A NOTE ON LOOPS

A. K. AUSTIN

An Associative Element of a quasigroup is defined to be an element a with the property that x(yz) = a implies (xy)z = a.

It is then shown that

- (i) a quasigroup which contains an associative element is a loop,
- (ii) if a loop contains an associative element then the nuclei coincide.
- (iii) if a loop is weak inverse then the set of associative elements coincides with the nucleus,
- (iv) if a loop is not weak inverse then no associative element is a member of the nucleus and the product of any two associative elements is not associative.
- In [2] Osborn defines a Weak Inverse Loop to be a loop with the property that x(yz) = 1 implies (xy)z = 1. More generally we will define an Associative Element of a quasigroup to be an element a with the property that x(yz) = a implies (xy)z = a. In this note some of the properties of associative elements will be considered.
- LEMMA 1. If a is an associative element of a quasigroup G then (xy)z = a implies x(yz) = a.
- *Proof.* Assume that (xy)z = a. Since G is a quasigroup there exists an element v such that v(yz) = a. Hence, since a is associative (vy)z = a. Thus (vy)z = (xy)z and so x = v since G is a quasi-group.
- Theorem 2. A quasigroup which contains an associative element is a loop.
- *Proof.* Let a be an associative element and y any element of the quasigroup, then there exist elements z and b such that (ay)z = a and ba = a. Thus a = b[(ay)z] = [b(ay)]z, since a is associative. But a = (ay)z and so b(ay) = ay. However y is any element of the quasigroup and so bx = x for all x in the quasigroup. Thus b is a left unit and similarly there exists a right unit and hence a unit element.

Not all loops contain associative elements, for example the loop given by the following multiplication table.

	1	2	3	4	5
1	1	2	3	4 1 5 2 3	5
1 2 3	2	5	4	1	3
3	3	1	2	5	4
4	4	3	5	2	1
5	5	4	1	3	2

The loop given by the following multiplication table contains an associative element 2, but the unit element 1 is not associative, i.e., the loop is not weak inverse.

	1		3		5
1 2	1 2 3 4 5	2	3	4	5
2	2	1	4	5	3
3	3	5	2	1	4
4	4	3	5	2	1
5	5	4	1	3	2
	I				

Bruck [1] defines the Left Nucleus, N_L of a loop to be the set of those elements n satisfying (nx)y = n(xy) for all x and y. The Middle and Right Nuclei, N_M and N_R , are similarly defined. The Nucleus, $N = N_L \cap N_M \cap N_R$. Bruck shows that N is a group. Osborn shows that the nuclei of a weak inverse loop coincide. More generally we have the following result.

THEOREM 3. If a loop contains an associative element then the nuclei coincide.

Proof. In a loop $N_{\scriptscriptstyle M}\neq\varnothing$ since $1\in N_{\scriptscriptstyle M}$.

Let n belong to N_M , x and y be any elements of the loop and a be an associative element of the loop.

There exists an element z such that

$$a = [x(yn)]z$$

 $= x[(yn)z], a ext{ is associative ,}$
 $= x[y(nz)], n \in N_M,$
 $= (xy)(nz), a ext{ is associative ,}$
 $= [(xy)n]z, a ext{ is associative .}$

Thus [x(yn)]z = [(xy)n]z and so x(yn) = (xy)n. Hence $n \in N_R$, and

so $N_{\scriptscriptstyle M} \subseteq N_{\scriptscriptstyle R}$. Reversing the argument shows that $N_{\scriptscriptstyle R} \subseteq N_{\scriptscriptstyle M}$ and hence $N_{\scriptscriptstyle R} = N_{\scriptscriptstyle M}$. Similarly $N_{\scriptscriptstyle L} = N_{\scriptscriptstyle M}$.

Writing A for the set of associative elements we have the following relationship between A and N.

THEOREM 4. If a loop is weak inverse then the set of associative elements coincides with the nucleus. If a loop is not weak inverse then no associative element is a member of the nucleus and the product of any two associative elements is not associative.

Proof. We show first that if, in a loop, $A \neq \emptyset$, then $a \in A$ and $n \in N$ implies An = A and aN = A.

Let nm = 1. Then since N is a group $m \in M$ and mn = 1. Also (an)m = a(nm) = a.

Let an = (xy)z. Then

$$a = [(xy)z]m,$$

 $= (xy)(zm), a \in A$
 $= x[y(zm)], a \in A$
 $= x[(yz)m], m \in N$
 $= [x(yz)]m, a \in A$.

Thus [(xy)z]m = [x(yz)]m and so (xy)z = x(yz) and hence an is associative, i.e., $an \in A$. Thus $An \subseteq A$ and $aN \subseteq A$.

It follows that $Am \subseteq A$ and so $(Am)n \subseteq An$. But (Am)n = A(mn) = A and so $A \subseteq An$. Thus An = A.

To show that $aN \supseteq A$ let $b \in A$ and ak = b. Given elements y and z there exists an element x such that b = x[(yz)k] = [x(yz)]k since $b \in A$ and as b = ak we have a = x(yz) and so a = (xy)z.

Thus
$$b = [(xy)z]k$$

= $(xy)(zk)$
= $x[y(zk)]$ since $b \in A$.

Hence x[(yz)k] = x[y(zk)] and so (yz)k = y(zk). Thus $k \in N$ and so $b \in aN$ and $A \subseteq aN$. Hence A = aN. In a weak inverse loop $1 \in A$ and so N = 1N = A.

If $A\cap N\neq \emptyset$, say $y\in A\cap N$ then yN=A and yN=N since N is a group and so A=N. But $1\in N$ and hence $1\in A$, i.e., the loop is weak inverse.

If $AA \cap A \neq \emptyset$, then there exist $a,b,c \in A$ such that ab=c. But aN=A and so an=c for some $n \in N$. Thus b=n, i.e., $b \in N$ and so $A \cap N \neq \emptyset$ and hence the loop is weak inverse. This completes the proof of Theorem 4.

REFERENCES

- 1. R. H. Bruck, *Pseudo-automorphisms and Moufang loops*, Proc. Amer. Math. Soc. 3 (1952), 66-72.
- 2. J. M. Osborn, Loops with the weak inverse property, Pacific J. Math. 10 (1960), 295-304.

Received June 10, 1965.