ON INDECOMPOSABLE MODULES OVER RINGS WITH MINIMUM CONDITION

R. R. Colby

Let A be an associative ring with left minimum condition and identity. Let $g(d)$ denote the number of nonisomorphic indecomposable A-modules which have composition length d, d a nonnegative integer. If, for each integer n, there exists an integer $d>n$, such that $g(d)=\infty, A$ is said to be of strongly unbounded module type.

Assume that the center of the endomorphism ring of each simple (left) A-module is infinite. The following results concerning the structure of rings of strongly unbounded type are obtained.
I. If the ideal lattice of A is infinite, then A is of strongly unbounded module type.
II. If A is commutative, then A has only a finite number of (nonisomorphic) finitely generated indecomposable modules if and only if the ideal lattice of A is distributive. Otherwise, A is of strongly unbounded module type.
III. If the ideal lattice of A contains a vertex V of order greater than three such that, for some primitive idempotent $e \in A$, the image $V e$ of V is a vertex of order greater than three in the submodule lattice of $A e$, then A is of strongly unbounded module type.

These results are generalizations of earlier ones obtained by J. P. Jans for finite dimensional algebras over algebraically closed fields.

Let A be an associative ring with left minimum condition and identity. The length, $c(M)$, of a (left) A-module M with composition series is the number of composition factors of M. Let $g(d)$ denote the number of nonisomorphic indecomposable A-modules which have length d, d a nonnegative integer. If $\sum_{d} g(d)<\infty, A$ is said to be of finite module type. If there exists an integer n such that $g(d)=0$ for all $d>n, A$ is of bounded module type. If not of bounded module type, A is of unbounded module type. If for each integer n, there exists $d>n$ such that $g(d)=\infty, A$ is of strongly unbounded module type. R. Brauer, J. P. Jans, and R. M. Thrall have conjectured that infinite algebras of unbounded type are of strongly unbounded type, and that algebras of bounded type are of finite type [4]. A discussion of the state of these conjectures may be found in [2] and [4].
J. P. Jans has given sufficient conditions that a finite dimensional algebra over an algebraically closed field be of strongly unbounded type [4]. Through extension and modification of the techniques used
by Jans and by H. Tachikawa [6], some of these results can be obtained for arbitrary rings with minimum condition, provided that the endomorphism rings of the simple A-modules have infinite centers.
2. Rings with infinite ideal lattices. Let A be a ring with left minimum condition with the property that the lattice of ideals of A is infinite. H. Tachikawa showed that A is of unbounded type [6]. If A is also a finite dimensional algebra over an algebraically closed field, A is of strongly unbounded type [4]. The following theorem generalizes these results.

THEOREM. If the center of the endomorphism ring of each simple (irreducible) A-module is infinite and if the ideal lattice of A is infinite, then A is of strongly unbounded module type.

Proof. Since the ideal lattice of A is infinite, the lattice contains a projective root [1].

Since A / B-modules are A-modules, we can assume that $B=0$. Also, there exists an $A-A$ isomorphism $\psi: B_{1} \cong B_{2}$. Let N denote the radical of A and define $M=l(N) \cap r(N)$. Since B_{1} and B_{2} are simple ideals we have $B_{1}+B_{2}=B_{1} \oplus B_{2} \subseteq M$. There exist primitive idempotents $e, f \in A$ such that $f M e \supseteqq f B_{1} e \bigoplus f B_{2} e \supset(0)$. Choose $u=$ fue $\neq 0$ in $f B_{1} e$ and let $v=\psi(u)$. Let $\Lambda \subset f A f$ be a set of representatives for the nonzero distinct cosets of the center of $f A f / f N f$. Evidently, Λ is infinite. For $\lambda \in \Lambda$, define $s(\lambda)=\lambda v-u$. Since $f A u$, $f A v, f A s(\lambda)$, are all nonzero and $u, v, s(\lambda) \in M$, we have $A f / N f \cong$ $A u \cong A v \cong A s(\lambda)$.

Lemma 1. If $\lambda \neq \mu \in \Lambda, a, b \in A$, and $s(\lambda) a=b s(\mu)$, then $s(\lambda) a=$ $b s(\mu)=0$.

Proof. We may assume that $a \in e A e, b \in f A f$. Since $B_{1} \cap B_{2}=0$, we have $\lambda v a=b \mu v$ and $u a=b u$. Since $v=\psi(u), v a=b v$ so that $\lambda b v=$ $b \mu v$. Thus, since $f A f / f N f$ is a division ring, $\lambda b=b \mu(\bmod f N f)=$ $\mu b(\bmod f N f)$. Since $\lambda \neq \mu(\bmod f N f), b=0(\bmod f N f)$. Since $v \in M$, the lemma follows.

Lemma 2. If $a, b, c, d \in A$ and $s(\lambda) a+v b=c s(\lambda)+d v$, then $v a=$ $c v, u a=c u$, and $v b=d v$.

Proof. Since $B_{1} \cap B_{2}=0$ and $v=\psi(u)$, we have $c u=u a, c v=$ $v a$, and $\lambda v a+v b-c \lambda v-d v=0$. Hence, since $\lambda c=c \lambda(\bmod f N f)$, $v b=d v$.

For each positive integer n, let X^{n} be the direct sum of n copies of $A e$,

$$
X^{n}=\oplus \sum_{i=1}^{n} \varepsilon_{i}(A e)
$$

and let Y^{n} denote the socle of X^{n}. For $\lambda \in \Lambda$, define

$$
T_{\lambda}^{n}=\left\{\sum_{i=1}^{n} \varepsilon_{i}\left(a_{i-1} v+a_{i} s(\lambda)\right): a_{0}=0, a_{i} \in A\right\}
$$

Let $H_{\lambda}^{n}=X^{n} / T_{\lambda}^{n}$ and $S_{\lambda}^{n}=Y^{n} / T_{\lambda}^{n}$. Since the length of T_{λ}^{n} is n, the length of $S_{\lambda}^{n} \geqq 2 n-n=n$.

We proceed to show that H_{λ}^{n} and H_{μ}^{n} are not isomorphic, provided $\lambda \neq \mu \in \Lambda$. Suppose $\theta: H_{\lambda}^{n} \cong H_{\mu}^{n}$. Since X^{n} is projective [3], there exists $\bar{\theta}: X^{n} \rightarrow X^{n}$ such that $\theta \pi_{\lambda}=\pi_{\mu} \bar{\theta}$, where π_{λ}, π_{μ} are the natural projections of X^{n} onto $H_{\lambda}^{n}, H_{\mu}^{n}$, respectively. There exist $x_{1}, \cdots, x_{n} \in e A e$, such that

$$
\bar{\theta} \varepsilon_{n}(e)=\sum_{i=1}^{n} \varepsilon_{i}\left(x_{i}\right)
$$

Since $\pi_{\lambda} \varepsilon_{n} s(\lambda)=0$, and $\theta \pi_{\lambda}=\pi_{\mu} \bar{\theta}$, we have $\pi_{\mu} \bar{\theta} \varepsilon_{n} s(\lambda)=0$ and hence $\bar{\theta} \varepsilon_{n} s(\lambda) \in T_{\mu}^{n}$. Thus,

$$
\sum_{i=1}^{n} \varepsilon_{i}\left(s(\lambda) x_{i}\right)=\bar{\theta} \varepsilon_{n} s(\lambda) \in T_{\mu}^{n}
$$

According to the definition of T_{μ}^{n}, there exist $a_{0}=0, a_{1}, \cdots, a_{n} \in A$, such that

$$
s(\lambda) x_{i}=a_{i-1} v+a_{i} s(\mu), \quad i=1, \cdots, n
$$

Using an induction and Lemma 1 , we conclude that $x_{1}, \cdots, x_{n} \in e N e$, and hence

$$
\theta \pi_{\lambda} \varepsilon_{n}(v)=\pi_{\mu} \sum_{i=1}^{n} \varepsilon_{i}\left(v x_{i}\right)=0
$$

This contradicts the assumption that θ is an isomorphism.
Next, suppose that H_{λ}^{n} decomposes. Let η be the idempotent endomorphism of H_{λ}^{n} associated with an indecomposable direct summand of H_{λ}^{n} such that $\eta \pi_{\lambda} \varepsilon_{n}(v) \neq 0$.

Lemma 3. The restriction of η to S_{λ}^{n} is a monomorphism.
Proof. Since X^{n} is projective, η may be lifted to an endomorphism $\bar{\eta}$ of X^{n}. There exist $y_{i j} \in e A e$ such that

$$
\bar{\eta} \varepsilon_{j}(e)=\sum_{i=1}^{n} \varepsilon_{i}\left(y_{i j}\right), \quad j=1, \cdots, n .
$$

From the definition of T_{λ}^{n}, we have that

$$
\bar{\eta}\left(\varepsilon_{j-1}(s(\lambda))+\varepsilon_{j}(v)\right) \in T_{\lambda}^{n}, \quad j=2, \cdots, n .
$$

and $\bar{\eta} \varepsilon_{n}(s(\lambda)) \in T_{\lambda}^{n}$. Thus,

$$
\bar{\eta}\left(\varepsilon_{j-1}(s(\lambda))+\varepsilon_{j}(v)\right)=\sum_{\imath=1}^{n} \varepsilon_{i}\left(s(\lambda) y_{i, j-1}+v y_{i j}\right) \in T_{\lambda}^{n},
$$

for $j=2, \cdots, n$, and

$$
\bar{\eta} \varepsilon_{n} s(\lambda)=\sum_{i=1}^{n} \varepsilon_{i}\left(s(\lambda) y_{i n}\right) \in T_{\lambda}^{n} .
$$

Hence, there exist $a_{i j} \in f A f$ such that

$$
\begin{aligned}
s_{\lambda} y_{1, j_{-1}}+v y_{1 j} & =a_{1, j-1} s_{\lambda} \\
s_{\lambda} y_{i, j-1}+v y_{i j} & =a_{i, j-1} s_{\lambda}+a_{i-1, j-1} v, \\
s_{\lambda} y_{1 n} & =a_{1 n} s_{\lambda}
\end{aligned}
$$

and

$$
s_{\lambda} y_{i n}=a_{i n} s_{\lambda}+a_{i-1, n} v, ~ f o r ~ i, j=2,3, \cdots, n
$$

Since $f s_{\lambda} e=s_{\lambda}$ and $f v e=v$, we may assume that $a_{i j} \in f A f, i, j=$ $1,2, \cdots, n$. Applying Lemma 2, we obtain,

$$
u y_{i j}=\alpha_{i j} u
$$

and

$$
\begin{array}{ll}
v y_{i j}=a_{i j} v, & i, j=1,2, \cdots, n ; \\
v y_{i j}=a_{i-1, j-1} v, & i, j=2,3, \cdots, n ;
\end{array}
$$

and

$$
y_{i-1, n}=0(\bmod e N e), \quad i=2,3, \cdots, n
$$

Suppose $i<j$. Then we have

$$
v y_{i j}=a_{i j} v=v y_{i+1, j+1}=\cdots=v y_{i+n-j, n}=0
$$

Therefore, $y_{i j}=0(\bmod e N e)$. Suppose $i>j$. Then

$$
v y_{i j}=a_{i-1, j-1} v=v y_{i-1, j-1}=\cdots=v y_{i-j+1,1}
$$

Also,

$$
v y_{k k}=v y_{n n}, \quad k=1,2, \cdots, n
$$

Since $\eta \pi_{\lambda}\left(\varepsilon_{n}(v)\right)=\pi_{\lambda} \varepsilon_{n}\left(v y_{n n}\right) \neq 0$, we have $y_{n n} \neq 0(\bmod e N e)$. From these equations and the idempotence of η it follows that

$$
y_{i j}= \begin{cases}e(\bmod e N e), & \text { if } i=j \\ 0(\bmod e N e), & \text { if } i<j \\ y_{i-j+1,1}(\bmod e N e), & \text { if } i>j\end{cases}
$$

Next assume that $x \in Y^{n}$ and $\eta \pi_{\lambda}(x)=0$. Then $\bar{\eta}(x) \in T_{\lambda}^{n}$. There exist elements r_{j} of the socle of $A e$ such that $x=\sum_{j=1}^{n} \varepsilon_{j} r_{j}$, from which the equation

$$
\bar{\eta}(x)=\sum_{i=1}^{n} \varepsilon_{i}\left(r_{i}+\sum_{j=1}^{i-1} r_{j} y_{i-j+1,1}\right)
$$

follows. Since $\bar{\eta}(x) \in T_{\lambda}^{n}$, there exist $b_{0}=0, b_{1}, \cdots, b_{n} \in A e$ such that

$$
\sum_{j=1}^{i-1} r_{j} y_{i-j+1,1}+r_{i}=b_{i} s(\lambda)+b_{i-1} v, \quad i=2, \cdots, n
$$

Defining

$$
\begin{aligned}
& \alpha_{0}=0 \\
& \alpha_{1}=b_{1} \\
& \alpha_{k}=b_{k}-\sum_{j=1}^{k-1} \alpha_{j} a_{k-j+1,1}, \quad k=2, \cdots, n
\end{aligned}
$$

it follows that

$$
r_{k}=\alpha_{k} s(\lambda)+\alpha_{k-1} v, \quad k=1, \cdots, n
$$

Thus, $x \in T_{\lambda}^{n}$ and $\pi_{\lambda} x=0$. This proves Lemma 3.
From Lemma 3, we conclude that S_{λ}^{n} is contained in an idecomposable direct summand V_{λ} of H_{λ}^{n}. Calculation of $H_{\lambda}^{n} / S_{\lambda}^{n} \cong X^{n} / Y^{n}$ shows that every direct summand of H_{λ}^{n} not equal to V_{λ} is isomorphic to $A e / S(A e), S(A e)$ the socle of $A e$. Thus, $V_{\lambda} \cong V_{\mu}$ if and only if $H_{\lambda}^{n} \cong H_{\mu}^{n}$ and hence $V_{\lambda} \not \equiv V_{\mu}$ if $\lambda \neq \mu \in \Lambda$. This completes the proof of the theorem.

3. Commutative rings.

Theorem. If A is commutative, then A is of finite type if and only if the ideal lattice of A is distributive. Otherwise, A is of
unbounded type, strongly so if the endomorphism ring of each simple A-module is infinite.

Proof. It is sufficient to show that, if the ideal lattice of A is distributive, A is generalized uni-serial (see [5]). Let e be a primitive idempotent in A and consider the lattice of submodules of $A e$. Since A is commutative, these submodules are ideals in A. Suppose the lattice contains a vertex

where we assume, without loss of generality, that the lattice from (0) to L_{0} is a chain. Then $L_{0}=N^{k+1} e$ for some k, and $L_{1}+L_{2} \subseteq N^{k} e$. Choose $\alpha_{1} \in L_{i}-L_{0}, i=1,2$, and define

$$
L_{3}=A e\left(\alpha_{1}+\alpha_{2}\right)+L_{0} .
$$

The mapping $a e \rightarrow a e\left(\alpha_{1}+\alpha_{2}\right)+L_{0}$ induces an isomorphism $L_{3} / L_{0} \cong$ $A e / N e$ so that we have $L_{0} \subset L_{3} \subset L_{1}+L_{2}$. Since $L_{1} \cap L_{2}=L_{0}$, it follows directly that $L_{3} \cap L_{1}=L_{3} \cap L_{2}=L_{0}$. Clearly $L_{1}+L_{2}=L_{1}+L_{3}=$ $L_{2}+L_{3}$. Hence the ideal lattice of A contains the projective root

which contradicts the assumption that the lattice is distributive. Thus, A is generalized uni-serial and of finite type.
4. Lattices with vertex of order four. In this section we assume that the center of the endomorphism ring of each simple A module is infinite.

Theorem. If the ideal lattice of A contains a vertex V of order greater than three such that for some primitive idempotent $e \in A$, the image $V e$ of V is a vertex of order greater than three in the submodule lattice of $A e$, then A is of strongly unbounded module type.

Proof. There exists an ideal $B_{0} \subseteq A$ with distinct covers B_{1}, B_{2}, B_{3}, B_{4} such that $B_{i} e \supset B_{0} e, i=1,2,3,4$. Since A / B_{0} modules are A modules we can assume that $B_{0}=0$. Because of the theorem of $\S 1$, we assume that the ideal lattice of A is distributive and hence that

$$
\sum_{i=1}^{4} B_{i}=\oplus \sum_{i=1}^{4} B_{i}
$$

There exist primitive idempotents $f_{i} \in A$ such that $f_{i} B_{i} e \neq 0, i=1,2,3,4$. Let $\Lambda \subset e A e$ be a set of representatives for the nonzero cosets of the center of $e A e / e N e$. Choose $u_{i}=f_{i} u_{i} e \neq 0 \in B_{i} e, i=1,2,3,4$. For $\lambda \in \Lambda$ we have $A f_{i} / N f_{i} \cong A u_{i} \cong A u_{i} \lambda, i=1,2,3,4$. For each positive integer n define

$$
X^{n}=\oplus \sum_{i=1}^{2 n} \varepsilon_{i}(A e)
$$

and denote the socle of X^{n} by Y^{n}. Define

$$
\begin{gathered}
T_{\lambda}^{n}=\left\{\sum_{i=1}^{n} \varepsilon_{i}\left(\alpha_{i} u_{1}+c_{i} u_{3}+d_{i} u_{4} \lambda+d_{i-1} u_{4}\right)+\varepsilon_{i+n}\left(b_{i} u_{2}+c_{i} u_{3}+d_{i} u_{4}\right):\right. \\
\left.d_{0}=0, a_{i}, b_{i}, c_{i}, d_{i} \in A, i=1, \cdots, n .\right\}, \\
H_{\lambda}^{n}=X^{n} / T_{\lambda}^{n},
\end{gathered}
$$

and

$$
S_{\lambda}^{n}=Y^{n} / T_{\lambda}^{n}
$$

Since the composition length of T_{λ}^{n} is equal to $4 n$ and the composition length of Y^{n} is greater than or equal to $8 n$, the composition length of S_{λ}^{n} increases without bound as n increases.

Let $\lambda \neq \mu$ be elements of Λ. We next prove that H_{λ}^{n} and H_{μ}^{n} are not isomorphic. Suppose θ is an isomorphism from H_{λ}^{n} onto H_{μ}^{n}. Since X^{n} is projective, θ can be lifted to a endomorphism $\bar{\theta}$ of X^{n}. There exist $x_{1}, \cdots, x_{2 n}, y_{1}, \cdots, y_{2 n}$ in $e A e$ such that

$$
\bar{\theta} \varepsilon_{2 n}(e)=\sum_{i=1}^{2 n} \varepsilon_{i}\left(x_{i}\right)
$$

and

$$
\bar{\theta} \varepsilon_{n}(e)=\sum_{i=1}^{2 n} \varepsilon_{i}\left(y_{i}\right)
$$

Since, $\theta \pi_{\lambda} \varepsilon_{n}\left(u_{4}\right) \neq 0$, we have

$$
\pi_{\mu}\left(\sum_{i=1}^{2 n} \varepsilon_{i}\left(u_{4} y_{i}\right)\right)=\theta \pi_{\lambda} \varepsilon_{n}\left(u_{4}\right) \neq 0
$$

Thus, since $u_{4} \in M$, there exists $k, 1 \leqq k \leqq 2 n$, such that

$$
y_{k} \notin e N e .
$$

Since $u_{1} y_{i} \in A u_{2}+A u_{3}+A u_{4}$ for $i>n$, we have $u_{1} y_{i}=0$ for $i>n$, and hence, since $e A e / e N e$ is a division ring, $y_{i} \in e N e$, for $i>n$. Similarly, $\bar{\theta} \varepsilon_{2 n}\left(u_{2}\right) \in T_{\mu}^{n}$ implies $x_{i} \in e N e$, for $i \leqq n$. It follows that

$$
\bar{\theta}\left(\varepsilon_{n} u_{3}+\varepsilon_{2 n} u_{3}\right)=\sum_{i=1}^{n} \varepsilon_{i}\left(u_{3} y_{i}\right)+\sum_{i=n+1}^{2 n} \varepsilon_{i}\left(u_{3} x_{i}\right) \in T_{\mu}^{n}
$$

Therefore, $u_{3} y_{i}=u_{3} x_{i+n}$ for $i=1, \cdots, n$, and hence,

$$
y_{i}=x_{i+n},(\bmod e N e) \quad i=1, \cdots, n
$$

From this we obtain

$$
\bar{\theta}\left(\varepsilon_{n}\left(u_{4} \lambda\right)+\varepsilon_{2 n}\left(u_{4}\right)\right)=\sum_{i=1}^{n} \varepsilon_{i}\left(u_{4} \lambda y_{i}\right)+\sum_{i=n+1}^{2 n} \varepsilon_{i}\left(u_{4} y_{i-n}\right) \in T_{\mu}^{n} .
$$

Hence, using the definition of T_{μ}^{n} there exist $d_{1}, \cdots, d_{n} \in A$ such that

$$
\begin{aligned}
& u_{4} \lambda y_{1}=d_{1} u_{4} \mu \\
& u_{4} \lambda y_{j}=d_{j} u_{4} \mu+d_{j-1} u_{4}, \quad j=2, \cdots, n
\end{aligned}
$$

and

$$
u_{4} y_{j}=d_{j} u_{4}, \quad j=1, \cdots, n
$$

Replacing $d_{j} u_{4}$ by $u_{4} y_{j}$ in these equations, we have

$$
u_{4} \lambda y_{1}=u_{4} y_{1} \mu
$$

and

$$
u_{4} \lambda y_{j}=u_{4} y_{j} \mu+u_{4} y_{j-1}, \quad j=2, \cdots, n
$$

Since $u_{4} \in M$, a simple induction shows that

$$
y_{i} \in e N e, \quad i=1, \cdots, n
$$

We conclude that H_{λ}^{n} and H_{μ}^{n} are not isomorphic.
Next, suppose that H_{λ}^{n} decomposes and let η be an idempotent endomorphism of H_{λ}^{n} such that $\eta \pi_{\lambda}\left(\varepsilon_{n}\left(u_{3}\right)\right) \neq 0$. Since X is projective, η can be lifted to an endomorphism $\bar{\eta}$ of X^{n}. There exist $y_{i j} \in e A e$ such that $\bar{\eta}\left(\varepsilon_{j}(e)\right)=\sum_{i=1}^{2 n} \varepsilon_{i}\left(y_{i j}\right)$. If $j \leqq n$, we have

$$
\bar{\eta}\left(\varepsilon_{j} u_{1}\right)=\sum_{i=1}^{2 n} \varepsilon_{i}\left(u_{1} y_{i j}\right) \in T_{\lambda}^{n}
$$

and hence

$$
y_{i j}=0, \quad(\bmod e N e) \quad 1 \leqq i \leqq n, n+1 \leqq j \leqq 2 n
$$

For $j \leqq n$, we have,

$$
\bar{\eta}\left(\varepsilon_{j}\left(u_{3}\right)+\varepsilon_{j+n}\left(u_{3}\right)\right)=\sum_{i=1}^{n} \varepsilon_{i}\left(u_{3} y_{i j}\right)+\sum_{i=n+1}^{2 n} \varepsilon_{i}\left(u_{3} y_{i, j+n}\right) \in T_{\lambda}^{n} .
$$

Thus, by the definition of T_{λ}^{n},

$$
y_{i j}=y_{i+n, j+n} \quad(\bmod e N e), \quad 1 \leqq i, j \leqq n
$$

We infer that

$$
\bar{\eta}\left(\varepsilon_{n}\left(u_{4} \lambda\right)+\varepsilon_{2 n}\left(u_{4}\right)\right)=\sum_{i=1}^{n} \varepsilon_{i}\left(u_{4} \lambda y_{i n}\right)+\sum_{i=n+1}^{2 n} \varepsilon_{i}\left(u_{4} y_{i-n, n}\right) \in T_{\lambda}^{n} .
$$

Hence, there exist $d_{0}, \cdots, d_{n} \in A, d_{0}=0$, such that

$$
u_{4} \lambda y_{j n}=d_{j} u_{4} \lambda+d_{j-1} u_{4},
$$

and

$$
u_{4} y_{j n}=d_{j} u_{4}, \quad j=1, \cdots, n
$$

Replacing $d_{j} u_{4}$ by $u_{4} y_{j n}$, we have

$$
u_{4} \lambda y_{1 n}=u_{4} y_{1 n} \lambda
$$

and

$$
u_{4} \lambda y_{j n}=u_{4} y_{j n} \lambda+u_{4} y_{j-1, n}, \quad j=2, \cdots, n
$$

Hence, for $i<n$ we obtain $y_{i n}=0(\bmod e N e)$. And, since η is idempotent and $e A e / e N e$ is a division ring, $y_{n n}=e(\bmod e N e)$. Now suppose $k<n$. Then

$$
\begin{aligned}
& \bar{\eta}\left(\varepsilon_{k}\left(u_{4} \lambda\right)+\varepsilon_{k+1}\left(u_{4}\right)+\varepsilon_{k+n}\left(u_{4}\right)\right) \\
& \quad=\sum_{i=1}^{n} \varepsilon_{i}\left(u_{4} \lambda y_{i k}+u_{4} y_{i, k+1}\right)+\sum_{i=n+1}^{2 n} \varepsilon_{i}\left(u_{4} y_{i-n, k}\right) \in T_{\lambda}^{n}
\end{aligned}
$$

Hence, there exist $d_{1}^{k}, d_{2}^{k}, \cdots, d_{n}^{k} \in A, d_{0}^{k}=0$, such that

$$
u_{4} \lambda y_{i k}+u_{4} y_{i, k+1}=d_{j}^{k} u_{4} \lambda+d_{j-1}^{k} u_{4}
$$

and

$$
u_{4} y_{j k}=d_{j}^{k} u_{4}, \quad j=1, \cdots, n
$$

Replacing $d_{j}^{k} u_{4}$ by $u_{4} y_{j k}$ we obtain $u_{4} y_{1, k+1}=0$, and $u_{4} y_{j, k+1}=u_{4} y_{j-1, k}$, $j=2, \cdots, n, k=1, \cdots, n-1$. It follows from these equations that $y_{1 k}=0,(\bmod e N e)$ for $k=2, \cdots, n$, and $y_{j k}=y_{j+1, k+1}(\bmod e N e), j, k=$ $1, \cdots, n-1$. If $i<j \leqq n$, then

$$
y_{i j}=y_{i-1, j-1}=\cdots=y_{1, j-i+1}=0(\bmod e N e) .
$$

And, if $n \geqq i \geqq j$,

$$
y_{i j}=y_{i-1, j-1}=\cdots=y_{i-j+1,1}(\bmod e N e) .
$$

These results imply

$$
y_{i j}= \begin{cases}0(\bmod e N e), & \text { if } i<j, \text { or } j \leqq n<i \\ e(\bmod e N e), & \text { if } i=j, \\ y_{i-j+1,1}(\bmod e N e), & \text { if } j<i \leqq n, \text { or } n<j<i\end{cases}
$$

We shall now show that the restriction of η to S_{λ}^{n} is a monomorphism and that $\eta\left(S_{\lambda}^{n}\right)=S_{\lambda}^{n}$. Suppose that $x \in Y^{n}$ is such that $\pi_{\lambda}(s)$ is an element of the kernel of η,

$$
x=\sum_{i=1}^{2 n} \varepsilon_{i}\left(x_{i}\right)
$$

We have $\eta \pi_{\lambda}(x)=\pi_{\lambda} \bar{\eta}(x)=0$, and so

$$
\begin{aligned}
\bar{\eta}(x) & \in T_{\lambda}^{n} \\
\bar{\eta}(x) & =\sum_{j=1}^{2 n} \bar{\eta} \varepsilon_{j}\left(x_{j}\right) \\
& =\sum_{j=1}^{2 n} \sum_{i=1}^{2 n} \varepsilon_{i}\left(x_{j} y_{i j}\right) \\
& =\sum_{j=1}^{n} \sum_{i=1}^{n} \varepsilon_{i}\left(x_{j} y_{i-j+1,1}\right)+\sum_{j=n+1}^{2 n} \sum_{i=j}^{2 n} \varepsilon_{i}\left(x_{j} y_{i-j+1,1}\right)
\end{aligned}
$$

Thus, there exist $a_{1}, b_{i}, c_{i}, d_{i}, i=1, \cdots, n$ in $A, d_{0}=0$ such that

$$
\sum_{j=1}^{i} x_{j} y_{i j}=a_{i} u_{1}+c_{i} u_{3}+d_{i} u_{4} \lambda+d_{i-1} u_{4}
$$

and

$$
\sum_{j=1}^{i} x_{n+j} y_{i j}=b_{i} u_{2}+c_{i} u_{3}+d_{i} u_{4}, \quad \text { for } i=1,2, \cdots, n
$$

Using the definition of T_{λ}^{n}, it follows that

$$
x_{j}=\alpha_{j} u_{1}+\gamma_{j} u_{3}+\delta_{j} u_{4} \lambda+\delta_{j-1} u_{4}
$$

and

$$
x_{j+n}=\beta_{j} u_{2}+\gamma_{j} u_{3}+\delta_{j} u_{4}, \quad j=1, \cdots, n-1
$$

where $\alpha_{1}=a_{1}, \beta_{1}=b_{1}, \gamma_{1}=c_{1}, \delta_{0}=0, \delta_{1}=d_{1}$, and

$$
\begin{aligned}
& \alpha_{k} u_{1}=\alpha_{k} u_{1}-\alpha_{k-1} u_{1} y_{21}-\cdots-\alpha_{1} u_{1} y_{k 1} \\
& \beta_{k} u_{2}=b_{k} u_{2}-\beta_{k-1} u_{2} y_{21}-\cdots-\beta_{1} u_{2} y_{k 1} \\
& \gamma_{k} u_{3}=c_{k} u_{3}-\gamma_{k-1} u_{3} y_{21}-\cdots-\gamma_{1} u_{3} y_{k 1} \\
& \delta_{k} u_{1}=d_{k} u_{4}-\delta_{k-1} u_{4} y_{21}-\cdots-\delta_{1} u_{4} y_{k 1}, \quad \text { for } k>1 .
\end{aligned}
$$

Hence, $\pi_{\lambda}(x)=0$, and the restriction of η to S_{λ}^{n} is a monomorphism. The proof can now be completed as in $\S 1$.

Bibliography

1. G. Birkhoff, Lattice theory, Amer. Math. Soc. Coll. Publ., Volume XXV, 1948.
2. C. W. Curtis and J. P. Jans, On algebras with a finite number of indecomposable modules, Trans. Amer. Math. Soc. 114 (1965), 122-132.
3. C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Interscience, New York, 1962.
4. J. P. Jans, On the indecomposable representations of algebras, Ann. of Math. (2) 66 (1957), 418-429.
5. T. Nakayama, Note on uni-serial and generalized uniserial rings, Proc. Imp. Acad. Tokyo 16 (1940), 285-289.
6. H. Tachikawa, Note on algebras of unbounded representation type, Proc. Japan Acad. 36 (1960), 59-61.

Received July 30, 1965. This paper consists of part of the author's doctoral thesis.
The Boeing Company and
The University of Washington

