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ON THE SPECTRAL RADIUS OF HERMITIAN
ELEMENTS IN GROUP ALGEBRAS

A, HULANICKI

Let G be a discrete group and U the L, algebra over the
field of complex numbers of G. The aim of the paper is to
consider some combinatorial conditions on the group G which
imply symmetry of the algebra 2. One result is as follows:

If a group F contains a subgroup G of finite index such
that any element of G has finitely many conjugates, then the
group algebra A of F' is symmetric.

A Banach *-algebra % is said to be symmetric if for every element
2 c U the spectrum of the element z*x is real and nonnegative. If

the algebra U contains the unit element, this can be equivalently
stated as

For every linear functional F' on 2
(1) F(y + yx*x) = 0 for every ye U implies F' = 0.

It is well known and easy to prove that the group algebra of a
finite or Abelian locally compact group is symmetric., If a discrete
group is neither finite nor Abelian, all that is known about symmetry
of its group algebra seems to be due to Bonic [2].

Bonie proved the following facts:

(i) The group algebra'of the direct product of two groups one of
which is Abelian, the other of which has a symmetric group algebra
is symmetric.

(ii) The group algebra of a splitting extension of an Abelian group
by the cyclic group of two elements is symmetric.

(iii) The group algebra of a free nonAbelian group is not sym-
metric.

(i) and (ii) together with the fact that the group algebras of finite
and Abelian groups are symmetric establishes the secope of groups about
which, using Bonic’s results, one may assert symmetry. As a matter
of faect, it is not more than the direct products of finitely many finite,
Abelian and dihedral-type groups. The method applied by Bonic is
based on (1), which in the case of group algebra of a discrete group
is equivalent to the implication

(2) If fis bounded and f(¢) + %x*x(s“lt)f(s) =0, then f=0.
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278 A. HULANICKI

It is not surprising that, if some of the elements of the group
appear as complicated expressions of the generators, then to prove or
disprove (2) may become difficult.

We propose another approach to this circle of problems,

Our starting point is a theorem of Raikov, ef. [9], [10]. Denote
by v(x) the spectral radius of an element x in a Banach *-algebra U,
that is, let

(@) = lim [[z ||~ .

For any *-representation x — T, of 2 we have
v e) = || T, ,

cf. e.g. [11]. Raikov’s theorem says:
A Banach *-algebra 2 is symmetric if, and only if,

(3) v(z*w) = sup || Ty ||

where the least upper bound on the right hand side is taken over all

*.representations of 2,
Now let 2 be a group algebra 2 = A(G) of a discrete group G
with the usual norm, multiplication, and involution

EA Z;Z.; la(s) |, wxy(s) = 2 8y(s), 27(s) = als™)

respectively. Consider the left regular representation T of A(G) x —
T,, where the Hilbert space of T is L,(G) equipped with norm

Hzll.= G le@) )7 and T.f=axf, fe L(G) .

Denote
Mx) = || T, | .

It may happen (ef. [7]) that the left regular representation weakly
contains (cf. [3]) all *-representation of 2A(G), which is to say that
MxTxx) = || Ti~,. || for any *-representation 7" of 2(G). Then (3) turns
into the equality

(4) Memxx) = V(X *x) .

Our aim is to find sufficient conditions on a group G which imply
(4) for any element x of its group algebra UA(G), and consequently the
symmetry of A(G). We formulate the conditions in the forthcoming
§1 and we devote §2 to the proof that, in fact, they imply (4). Finally,
in §3, we discuss the classes of groups for which our conditions are

satisfied.
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The author is most indebted to Professor B. H. Neumann for a
conversation about these classes of groups as well as to Dr. Neil
W. Rickert who suggested several corrections and simplifications.

1. Let G be a discrete group, A = A(G) its group algebra. For
any function £ on G we denote by N(x) the support of the function
x, i.e.,

N(z) = {s: 2(s) = 0} .

Let A, ---, A, be a family of subset of G. By A4,--- A, we denote
the set of all products «, -+ a,, where a;€¢ A;,,2=1,---,n. We shall
also use the abbreviated notation A" for A -..- A. For a finite subset
A of G we denote by |A| the number of the elements of A. Clearly,

(5) | Ay ees A = [A - A,

For any two nonnegative integers m < n we denote by t(m, n) a
sequence

t(my /ﬂ/) = <t11 Tty tn>

of elements of G such that at most m of the ¢js,¢=1, ..., n, are
different from the unity of G. We say that a group G satisfies con-
dition (C) if

(C) There exists a constant k£ such that for any finite set AC G
there exists a constant C = C(A4,¢) such that for any sequence

<t17 ) tn> - t(my n)
| At At, - At,| < Ck™c* for any ¢ >1.
For m = 0 (or, which is the same, for bounded m) condition (C)

turns into the following one:
(A — S) For any finite subset A of G

| A" | = o(c™”) for any ¢ >1,

This condition has been considered by G. M. Adel’son-Vel’skii and

Yu. A. Sreider in [1]. They have proved that (A — S) implies the
existence of an invariant Banach mean value on G. Clearly, (A — S)
implies the Fglner conditions ef. [4].

2. First we formulate two simple lemmas,

LEMMA 1. If G ts a (discrete) group, then for any x € A(G) C Ly(G),
we have Nx) = || .
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In fact,
M) = sup [loxy = [l@xd =[],

where d, the unit element of (G), is the function which takes value 1
at the unity of G and zero elsewhere.

Lemma 2, If %, ---,2,€ 2(G), then
(1) @oxeeewm(s) = 3 @i(t) «ov 2a(E)O(0E7 -+ - 8's)
th€

(i) N@x - 2,) S N5y - Nw,)
(i) N@~) = (N@)* = {t: t e N(@)}.

The proof of (i) is obtained by an elementary induction. To verify
(ii) we simply note that, by (i), s€ N(x,* --+ xx,) implies

t;2 -+ ti's= t,e N(x,) and {,e N(x;),2=1,+--,n.

Therefore s = ¢, -+ t,€ N(x,) « - - N(x,).
From now on we shall frequently use the abbreviated notation
x*" for x* -+« %2,

THEOREM 1. If a group G satisfies (A — S), then for every
such that N(x) is fintte equality (4) holds.

Proof. Suppose N(zx) is finite +@. Let A = (N(x))"*N(x). Then
A is finite and, by Lemma 2 (ii)-(iii), N(z~*x) C A. We have

@)y || = 3, [(@7*2)"(s) |
= 2| @) [ = [AT[F( 35 | @z (s) [)**

= [ A" [ @ x2)™ [, .
Hence, by Lemma 1, since T,~,, is a hermitian operator,
(@)™ || = | A" [ M@ x@)™) = [ A" [ (e x2)™ .
Consequently,

(o~ *xx) = lim || (x~*2)™ |[Y" < lim sup ['A" V"M~ *x) .

But, since G satisfies (A—S) and 4 # @,

limsup |[A" | =1,

n—ro0

whence v(x~*2x) < Mx~xx), which completes the proof of Theorem 1.
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COROLLARY 1. If a group G satisfies condition (A—S), then for
any x € W(G) such that N(x) is finite Spye(z~*x) = 0.

Proof. By a standard argument (cf. e.g. [9 pp. 300-301]) we
reduce our task to proving that for each x e 2(G) with finite support
(6 + x~*x)~* exists. Let 2 be the (commutative) algebra of hermitian
elements generated (algebraically) by 6 and 60 + 2~ %2 = %,. Then, by
Lemma 2 (ii)~(iii), for any y € A, N(y) is finite, whence, since G satisfies
(A—S), by Theorem 1, »(y~*¥y)= My~ *y) and, consequently, since
¥~ =y, Y(y) = My).

Therefore the completion A and U* of A in the norms v and ©
respectively, are equal. But * is isometrieally isomorphic to a Banach
*-algebra with the unity of hermitian operators, so ;' exists in 20
and, consequently, y;'e 2A*, This show that in the Gelfand represen-
tation of A", the completion of U in the norm ||-||, we have
J(M) == 0 for any maximal ideal M of W' which, by Gelfand’s
theorem, proves that y;'e AN C A(G), as required.

By virtue of Theorem 1, if G satisfies (A—S), then equality (4)
holds for a dense (in the norm ||-||) set of hermitian elements x of
A(G). Clearly the function ) is continuous on (G), so if we knew
that v were continuous, equality (4) would be an immediate conse-
quence of Theorem 1. However, it is known that, in general, for a
noncommutative Banach *-algebra the function need not be continuous.
The example of S. Kakutani, as presented in [11 p. 282], shows that v
is not continuous on the algebra of the bounded operators of a Hilbert
space. In this case, however, v is continuous on hermitian elements.
We do not know whether in the case of a nonsymmetric group algebra
the function v is continuous on hermitian elements.

THEOREM 2. If a group G satisfies condition (C), then equality
(4) holds for all elements x e A(G).

Proof. Suppose G satisfies (C) and let ze A(G). For any positive
€ we write

(6) rZ =Y+
where N(x) = A is finite and ||y || < . We are going to prove
(7) vie"x2) = kllyll + M=),

where k is the constant whose existence is postulated by condition (C).
Since A is continuous (with respect to the norm ||-||), (7) implies
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V(2" *2) = Mr%2) ,

as desired. To prove (7) we write

(@ *2)" = (y + o) = 3, Dy ey
m=0 a,T
where the summation extends over the set C(m, ») of all sequences ¢ =
{py, +++, 0y and 7 =g, +++, ¢, of nonnegative integers such that
P+ e+ D, =mq + -+ +q=m—mn. Hence

n
(8) @7 se)™ [ = 2 L[|y isea™s oo sy ?rag’™
m=0 0,7
By Lemma 2 (i), we have
Hy*?l*x*ql* cos *y*l’r*x*qul - Hy*zu*x*ql* cee *y*?r*x*dr*én

= % ;ﬁy(tl)---y(tm)x(sl)~°x(sn_m)3(a:’b:1---ar‘br‘s) ,

where the summation is all over the set of sequences

a=<t1’--o’tm>,tieG, ’i:l,...,m;
B=1C8, " Sum) 8:€ G, i=1,,n—m
a; = 3q1+...+qi__1+1 coe Sq1+...+qi y = 1’ e, T, Q)= 0
bi = tp1+..-+p/.._1+1 L tpl"'""”’i 9 1: = 1’ e, T, Py = 0 .
Hence
(9) | Y7L @ s oo gy oo || és‘gf;%'y(tl)l oo |yt ]

Sa(brs)als,) - (5, )0 (0784, +1)%(85,40) * * + B(Sq,10y) *

®(78g 4ot g+ )T(Sqpteeitap_yre) * 0 B(Suem)O(S72 g <+ ST'S)

— Z l y(tl) l cee |y(tm) l H xbl*x*uﬂ_l)* oo *xbr*x*(ﬁ'"l) “ R

where ,(s) = z(bi’s), 2 =1,--+,r. But, since N(z) = A, N(z;,) = biA,
2=1,---,r. Hence, by Lemma 2(ii),

Ny ™ D0 o o5, 30" H) COAAN™ o+ b, AA ™) = b AN - b, A = P,
Therefore, by Lemma 1 and Schwarz inequality,

Il wbl*x*(ql*‘l)* e *xbr*xbr*m*(q"—l) H
S| PP ||, @70+ e ke, s g ||,
< | P M, )OM@) P - (@ ) (M)
= | P[** (Ma)"™™,

(10)
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the last equality being true by virtue of the easily verified fact that
7\,(%(,) = 7\;(%).
On the other hand,

[PS, sup [bA"--- bA%| < sup [LALA -+t oA

1

where the least upper bound on the right hand side is taken over all
sequences t(m, n —m) = {t, +++,t,_.» with at most m of the t's
different from the unity of G. Hence, since G satisfies (C),

| P < C(A, ¢)k™e™ for any ¢ >1.
Consequently, by (10) and (9),
|y Pia s «oe y'orsgor ||
(11) = 2y [ Jya) [ Rre"COM@))" ™
= c"Ck™||y ||" (@)™ .
Therefore, by (8) and (11),
Ee ™ | = Falmy m) 35, (" 13 |["O@)*™ = o*Clk [y | + M@)" -

Hence we have
Y(z~x2z) = lim || (27 2)™ [|'"

= lim sup eC"(k [y || + M) = (R [y [] + Ma))e .
This completes the proof of Theorem 2.

3. In this section we present some propositions which exhibit
some of the classes of groups for which conditions (A—S) and (C) are
satisfied. First we establish some notations:

Let G be a group and let a,be G. We write

b~'ab = a’by a"'b7ab = [CL, b] ’ [[a/ly Tty an—l]) a’n] = [aly Tty a'n] .
If A, B are subsets of G,
A? ={a’:ac A, be B},

REMARK., If A is a subset of G, then for a,, ---,a,c A¢ and
b, +,b,€G we have

’

ab +--ab,=b---ba;---a,, where ai,---,a,c A%,

(This follows immediately from the fact that ab = ba® for any a,be G).
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ProprosITION 1. Let A be a finite subset of a group G such that
A= A% Then |A"| < n'4,

Proof. If a,--+,a,€ A, then
(]_2) aq...an:b'f‘lao.b;:k, bh...’bkeA

and, moreover, 7, + +++ +n, <n and £k < |A|. To prove (12) which
is, in fact, a version of Dietzmann’s Lemma (ef. [8 Vol. II, p. 154]),
we suppose that & is minimal with respect to all representations of
a;+++a, of the form (12). Suppose & >|A|. Then there exists at

least two elements b; and b;,, 1 < ¢ < j < k such that b, = b,. Then
it oo B = b1 4 b;li;lb;bﬁnj(bfﬂ)wa .o (b;._l)"j~1b§{;—‘;1 ces by

where ¢ = b7, which is a contradiction, since b.e A = A. By (12),
we have

| A™| =< (the number of the sequences n,, -+, 1,
with > n; =n and k < [A]) = »n'4,

DEFINITION, A group G is called a FC-group if for any ac G the
set {a}¢ is finite, (cf. e.g. [8 Vol. II, pp. 154 and 269]).

ProrosiTION 2. If G is a FC-group, then it satisfies (C) with
constant £ = 1.

In fact, let A be a finite subset of G. Since G is FC-group, the
set B = A¢ is finite. "Hence

|6 AEA <+« t,A| S | Abts At tn oo Aln| < | B*| < 0!8 = o(c")
for any ¢ > 1.

ProrosiTioNn 3. If F' is a group which contains a subgroup G of
finite index in F' such that G is a FC-group, then F' satisfies (C).

Proof. We show first that if M it a finite subset of G, then the
set M7 is finite. Let M, = M¢®. Since G is FC-group, M, is finite.
Denote by ¢ the funection which selects one element ¢(f) out of each
of the cosets Gf, fe F, and let ¢(G) = 1 — the unit element of F.
Let

¢(F): H:{hly °”,hlc}°
We have
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In fact, if s, fe F, there exists a ge G such that
¢(f)s = go(4(f)s) = 94(fs) .

Hence

M = U M&tms — U Momb(fs) — U M(;b(.r) =M, .

feEF feF fEF

Thus, since ¢(F') is finite, M is finite,
Now, let

Q = {hih(p(hihy))™: 1,5 =1, -+, k} .

Clearly, @ is finite and Q CG. By virtue of what we have proved
above, QF =@, is finite. We now prove that for any sequence
Uy oo+, U, With u; {1, -+, k},2 =1, -+, n, we have

(183) By <+ b, cQHCQH = HQ? .
Let fo=1,fi=hy "+ h,,1=1,---,m, and let a; = ¢(f;). Then
futt = ah, 0 ah, 0500, < 0tia, 0k, 0t
But for any ¢t =1, «++, n,
@ = §(f) = (finshi) = $(3(Firlh) = $(a:ih,) .
Hence .
fats' = @by (@(@hy )™« - - @y shy, ($(@nshy,,) € Q™.
and, consequently,
by ++sh,, = f.eQa,CQH,

which completes the proof of (13).
Now let A be a finite subset of F. There exists a finite set
Mc G such that Ac HM. Consider the finite set

B = HM”",

Clearly, AC B, For every two nonnegative integers m < n, let t(m, n)
be as in Section 1. We have

(14) |tB---t,B|=|(B+-+B}y(B+++B)?-++ (B++- Bymi1|,

where iy, +-+,t,) = t(m, n), t;, .-+, t; are the t}s different from the
unity of F', for every 1 =1, -+, m s; = i, o+ t;, and s, =1,

Each element of the set on the right hand side of (14) is of the
form

= (hg,--- hrlgrl)sl fe (hrm+lgrm+1 <+ h

)8m+1

rm+1grm+1 ’
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where g;e M*, v =1, -+, n. Then
f: (hl cee hrl)"l coe (hrm+1 e hrm+l)sm+lg; P g; R

where ¢gje M*, 4=1,+-+,n. But, by (18), for any 1 =1, -+, m + 1
we have

By, +++h, = hiq;, where hic H and g¢;€Q"imv,

Ti—1
Consequently, since Qf = @Q,,
F=h e R gl o 0

and so, since

Z’i{l (1",;—7',;_1) =n,
feHwn - HmuQrMy .
Therefore, since |H*| = | H| for any se F, and |H| =k,
6B --- t,B| < [ Ho |- [ Hewa| Q]| Mp| | H[ | H| noosm,

whence, since | H|n/'@/*1"10) = o(¢™), Proposition 3 follows.

COROLLARY 2, If a group G contains a FC-group as a subgroup
of fintte index, then equality (4) holds for any element x of the
group algebra A(G) of G and, consequently, A(G) is symmetric.

ProprosiTiON 4. The direct product of finitely many groups which
satisfy (C) satisfies (C).

ProrosiTioN 5. If G is a locally nilpotent group, then G satisfies
(A—S8).

This follows from the fact that if A = {a,, ---, a;} is a finite subset
of G, H is the subgroup generated by A, which, by assumption, is
nilpotent of eclass, say, s, then any element of A"C H is of the form

ﬁ a;t® Hk [a;,, @;]" @) ... Hk [a;, « -, ;]

=1 iy,19=1 g, et =1 ’
where (%, ---, ;) are nonnegative integers < f;(n),j=1,---,s, and
fi(n) is an integral valued polynomial. (The exact from of fi(n) can
be easily established by the use of the collecting process as described
in [6] and [5] but it is irrelevant to us here.) Thus

| A" = (fim)* -+ (£i(n)* = o(c") for any ¢ >1.

ProposITION 6. Condition (C) is not satisfied by nilpotent groups,
in general.
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PropPoSITION 7. Condition (A—S) is not satisfied by soluble groups,
in general.
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