -asn{t -x) + (2n + 1) c»<* ~ x)

ax cn(t x) asn{t x) + (2n + 1) .
ax t — x

Since — asn(t) + (2n + l)cn(t)/t belongs to Lq for q ̂  1, it is clear from
Lemma 3 that

Γ f(t)jLcn(
J-~ dx

belongs to Lr for r ^ p. Hence it follows that C^n)(f) e Lr for r ^ p.
The identity of the lemma then follows from Lemma 4.

THEOREM 6. If feLp (p < 1), then Bin)(f)eLp, and

Bίn)(f) = a2n+1H{f) - aS^(f) + -%-D™(f) .
dx

Proof. Since

/ xy/y»\2ίt

c^iax) — cos ax — ( —1)*-TΪΓ
(2»

belongs to L9 for g ^ 1, it follows from Lemma 3 and from obvious
identities that

aS^(f) - a**+1H(f) + B?\f) - Γ f(t)4~sn(t - x)dt ,

and that this belongs to Lr for r ^ p. Hence by Lemma 4,

aS^(f) - a^+1H{f) + jBj«>(/) - A Z?i^(/) e L* .
dx

The theorem now follows from Theorem 2 and from the fact that
H(f)eL>.

THEOREM 7. If fe L» (p > 1), then Un)(f) e Lp, and

Iϊ»(f) = a^H(f) - «2Si">(/) + 2«Aΰi"(/) + -fτS^(f) .
ax ax

Proof. By using the identity
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+ 1) — Cn^ " x) = -a(2n + 1) Sn^ ~ *>
cte £ — x t — x

+ (2n + l)(2w + 2) *»<* ~ g

and proceeding as in previous cases (Lemma 5 and Theorem 6), we have

-aB?\f) + £•>(/) = A Ci«>(/) e If

for r ^ p, so that Ii%)(/) e Lp (by Theorem 6).
Next by substituting for C^\f) and B^n)(f) from Lemma 5 and

Theorem 6 respectively, we derive the identity given in the theorem.

COROLLARY 6.1. If feLp (p> 1), then

dx dx2

Proof. This is easily verified by substituting for Un)(f) - a2n+Ή(f)
in (3).

Note. An expression similar to that given in Corollary 6.1 can be
obtained for Din+1)(f) by putting H(f) for / and using Theorem 4.

By substituting i?im)(/), S^if) and £Γ(/) respectively for / in
the identities of Theorems 6 and 7, and using Theorems 3 and 4, we
have the following:

4- D^+n)(f)
dx

A

d Dir+*\f) + -fr s«m+n)(f)
CtX (juX

(10)

dx

Ίx~
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The results of the next theorem will be applied in deriving the
inversion processes for B^\f) and I#n)(f).

THEOREM 8. If fe Lp (p > 1) and iff satisfies Dim+n)(f) = Diw)(/>
for some number m ^ 0, then

(a) B?{Dir\f) - /} = α-+W>(/) - H(f)},
B™{S!r\f) - H(f)} = -a^ι{D^

(b) £• W ' ( / ) - /} = α2*+2{Sr(

Proof. It is quite easy to verify these results from the identities
(6)—(11) by applying Corollary 5.1. We observe that the condition
Z>im+B)(/) = DLn)(f) is an identity if m = 0, and for m > 0, it implies
that

D<r+ \f) = Di*\f) = o.

4. Product formulae and commutative property. It is clear
that j%"'(/) - a*n+Ή(f) and #•'(/) - a*n+Ή(f) are absolutely and
uniformly convergent integrals. Hence for g e L"', we have

= Γ

A similar result holds for I^n){f) ~ a*n+Ή(f).
Hence by the product formula for Hubert transforms (Theorem 102

of [5]), we have

THEOREM 9. If feLp (p > 1), geLp\ then

(a) Γ g(t)B£\f)(t)dt = - Γ f(t)B^(g)(t)dt ,
J—oo J—oo

(b) Γ g(t)Ii"\f)(t)dt = - ( " f(t)I^(g)(t)dt .
J-oo J-oo

Some of the results obtained in the next section depend on the
commutative property exibited by each pair of the transforms con-
sidered here. In view of this we prove:

THEOREM 10. If feLp (p> 1), then
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(a) B?{X(f)} = X{B£\f)};
(b) I™{X(f)} = X{IiΛ)(f)}9

where X represents of the operators D{

β

m\ S^m} or H.

Proof. Since B™(f) - a2n+Ή(f) and Iin)(f) - a*»+*H(f) define
uniformly convergent integrals, the results

B?{X(f)} - a**+1H{X(f)}

and

~ a**+*H{X(f)}

(X — D{

β

m) or Sβm)) follow by obvious inversion of integrals. Theorems
10(a) and (b) for X = D(

β

m) or S(

β

m) then follow by applying Theorem 4.
Next we proceed as in the proof of Theorem 4 to show that

\f) - a**+1H(f)} -

and

The case X — H clearly follows.

5. Reduction of £ί } (/) and Iiw)(/)- The results of this section
give conditions under which the operators B{£\ I^n) and B2Jn\ Il{n) reduce
to the Hubert transform and the identity

THEOREM 11. If feLp (p> 1) and if n ^ 0, then
(a) B{:\f) = a2n+1H(f) if and only if D^{f) = 0.
(b) // ILn\f) = 0, £ / ^ Bϊ >(/) = ~α 4 - + 2 /.

Proof. Since £>iw)(/) = 0 implies that S^\f) = 0 (Corollary 3.1), it
follows from Theorem 6 that Bι^(f) = a*n+Ή(f) whenever Z>j%)(/) = 0.
Also, under this condition, we have

- α 4 ^ 8 / (by (8)) .

Now suppose that £^(/) = a**+Ή(f). Then by Theorem 10, we have

so that Theorem 6 and result (8) yield

dx

f) + A. s
dx
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These equations clearly lead to

dx

The only solution of this equation for which D^](f) e Lp is clearly
given by

AW) = 0 .

Note. It has been proved (see [4]) that for n — 0, the converse
of Theorem ll(b) also holds.

THEOREM 12. If feLp (p > 1) and if n ^ 0, then
(a) I^\f) = a2n+2H(f) if and only if A W ) = 0.
(b) If AW) = 0, then /«•> if) = -a^f.

Proof. By proceeding as in the proof of Theorem 11 and applying
Corollary 3.1 and Theorem 7, it follows that Un)(f) = a2n+Ή(f) if
D^n)(f) = 0. Also, under this condition, we have

PJn){f) = a2»+2/iw){^(/)} = - ^ 4 % + 4 / (by (11)).

Now suppose that Un)(f) = a2n+Ή(f). Then by Theorem 10, we have

Hence Theorem 6 and result (11) yield

CLOO 0/00

JL J^(f) = 0 .
dx dx

On eliminating Sin)(f), we obtain

/ ) i ^ ( / ) - 0

The only nonvanishing solution of this equation belonging to Lp is of
the form

where β1 and β2 are positive, and A and B are arbitrary constants.
Now it is easily seen, by applying Theorem l(a), that

f I*' 2 eft .
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Since we require Da{Din)(f)} = D^n)(f) however, we must have A = B — 0.

Note. It has been proved by the author that for n = 0, the
converse of Theorem 12(b) holds.

6* The inversion processes* Formulae have been obtained by
which / may be expressed in terms of either of the transforms Ba(f) or
/«(/). In this section, we shall express / in terms of the nth order
integrals under restricted conditions. In the first case we assume that /
satisfies D^n)(f) = 0. The other formulae involved express / in terms of
the nth order integrals and the operators of order 0. The general case in
which / is expressed in terms of the nth order integrals only will not
be treated here since the procedure involves the solution of complicated
equations for expressing D{

a

n)(f) in terms of Da(f). (see Corollary 6.1).

THEOREM 13. Suppose that feLp (p> 1), and denote B{^(f) by

/ * . Then
(a) for any integer n ^ 0, we have

f = or^{Su(f:) - H(f*)} + \° Da(f*)(t)dt ,

(b) if we also have D^n)(f) = 0, then

Proof. By putting m = 0 in Theorem 8(a), we obtain

BF{Sa(f)} - B?{H(f)} = «2B+1/ - a*«+1Da(f) .

Hence by Theorem 10,

Sβ(/i ») - H(J*) = a^f - a^Da{f).

To complete the proof of (a), we express Da(f) in terms of / * . On
putting m — n — 0 in (6) and using Theorem 10, we have

DJJ*) = 4~D'(f)
dx

Since Da(f) e L\ lim^±TO Da(f)(x) = 0. Hence

(12) Da(f)(x) = C Da(f*)(t)dt .
Now suppose that D^n\f) — 0. Then on putting m = n in Theorem
8(a) and using Theorem 10, we have

Si >(/*) - H(f*) - a^f - a
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Hence

f=or*-1{Sir>(f*)-H(f*)}.

Note. It should be observed that Theorem 13(b) has been written
in its present form for convenience. In fact, we have Sin)(f*) =
Bίn){S^(f)} = 0 since D}»\f) = 0.

In Remark 1, we observed that if feLp (1 < p <k 2) and if
D?\f) = 0, then D«\f) = 0 for all 1^0. We can now deduce this
result for the case p > 2.

COROLLARY 13.1. If feL* (p> 1) and if D^n){f) = 0, then

DL1](f) = 0 for all integers 1 ^ 0 .

Proof. From Theorems 13(a) and (b) it is clear that D^n\f) = 0
implies that Da(f*) = 0. Hence it follows from (12) that Da(f) = 0.
Corollary 13.1 now follows from Corollary 3.1.

THEOREM 14. Suppose that feLp(p>l) and let Un)(f) be denoted
by fn. Then

(a) for any integer n ^ 0, we have

(/)() s i nf = or«*™{Sa(fn) - iί(Λ)} + v α Γ ^

- 26U Γ Da(f)(t)dt ,

(b) i/ we αiso have D^n)(f) — 0, ίfoβ^

f ^ a~^{Sa(fn) - H(fn)} .

Proof. By putting m = 0 in Theorem 8(b), we have

Hence by Theorem 10,

Sa(fn) - H{fn) - a^f - ot*+*Da(f) .

We shall now express Da(f) in terms of / to complete the proof of
(a). On putting m — n — 0 in (9) and (10) and using Theorem 10, we
obtain

(13) Da(f) = 2a4~D«(f) + -fτS«(f) >
ax ax
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Since £>.(/), Sa(f), (d/dx)Da(f) and (d/dx)Sa(f) belong to L», we have

lim Da(f)(x) = lim Sa(f)(x) = lim jLsa(f)(χ)
05->±oo ίC->±oo ίB->±oo $ 3 /

- lim A-Da(f)(x) = 0 .

On integrating (13), we obtain

Da(f)(t)dt = 2aDa(f) + 4-S«(f) .

This together with (14) gives

ft ΊP

This equation can be written as

dx V dx

Hence

-J-Z)α(/) _ 2iaDa(f) - -

A similar equation is obtained by putting —i for i. It is then obvious
that

2aDa(f) = f* σa(f)(t) sin 2α(ί - α)<Zί .
J —>—eo

Now suppose that D^n)(f) — 0. Then by putting m = n in Theorem 8(b)
and using Theorem 10, we have

- H(fn) = -a^(f - 2?

and the result (b) of the theorem follows.

7* Note on the continuous analogue of the operators* In
this section, we define continuous analogues of the operators studied
above which preserve the main properties of the integral transforms.
This is done by defining kernels similar to those given in Section 1,
and which reduce to these when the parameter involved is an integer.
Hence for all v ^ 0, we define sv{x) and cv(x) by
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Sv(χ) = _ l _ f ( a ~ \ t \)2l/eίxtdt
2π J-«

and

cv(χ) = - ^ Γ (a - \t\f^Jleixtdt .

It is clear, by Lemma 2 that these kernels reduce to those already
given when v is an integer. By applying known results involving the
Fourier transform of a Hubert transform, it also follows that results
similar to those given in Lemma 1 hold for sv(x) and cv(x). It is then
obvious by procedure similar to that employed above, that if the
operators are defined as in Section 1 with v in place of n, then the
results proved with respect to the discrete parameter also hold for the
continuous case. In particular, from Theorem 3(a), it follows that for
all v ^ 0 and μ ^ 0, we have

so that {D^v)} 0 < v ^ co forms a family of 'strongly continuous semi-
group of operators'. Note that in this case we do not have D{

Λ

Q) = 7.
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