CONTRACTION SEMI-GROUPS IN A FUNCTION SPACE

J. R. Dorroh

Abstract

Using the concepts of a semi inner-product and a dissipative operator, it is proven that if X is a complex Banach space (under the supremum norm) of bounded complex valued functions on a set S, p is a bounded positive function on S which is bounded away from zero, $p X \subset X$, and A is the infinitesimal generator of a strongly continuous (class (C_{0})) semi-group of contraction operators in X, then $p A$ is also the infinitesimal generator of such a semi-group.

The notion of a semi inner-product was introduced by G. Lumer in [3].

Definition 1. A semi inner-product for a complex (real) Banach space X is a function $[\cdot, \cdot]$ from $X \times X$ into the complex (real) numbers which satisfies

$$
\begin{aligned}
{[\alpha x+\beta y, z] } & =\alpha[x, z]+\beta[y, z], \\
|[x, z]| & \leqq\|x\| \cdot\|z\|,
\end{aligned}
$$

and

$$
[x, x]=\|x\|^{2} .
$$

There is at least one semi inner-product for every Banach space X, because we can define $[x, y]=f(x)$, where f is a bounded linear functional on X such that $\|f\|=\|y\|$, and $|f(y)|=\|y\|^{2}$ (see [4]).

By an operator in a Banach space X, we mean a linear transformation (not necessarily bounded) from a subspace of X to a subspace of X. The notion of a dissipative operator in a Banach space is treated by G. Lumer and R. S. Phillips in [4].

Definition 2. An operator A in a Banach space X is said to be dissipative (with respect to a given semi inner-product for X) if

$$
\operatorname{re}[A x, x] \leqq 0
$$

for all x in the domain of A.
By a contraction semi-group in a Banach space X we mean a strongly continuous semi-group of contraction operators in X which is of class $\left(C_{0}\right)$ (see [2]). A contraction operator in X is a bounded linear transformation T from X into X with $\|T\| \leqq 1$. Lumer and Phillips have given the following characterization [4, Theorem 3.1] of the infinitesimal generator of a contraction semi-group.

Theorem (Lumer and Phillips). Suppose A is an operator in a Banach space X, the domain of A is dense in X, and $[\cdot, \cdot]$ is a semi inner-product for X. Then A is the infinitesimal generator of a contraction semi-group in X if and only if A is dissipative with respect to $[\cdot, \cdot]$, and the range of $I-A$ is all of X, where I denotes the identity transformation on X.

Theorem. Suppose S is a set, X is a complex Banach space (under the supremum norm) of bounded complex valued functions on S, p is a bounded positive function on S which is bounded away from zero, $p X \subset X$, and A is the infinitesimal generator of a contraction semi-group in X. Then $p A$ is also the infinitesimal generator of a contraction semi-group in X.

Proof. Let U denote the Banach algebra of all bounded complex valued functions on S, and let S_{1} denote the set of all nonzero multiplicative linear functionals on S. It follows from [1, pp. 272-277], especially [1, Corollary 19, p. 276], that
(i) if m is in S_{1}, and q is a nonnegative function in U, then $m(q) \geqq 0$, and
(ii) if x is in U, then there is an m in S_{1} such that $|m(x)|=\|x\|$. For each x in X, let m_{x} denote an element m of S_{1} such that $|m(x)|=$ $\|x\|$, and for each x, y in X, let

$$
[x, y]=m_{y}(x)\left[m_{y}(y)\right]^{*},
$$

where the $*$ denotes complex conjugation. Then $[\cdot, \cdot]$ is a semi innerproduct for X; it is the only one to be used from this point on. A dissipative operator in X will mean one which is dissipative with respect to this semi inner-product.

If q is a bounded nonnegative function on S, and $q X \subset X$, then

$$
\operatorname{re}[q A x, x]=m_{x}(q) \text { re }[A x, x] \leqq 0
$$

for all x in $\mathfrak{D}(A)$, the domain of A, since A is dissipative by [4, Theorem 3.1]. Therefore, $q A$ is dissipative. Also, the domain of $q A$ is $\mathfrak{D}(A)$, which is dense in X by [2, Theorem 12.3.1, p. 360]. If

$$
\sup _{s \in S}|1-q(s)|<1 / 2,
$$

then $\|I-q\|$, the operator norm of $I-q$, is less than $1 / 2$, so that $I-q A$ is invertible, since

$$
I-q A=I-A+(I-q) A=\{I+(I-q) A R(1, A)\}(I-A)
$$

and

$$
\|A R(1, A)\|=\|R(1, A)-I\| \leqq 2
$$

by [2, Theorem $12.3 .1, \mathrm{p} .360$]. Thus the range of $I-q A$ is all of X, and $q A$ generates a contraction semi-group in X by [4, Theorem 3.1].

Since $F(p) X \subset X$ for every polynomial F, and p is bounded and nonnegative, it follows from the classical Weierstrass theorem that $p^{(1 / n)} X \subset X$ for every positive integer n. Choose n so that

$$
\sup _{s \in S}\left|1-[p(s)]^{[1 / n)}\right|<1 / 2
$$

and let $r=p^{(1 / n)}$. This is possible because the range of p is contained in a closed and bounded interval of positive numbers. By what was shown in the previous paragraph, $r A$ generates a contraction semigroup in X. If $1 \leqq j<n$, and $r^{j} A$ generates a contraction semi-group in X, then $r^{3+1} A$ does also, for

$$
r^{j+1} A=r\left(r^{j} A\right)
$$

and we can substitute r for q and $r^{j} A$ for A in the argument given in the previous paragraph.

Remark. An argument similar to the one given will establish the theorem if X is taken to be a real Banach space (under the supremum norm) of bounded real valued functions on S, and the rest of the hypothesis remains the same. Also, we could take A to be the generator of a class $\left(C_{0}\right)$ semi-group $[T(t) ; 0 \leqq t<\infty]$ of operators in X such that for some $\omega>0$,

$$
\|T(t)\| \leqq e^{\omega t} \quad \text { for } t \geqq 0
$$

If

$$
\widetilde{T}(t)=e^{-\omega t} T(t) \quad \text { for } t \geqq 0
$$

then $[\widetilde{T}(t)]$ is a contraction semi-group in X and has the generator $\widetilde{A}=A-\omega$. If

$$
V(t)=e^{\omega t p} \widetilde{V}(t) \quad \text { for } t \geqq 0
$$

where $[\tilde{V}(t) ; 0 \leqq t<\infty]$ is the contraction semi-group generated by $p \widetilde{A}$, then $[V(t)]$ is a class $\left(C_{0}\right)$ semi-group of operators in X,

$$
\|V(t)\| \leqq e^{\omega t!\mid p \|} \quad \text { for } t \geqq 0
$$

and $[V(t)]$ is generated by $p A$. The author wishes to express his thanks to the referee for his suggestions.

References

1. N. Dunford and J. Schwartz, Linear Operators, Part I, Interscience, 1958.
2. E. Hille and R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloquium Publication, 31, 1957.
3. G. Lumer, Semi inner-product spaces, Trans. Amer. Math. Soc. 100 (1961), 29-43. 4. G. Lumer and R. S. Phillips, Dissipative operators in a Banach space, Pacific J. Math. 11 (1961), 679-698.

Received October 19, 1965, and in revised form December 2, 1965. Presented to the Society, November 12, 1965, under the title Contraction semi-groups in a function algebra.

Louisiana State University

