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SOME CLASSES OF RING-LOGICS

ADIL YAQUB

Let (R, x , + ) be a commutative ring with identity, and
let K — {ρu ρ2i •} be a transformation group in R. The
Z-logic of the ring (R, X , + ) is the (operationally closed)
system (R, x , pu ρ2, - •) whose operations are the ring product
"X" together with the unary operations pi, p2> mm of K.
The ring (R, X, + ) is essentially a ring-logic, mod K9 if the
" + " of the ring is equationally definable in terms of its
JΓ-logic (jβ, X, pi, p2, ' •)• Our present object, is to show that
any finite direct product of (not necessarilly finite) direct
powers of finite commutative local rings of distinct orders is
a ring-logic modulo certain suitably chosen (but nevertheless
still rather general) groups. This theorem subsumes and
generalizes Foster's results for Boolean rings, p-rings, and
pk ring8, as well as the author's results for residue class rings
and finite commutative rings with zero radical. Several new
classes of ring-logics (modulo certain groups of quite general
nature) are also explicitly exhibited. Throughout the entire
paper, all rings under consideration are assumed to be com-
mutative and with identity.

T h e o n e component case* In this section, we direct special

attention to arbitrary direct powers of a finite local ring in regard
to the concept of ring-logics. First, we recall the following [9; 228]

DEFINITION 1. A ring R is called a local ring if and only if R
is Noetherian and the nonunits of R form an ideal.

REMARK. It can be easily shown that for a finite commutative
ring R with identity 1(1 Φ 0), the concepts *'local ring", "primary
ring", and "completely primary ring" are equivalent. This readily
follows by recalling that a primary ring is a ring R with identity
such that RjJ is a simple ring satisfying the minimum condition for
right ideals, while a completely primary ring is a ring R with identity
such that RjJ is a division ring. Here, J is the radical of R. Hence
the results below still hold if we replace the local rings involved by
primary rings or by completely primary rings.

A very useful result for our purposes is the following

LEMMA 2. Let R be a finite ring with identity 1(1 Φ 0). The
ring R is a local ring if and only if every element of R is either
a unit or is nilpotent.
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Proof. Let R be a finite local ring with radical /, and let N
denote the set of nonunits of R. We claim that J == N. Clearly,
JaN. Now suppose zeN. Since N is an ideal and UN, therefore,
1 — z$N. Hence, for any x in R, ze N implies that 1 — zx is a unit
and thus zx is quasi-regular. Therefore, N aJ. This proves the
"only if" part. The "if" part is immediate.

Now, let (jβ, x, + ) be a finite local ring and let G = {l,ξif , £r} be
the group of units in R. Let ~ be a cyclic 0 —> 1 permutation of R, i.e.,
(Γ = 1, and x e R ==> x = (Γ8 for some s, where oΓs = ( •((α)~)~ )~
(s-iterations). From [4], we recall the characteristic function δμ(x),
defined as follows: for any given μ e R, δμ(x) — 1 if x = μ and Sμ(a;) = 0
it x Φ μ. Following [4], we also define: a x Λ 6 = (αΛ x 6Λ)", where w

is the inverse of the 0 —> 1 permutation Λ.
In the remainder of this paper, juxtaposition will be used in place

of " x " . Now, it is readily verified that [4]

(1.1) α x _ 0 — 0 x _ a = a; and for any function / o n B ,

(1.2) /(X, » , . . - ) = Σ / ( ^ A )(*α(»)«β(v) ) .
β e i 2

In (1.2), a,β9 range independently over all the elements of R while
x,y, are indeterminates over R. Also, Σ5fiR(Xi denotes ^ x_a2 x_
• , where al9 a2, are all the elements of R.

The following lemma holds for any finite abstract algebra (R, x)
with zero. For convenience, however, we state the result for rings.

LEMMA 3. Let ~ be any cyclic permutation of a finite ring R,
and let K be the transformation group in R generated by *\ Then
all the elements of R are equationally definable in terms of the K-
logic (J?, x, ~).

Proof. Since is a cyclic permutation of R, therefore,

where n is the number of elements in R. Similarly,

xx~x~2 aΓ1*-*1 = 0 for all x in R .

This shows that 0 (and with it 0 ,̂ 0^2, •• ,0Λ*~1) is expressible in
terms of the JSΓ-logic. This proves the lemma.

LEMMA 4. Let R be a finite local ring, and let G = {1, f2, , ξr}
be the group of units in R. Let ~ be a cyclic 0 —+1 permutation of
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R satisfying 1~ = ξ2f f 2~ = ζ3, , f7-i = ζr, but otherwise ~ is entirely
arbitrary. Let K be the transformation group in R generated by ~.
Then each characteristic function δ^x), μe R, is equationally definable
in terms of the K-logic (R, x ,~).

Proof. Let μe R. Since ~ is cyclic, there therefore exists an
integer k such that μ~k — 0. Now, choose m so large that rf1 — 0
for αZZ nilpotent elements 77 of R. Using Lemma 2, together with
Lagrange's Theorem, it is easily seen that

and the lemma is proved.

THEOREM 5. Lβί R, K, ~ be as in Lemma 4. Then the local ring
R is a ring-logic, mod K.

Proof. By (1.2), x + y = Σί,?e*(^ + £)(δ*(α)^(2/)). By Lemma 3
and Lemma 4, each of α: + β, δa(x), δβ(y), is equationally definable in
terms of the ίΓ-logic. Hence, the ( ί + >? of R is equationally definable
in terms of its if-logic, and the theorem is proved.

REMARK. Formerly, a minor side-line condition (namely, that the
ring be ' 'fixed'y by its logic) was also included in the definition of a
ring-logic [1], We do not require this condition in our present defini-
tion.

THEOREM 6. Let R, ~ be as in Lemma 4, and let R* = R{m) be
a (not necessarily finite) direct power of R. Let ~ be the induced
permutation of R* defined by (xu x2, )~ = (#Γ, «̂ Γ5 •), and let K
be the transformation group in R* generated by ^. Then (i?*, x , + )
is a ring-logic, mod K.

Proof. This follows readily from Theorem 5, since the operations
in R{m) are component-wise.

Let us now consider, for example, the case in which R — GF(pk).
Clearly, the Galois field R is a local ringβ But much more than this
is true. Indeed, the permutation ~ of Lemma 4 is now any cyclic
0 —> 1 permutation of R. Hence, Theorem 6 now yields the following.

COROLLARY 7. Let R = GF(pk), and let R[m) be a {not necessarily
finite) direct power of GF(pk). Let ~ be any cyclic 0 —> 1 permutation
of GF(pk), and let K be the transformation group in R* generated
by that permutation of R* induced by ~. Then (R*, x , + ) is a
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ring-logic, mod K.
It is noteworthy to observe that by choosing ~ in the above

corollary to satisfy αΓ = 1 — x, x~ = 1 + x, and

αΓ = ξx + (1 + ξx + £V + + ξp7e~2xpk~2) (ξ = generator for GF(pk)) ,

respectively, one essentially recovers Foster's results [1; 2; 3] for
Boolean rings, #>-rings, and pk-rings. For, as is easily seen, the above
choices for ~ do indeed yield certain cyclic 0 —• 1 permutations of
GF(2), GF(p), and GF(pk), respectively (compare with the introduction).

Another corollary to Theorems 5, 6, is obtained by adjoining any
finite number of commuting nilpotent elements to a given Galois field.
The resulting hypercomplex rings, in turn, give rise to new classes
of ring-logics. We state this formally in the following.

COROLLARY 8. Let F = GF(pk), and let ηλ, , ηt be a finite set
of nilpotent elements such that iη(ηi = 7)iηi for all i, j , and aη{ = ̂ 4α
for all i and all a in F. Let R = F[ηu , ηt]. Then R is a finite
local ring. Furthermore, R is a ring-logic, mod K, where K is the
transformation group in R generated by the permutation of R
prescribed in Theorem 5. Moreover, any direct power of R is a ring-
logic (modulo the group prescribed in Theorem 6).

The proof of Corollary 8 is quite straightforward and will here
be omitted.

2. The general case* We shall now generalize Theorems 5 and
6 to the situation in which the component rings are not necessarily
all identical. To this end, we need the following concept of independence,
introduced by Foster [5].

DEFINITION 9. Let {Uu •••, Ut} be a finite set of algebras of the
same species S. We say that the algebras Uu , Ut are independent,
or satisfy the Chinese Residue Theorem, if, corresponding to each set
{ψi} of expressions of species S, there exists a single expression X
such that ψi = X(Ui) (i — 1, , t). By an expression we mean some
composition of one or more indeterminate-symbols in terms of the
primitive operations of Uu , Ut; ψt = X(U^ means that this is an
identity of the algebra £/,-.

As usual, we use the same symbols to denote the operation symbols
of the algebras Ulf , Ut when these algebras are of the same
species.

LEMMA 10. Let Ru , Rt, be finite local rings, and let G{ =
{1, ζϋf , ζri,%} be the group of units in Rt (i — 1, , t). Let ~ be
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a cyclic 0 —> 1 permutation of Ri satisfying

but otherwise ~ is entirely arbitrary, and let Kι be the transforma-
tion group in Ri generated by ~ (i = 1, •••,£). Le£ tfee order
( = number of elements) of R{ and order of Rj be distinct (i, j — 1,
• , t; i Φ j). Then the K^logics (Riy x , ~) (i — 1, , t) are in-
dependent.

Proof. Let n be the largest of the orders of Ru , Ru and let
E = £ £~£ ~2 f ~*-1. Now, consider first the logics (Ri9 x , ^) and
(Rj, x , Λ) (i ^ i ) . We distinguish three cases depending on the orders
rif rs of the groups of units of Riy Rά.

Case 1. Ti < rά. Let λ be chosen so large as to satisfy:
XViVj = def = q, and rf — 0 for αiί nilpotent elements ^ in i2̂  or in RjΛ

It is now readily verified that

I,, (ξ) - def - ( ί r j s r « . E^y =

| 4 i (5) = def = ({|,, (ί)}{|,, ( f ) P Γ =

Case 2. r^ < r i β By symmetry, this is essentially same as Case

1.

Case 3. ri = r i β Assume, without any loss of generality, that
m = def = order of JBtf < order of R3. Then, with ^ as above, it is
easily seen that

(ξ) = (E ~ »E ^ + 2 E -•+'*)•

(f) - def = ({|4i (£)H|4i (ξ)ΓT =

Now, let I, (£) - | α (ί) | ί 2 ( f ) . . . |<t (f)(no |« (f) term) (i = 1, . . . , t) .

Let 'fi, , ψ t be a set of t expressions of species (2, 1), i.e., primitive
compositions of indeterminate-symbols in terms of the operations x , ~.
Define

It is readily verified that ψt = X(i?i) (i = 1, , t), since α x J = 0
x a — α. Hence the logics (i?{, x , ~) are independent, and the lemma
is proved.
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We are now in a position to prove the following Principal Theorem
the case t — 1 of which yields Theorem 6,

THEOREM 11. (Principal Theorem). Let Rif K{, ~ (i = 1, , t) be
as in Lemma 10 and let Ru * ,Rt have distinct orders. Let R be

a direct product of (not necessarily finite) direct powers of Ru , Rt

(t finite). For every element (xn, •• , # 2 1 , •••,&«, •••) in R, define

(xn, , x21, , xn, . Γ = (»U, , αΓi, , x7u •), α ^ ϊβ* # &e ίλe

transformation group in R generated by ~. 27&ew R is a ring-logic,
mod K.

Proof. By Theorem 5, each ring (R{, x, +) is a ring-logic, mod
Ki. Hence, for each i, there exists an expression ψi such that
α?i + Vi = î(a?i, i/»; x , ~), for all »<, yi in JBiβ Moreover, by Lemma 10
the ^-logics (Rif x , ~) are independent (ί = 1, , ί). Hence, there
exists a single expression X such that X = ψi{Ri) (i = 1, , ί). Since,
however, the operations are component-wise in the direct product iϋ,
therefore,

-3Γ(a?, y x , ~) = x + y, for all x, y in i2 .

Hence, the " + " of R is equationally definable in terms of the iΓ-logic
(R, x, ~), and the theorem is proved.

We conclude by applying Theorem 11 to certain familiar classes
of rings. To this end, we direct special attention to the cases where
(a) Ri = GF(pk

iή1 pi prime, (i = 1, , ί), and (b) each Rζ is a residue
class ring (mod pfέ), p{ prime. In case (a), each of the transformation
groups Ki of 22<(= GF(p\i)) is now generated by α î/ cyclic 0—>1
permutation of Ri (there are (pi1 — 2)! such permutations), and these,
in turn, induce a permutation of the direct product i?-which permuta-
tion generates a transformation group K in R such that (R, x, +) is
a ring-logic, mod K. In case (b), the choices for Kι are now some-
what more restricted than those in case (a), but otherwise the situation
is quite similar. Finally, recalling the familiar direct product structure
of (a) finite commutative rings with zero radical, and (b) residue class
rings, mod n (n arbitrary), we obtain, as a further corollary to Theorem
11, the following (compare with the introduction; also see [7; 8]).

COROLLARY 12. (a) Let Ri be a finite ring with zero radical
(i = 1, , t; t finite), and let R be any direct product of (not neces-
sarily finite) direct powers of Ru , Rt. Then there exists a trans-
formation group K in R such that (R, x, +) is a ring-logic, mod K
(where K is as prescribed in Theorems 5, 6); (b) same as (a) except that
each Ri is now a residue class ring, mod n{ (n{ arbitrary).
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In conclusion, I wish to express my indebtedness and gratitude to
the referee for his valuable suggestions.
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