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ON THE SPECTRAL RADIUS OF HERMITIAN
ELEMENTS IN GROUP ALGEBRAS

A. HULANICKI

Let G be a discrete group and 21 the Zα algebra over the
field of complex numbers of G. The aim of the paper is to
consider some combinatorial conditions on the group G which
imply symmetry of the algebra SI. One result is as follows:

If a group F contains a subgroup G of finite index such
that any element of G has finitely many conjugates, then the
group algebra % of F is symmetric.

A Banach *-algebra 2ί is said to be symmetric if for every element
e 2Ϊ the spectrum of the element x*x is real and nonnegative. If

the algebra §1 contains the unit element, this can be equivalents
stated as

For every linear functional F on 2t

(1) F(y + yx*x) — 0 for every y e SI implies F = 0.

It is well known and easy to prove that the group algebra of a
finite or Abelian locally compact group is symmetric. If a discrete
group is neither finite nor Abelian, all that is known about symmetry
of its group algebra seems to be due to Bonic [2].

Bonic proved the following facts:
( i ) The group algebra "of the direct product of two groups one of

which is Abelian, the other of which has a symmetric group algebra
is symmetric.

(ii) The group algebra of a splitting extension of an Abelian group
by the cyclic group of two elements is symmetric.

(iii) The group algebra of a free nonAbelian group is not sym-
metric.

(i) and (ii) together with the fact that the group algebras of finite
and Abelian groups are symmetric establishes the scope of groups about
which, using Bonic's results, one may assert symmetry. As a matter
of fact, it is not more than the direct products of finitely many finite,
Abelian and dihedral-type groups. The method applied by Bonic is
based on (1), which in the case of group algebra of a discrete group
is equivalent to the implication

( 2 ) If / is bounded and f(t) + Σ a?*α?(s"-1ί)jΓ(s) = 0 , then / = 0 .
see
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278 A. HULANICKI

It is not surprising that, if some of the elements of the group
appear as complicated expressions of the generators, then to prove or
disprove (2) may become difficult.

We propose another approach to this circle of problems.
Our starting point is a theorem of Raikov, cf. [9], [10], Denote

by v(x) the spectral radius of an element x in a Banach *-algebra 21,
that is, let

v(x) = \im\\xn\\lln .

For any *-representation x —> Tx of 21 we have

cf. e.g. [11]. Raikov's theorem says:
A Banach *-algebra 21 is symmetric if, and only if,

( 3 ) v(ίc*a?) = s u p | | Γ , β | |

where the least upper bound on the right hand side is taken over all
*-representations of 21.

Now let 31 be a group algebra 21 = 2ί(G) of a discrete group G
with the usual norm, multiplication, and involution

II & II — 2-ι I *H*V I i <»*y\o) — 2~ι
s€G teθ

respectively. Consider the left regular representation T of 2ί(G) x
Tx, where the Hubert space of T is L2(G) equipped with norm

I I & I I 2 = ( Σ I < Φ ) I 2 ) 1 / 2 and Txf=x*f,feL2(G).
sβG

Denote

It may happen (cf. [7]) that the left regular representation weakly
contains (cf. [3]) all *-representation of 2ί(G), which is to say that
X(x^*x) ^ || T'x^x || for any *-representation T of 2ί(G). Then (3) turns
into the equality

( 4 ) \{x~ * x) = v{x~ * x) .

Our aim is to find sufficient conditions on a group G which imply
(4) for any element x of its group algebra 2I(G), and consequently the
symmetry of 2I(G). We formulate the conditions in the forthcoming
§ 1 and we devote § 2 to the proof that, in fact, they imply (4). Finally,
in §3, we discuss the classes of groups for which our conditions are
satisfied.
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The author is most indebted to Professor B. H. Neumann for a
conversation about these classes of groups as well as to Dr. Neil
W. Rickert who suggested several corrections and simplifications.

1* Let G be a discrete group, §ί = §ί(G) its group algebra. For
any function x on G we denote by N(x) the support of the function
x, i.e.,

N(x) = {s: x(s) Φ 0} .

Let Au , An be a family of subset of G. By A1 An we denote
the set of all products αx αΛ, where a{ e Ai9 i = 1, , n. We shall
also use the abbreviated notation An for A A. For a finite subset
A of G we denote by \A\ the number of the elements of A. Clearly,

( 5 ) I A, A n\ S I Λ I I A n\ .

For any two nonnegative integers m ^ n we denote by t(m,n) a
sequence

t(m, n) = <&, ., tny

of elements of G such that at most m of the t[s, i — 1, •••,%, are
different from the unity of G. We say that a group G satisfies con-
dition (C) if

(C) There exists a constant k such that for any finite set 4 c G
there exists a constant C — C(A,c) such that for any sequence

! At,At2 -•• Atn\ g Ckmcn for any c > 1 .

For m = 0 (or, which is the same, for bounded m) condition (C)
turns into the following one:

(A — S) For any finite subset A of G

I A* I = o(cn) for any c > 1 .

This condition has been considered by G. M. AdeΓson-VePskiϊ and

Yu. A. Sreider in [1]. They have proved that (A — S) implies the
existence of an invariant Banach mean value on G. Clearly, (A — S)
implies the F^lner conditions cf. [4].

2. First we formulate two simple lemmas.

LEMMA 1. If G is a (discrete) group, then for any x e SX(G)cL2(G),
we have X(x) ^ \\x ||2.
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In fact,

X(x) = s u p \\x*y\\2 ^
I l M i

where δ, the unit element of §I(G), is the function which takes value 1
at the unity of G and zero elsewhere.

LEMMA 2. If xu , xn e §X(G), then

( i ) &!* . . . *<*.(*) = f ^ Σ 6 G »i(«i) α («J^ί ί 1 if1*)

(ii) JNΓte* *xn) S V( i ) iV(O
(iii) i\Γ(̂ ~) = (iV^))-1 = { r 1 : t G N(x)}.

The proof of (i) is obtained by an elementary induction. To verify
(ii) we simply note that, by (i), seN(x^ ••• *xn) implies

<ή-i *Γ1s= ίn e iV(^%) and ί4 e Nfa), i = 1, , n .

Therefore s = ^ t% e Nix,) N(xn).
From now on we shall frequently use the abbreviated notation

x*n for x* * # .

THEOREM 1. // α group G satisfies (A — S), then for every x
such that N(x) is finite equality (4) holds.

Proof. Suppose N(x) is finite Φ<2. Let A = (N(x))~xN(x). Then
A is finite and, by Lemma 2 (ii)-(iii), N(x~*x) a A. We have

Σ i ( r ( ) i
sea

= Σ I (*~*χΓ(s) I ̂  I A |1/2( Σ I ( r « Γ ( s ) I2)1'2
sξ-An s£An

Hence, by Lemma 1, since J Γ ^ ^ is a hermitian operator,

| |(^*aTnll ^ I A w | 1 / 2 λ ( ( r ^ H = I An\ιl2{x{x~*x))*n .

Consequently,

v{x~ * a?) = lim 11 {x~ * a;)*% 111/% g lim sup \]An \ll2nX(x~ * a;) .

But, since G satisfies (A—S) and A Φ 0 ,

lim sup I An \1{2n = 1 ,
n—>oo

whence v(ar*£) ^ λ(x~*x), which completes the proof of Theorem 1.
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COROLLARY 1. If a group G satisfies condition (A—S), then for
any a?e3C(G) such that N(x) is finite 8pA{β)(xM*x) ^ 0.

Proof. By a standard argument (cf. e.g. [9 pp. 300-301]) we
reduce our task to proving that for each x e 3I((?) with finite support
(δ + x~ * x)"1 exists. Let Sί be the (commutative) algebra of hermitian
elements generated (algebraically) by 3 and δ + x~*x = yQ. Then, by
Lemma 2 (ii)-(iii), for any ye A, N(y) is finite, whence, since G satisfies
(A—S), by Theorem 1, v(y~*y) = Mv~*y) a n ( i , consequently, since

IT = v, v(v) = Mv).
Therefore the completion 21* and 2ίλ of 31 in the norms v and λ

respectively, are equal. But 2Iλ is isometrically isomorphic to a Banach
*-algebra with the unity of hermitian operators, so y^1 exists in 2ϊλ

and, consequently, y^16 SI*. This show that in the Gelfand represen-
tation of SI1111, the completion of 21 in the norm || ||, we have
yQ(M) Φ 0 for any maximal ideal M of SI"'11, which, by Gelfand's
theorem, proves that yj^eSt11*11 c3l(G), as required.

By virtue of Theorem 1, if G satisfies (A—S), then equality (4)
holds for a dense (in the norm || ||) set of hermitian elements x of
2I(G). Clearly the function λ is continuous on SI(G), so if we knew
that v were continuous, equality (4) would be an immediate conse-
quence of Theorem 1. However, it is known that, in general, for a
noncommutative Banach *-algebra the function need not be continuous.
The example of S. Kakutani, as presented in [11 p. 282], shows that v
is not continuous on the algebra of the bounded operators of a Hubert
space. In this case, however, v is continuous on hermitian elements.
We do not know whether in the case of a nonsymmetric group algebra
the function v is continuous on hermitian elements.

THEOREM 2. If a group G satisfies condition (C), then equality
(4) holds for all elements xe$ί(G).

Proof. Suppose G satisfies (C) and let z e §I(G). For any positive
ε we write

(6) z~*z — y + x

where N(x) — A is finite and \\y\\ < ε. We are going to prove

( 7 ) i>(z~*z)£k\\y\\+\(x),

where k is the constant whose existence is postulated by condition (C).
Since λ is continuous (with respect to the norm || | |), (7) implies
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v(z~*z) ^ X(z~*z) ,

as desired. To prove (7) we write

(z~*zYn = (y + x)*n = V v / * > i * ^ * *2/*^*xv ,
TO = 0 < Γ , T

where the summation extends over the set C(m, n) of all sequences σ =
<J>i, » z θ and T = ζjqlf •••, qry of nonnegative integers such that
#i + + Pr = m* Qi + " + qr "= m — n. Hence

By Lemma 2 (i), we have

cύ,β

where the summation is all over the set of sequences

i = 1,

Hence

(9)

• ,m

, ^ — m

• , r , ? 0 = 0

• , r , p o = 0

^ Σ

»(&Γ1β1)ί»(s2) x{sq)x{bϊ%1+1)%{sqi+2) x{sQl+q)

x{b-\ί+...+qr_1+1)x{sqi+...+qr_ι+2) x(sn_m)δ(snh

- Σ I »(*i) I 11/(O I II »»1*a?* ( β ι"1 )*

where a;6.(s) = xφϊ1*), i = 1, , r. But, since JV(α?) = A,
i = 1, , r. Hence, by Lemma 2(ii),

= P .

Therefore, by Lemma 1 and Schwarz inequality,

(10)
^ I P | 1 / 2 1 | ^

^ I PI 1/ 2 λ ί
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the last equality being true by virtue of the easily verified fact that
\(χb) = λ(».

On the other hand,

I PI ^ sup I M * 1 brA
gr I ̂  sup I t,At2A tn_mA |

bv -,breΘ

where the least upper bound on the right hand side is taken over all
sequences t(m9 n — m) = (tu , tn_my with at most m of the t[s
different from the unity of G. Hence, since G satisfies (C),

I P | 1 / 2 ^ C(A, c)kmcn for any c > 1 .

Consequently, by (10) and (9),

\\y*pi*x*qi* ••• y*p'*x*qr\\

(11) ^ Σ I »(*i) I I y(K) I A:-

= cnCkm\\y\\m(X(x))n-m .

Therefore, by (8) and (11),

Ilί(s~ * * Γ I! ̂  fJn9 n) Σ C)fcm || y |Γ(λ(a?))-
m=0

Hence we have

^ K m s u p cClln(k \\y\\ + \(x)) = ( k \ \ y \ \ + X(x))c .

This completes the proof of Theorem 2.

3* In this section we present some propositions which exhibit
some of the classes of groups for which conditions (A—S) and (C) are
satisfied. First we establish some notations:

Let G be a group and let a,beG. We write

b-'ab = a\ ar^άb - [α, b] , [[au , α,_J, αw] = [aly , α j .

If A, 5 are subsets of G,

A*= {a?:aeA,beB} .

REMARK. If A is a subset of G, then for au , ane AG and
bu " ,bneG we have

«iδi aJ>n = &i δ^αl < , where a[, " , < 6 i f f .

(This follows immediately from the fact that ab — bah for any a,beG).
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PROPOSITION 1. Let A be a finite subset of a group G such that
A = AG. Then \An\ ^ n u ι .

Proof. If α l f , an e A, then

(12) a1-- an = ft?1-.- δϊfc, 6i, ••-,&,.€ A

and, moreover, ^ + + % ^ w and k ^ \A\. To prove (12) which
is, in fact, a version of Dietzmann's Lemma (cf. [8 Vol. II, p. 154]),
we suppose that k is minimal with respect to all representations of
(&!-••(&„ of the form (12). Suppose k > \A\. Then there exists at
least two elements δ* and bj9 1 ^ i < j ^ k such that bi = bό. Then

where c = by, which is a contradiction, since bc

s e Aσ = A. By (12),
we have

I An I g (the number of the sequences wx, •••,%&

with X % g n and fc ̂  | A |) ^ ^ U 1 .
i

DEFINITION. A group G is called a FC-group if for any aeG the
set {a}° is finite, (cf. e.g. [8 Vol. II, pp. 154 and 269]).

PROPOSITION 2. If G is a FC-group, then it satisfies (C) with
constant k = 1.

In fact, let A be a finite subset of G. Since G is FC-group, the
set B — AG is finite. Hence

I ̂ Aί2A tnA I ̂  I A ^ ^A^"^ A*»

for any c > 1.

PROPOSITION 3. If F is a group which contains a subgroup G of
finite index in F such that G is a FC-group, then F satisfies (C).

Proof. We show first that if M it a finite subset of (?, then the
set MF is finite. Let Mo = Λf*. Since G is FC-group, Λf0 is finite.
Denote by ψ the function which selects one element ψ{f) out of each
of the cosets Gf, feF, and let φ{G) = 1 — the unit element of F.
Let

= H={h1,--.,hk}.

We have

W = Mx = U Mtr> .
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I n f a c t , if s,feF, t h e r e e x i s t s a geG s u c h t h a t

φ(f)s = gφ(φ(f)s) = gφ(fs) .

Hence

M{ = U -^oφ ( / ) s = U M<Γ»('S) = U AT* <'> = Mi .
fSF f€F fβF

Thus, since ψ{F) is finite, MF is finite.
Now, let

Q = {hMΦihfc))-1: * , i = l , • • - , * } .

Clearly, Q is finite and Q aG. By virtue of what we have proved
above, Q* = Qx is finite. We now prove that for any sequence
ul9 * ,un with Uie {1, , &}, i — 1, , n, we have

(13) h%ι / ^ 6 Q - ί f c Q r H = HQl .

Let /o = 1, /< = Λβl hu., i — l,"*,nf and let α< = ^(/<). Then

But for any ΐ = 1, , n,

a, = ^(/4) = φif^K.) ) )

Hence

/>-χ = aoh^iφiaoK))-1 a^h^iφia^KJ)-1 e Qn .

and, consequently,

which completes the proof of (13).
Now let A be a finite subset of F. There exists a finite set

JkfcG such that AczHM. Consider the finite set

B = HM^ .

Clearly, AcB. For every two nonnegative integers m ^n, let ί(m, w)
be as in Section 1. We have

{14) \tβ ί^B I = I (B JB)SI(JB . J5)S2 . . . (J5 . . . J3)*m+i | y

where <ί ly •••,*,> = ί(m, n), t y i, , ίim are the ίjβ different from the
unity of F, for every i = 1, , m s{ — tά. ίim and sm+1 = 1.

Each element of the set on the right hand side of (14) is of the
form

/ = (h101 hrigri)
sι (Km+1grm+1 . Km+1grm+iy^ ,
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where gι e MF, i — 1, , n. Then

/ = (fc, . Λri) i (Km+1 fcrm+1)-«flrί . . d i ,

where #• e MF, i — 1, , n. But, by (13), for any i — 1, , m + 1
we have

^ i K. = /&&<, where fe e £Γ and & e Q(rί-r<-i> .

Consequently, since Qf = Qu

f=h[ ί K8?1

+%-- <&+£[••-g'H

and so, since

Therefore, since | Hs \ = | i ί | for any s e ί 7 , and \H\ — k,

\t,B •>• tnB\ ^ | ί ί s i | . . . | i ϊ ~+i| IQΠ I MΓ I ̂  | H \m \ H\ n

{

whence, since ] H\ nmiWM^ = o(cn), Proposition 3 follows.

COROLLARY 2. // a group G contains a FC-group as a subgroup
of finite index, then equality (4) holds for any element x of the
group algebra A(G) of G and, consequently, A(G) is symmetric.

PROPOSITION 4. The direct product of finitely many groups which
satisfy (C) satisfies (C).

PROPOSITION 5. If G is a locally nilpotent group, then G satisfies
(A-S).

This follows from the fact that if A ~ {au , ak) is a finite subset
of G, H is the subgroup generated by A, which, by assumption, is
nilpotent of class, say, s, then any element of An c H is of the form

i rfΠ d7{i) rf K, αj^i ^ Π [ah, , αf J^i *''

where n(ίu •• , i J ) are nonnegative integers ^fό(n),j — l, * ,s, and
fi(n) is an integral valued polynomial. (The exact from of fό{n) can
be easily established by the use of the collecting process as described
in [6] and [5] but it is irrelevant to us here.) Thus

I An I S (f(n))kl (/. {nψ = o{cn) for any c> 1 .

PROPOSITION 6. Condition (C) is not satisfied by nilpotent groups,
in general.
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PROPOSITION 7. Condition (A—S) is not satisfied by soluble groups,
in general.
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