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ON INDECOMPOSABLE MODULES OVER
RINGS WITH MINIMUM CONDITION

R. R. COLBY

Let A be an associative ring with left minimum condition
and identity. Let g(d) denote the number of nonisomorphic
indecomposable ^.-modules which have composition length d, d
a nonnegative integer. If, for each integer n, there exists
an integer d > n, such that g(d) = oofA is said to be of
strongly unbounded module type.

Assume that the center of the endomorphism ring of
each simple (left) A-module is infinite. The following results
concerning the structure of rings of strongly unbounded type
are obtained.

I. If the ideal lattice of A is infinite, then A is of strongly
unbounded module type.

II. If A is commutative, then A has only a finite number
of (nonisomorphic) finitely generated indecomposable modules
if and only if the ideal lattice of A is distributive. Other-
wise, A is of strongly unbounded module type.

III. If the ideal lattice of A contains a vertex Fof order
greater than three such that, for some primitive idempotent
eeA, the image Ve of V is a vertex of order greater than
three in the submodule lattice of Ae, then A is of strongly
unbounded module type.

These results are generalizations of earlier ones obtained
by J. P. Jans for finite dimensional algebras over algebraically
closed fields.

Let A be an associative ring with left minimum condition and
identity. The length, c(M), of a (left) A-module M with composition
series is the number of composition factors of M. Let g(d) denote
the number of nonisomorphic indecomposable A-modules which have
length d, d a nonnegative integer. If ^ g(d) < oo, A is said to be of
finite module type. If there exists an integer n such that g{d) — 0
for all d > n, A is of bounded module type. If not of bounded module
type, A is of unbounded module type. If for each integer n, there
exists d > n such that g(d) = oo 9 A is of strongly unbounded module
type. R. Brauer, J. P. Jans, and R. M. Thrall have conjectured that
infinite algebras of unbounded type are of strongly unbounded type,
and that algebras of bounded type are of finite type [4]. A discus-
sion of the state of these conjectures may be found in [2] and [4].

J. P. Jans has given sufficient conditions that a finite dimensional
algebra over an algebraically closed field be of strongly unbounded
type [4]. Through extension and modification of the techniques used
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by Jans and by H. Tachikawa [6], some of these results can be
obtained for arbitrary rings with minimum condition, provided that
the endomorphism rings of the simple .̂-modules have infinite centers.

2. Rings with infinite ideal lattices. Let A be a ring with
left minimum condition with the property that the lattice of ideals
of A is infinite. H. Tachikawa showed that A is of unbounded type
[6]. Iί A is also a finite dimensional algebxa ovex an algebraically
closed field, A is of strongly unbounded type [4]. The following
theorem generalizes these results.

THEOREM. If the center of the endomorphism ring of each simple
(irreducible) A-module is infinite and if the ideal lattice of A is in-
finite, then A is of strongly unbounded module type.

Proof. Since the ideal lattice of A is infinite, the lattice contains
a protective root [1].

Since A/J5-modules are ^-modules, we can assume that B=0. Also,
there exists an A — A isomorphism ψ .B^ B2. Let N denote the
radical of A and define M=l(N)Πr(N). Since B1 and B2 are
simple ideals we have Bx + B2 = Bx 0 B2 S M. There exist primitive
idempotents e, f e A such that fMe a fB,e 0/B2β 3 (0). Choose u =
fue Φ 0 in fBte and let v = ψ(v). Let AafAf be a set of repre-
sentatives for the nonzero distinct cosets of the center of fAf/fNf.
Evidently, A is infinite. For λ e A, define s(λ) = Xv — u. Since fAu,
fAv, fAs(X), are all nonzero and u, v, s(\) e M, we have Af/Nf ^
Au ~ Av = As(λ).

LEMMA 1. If λ Φ μe A, a, be A, and s(X)a = bs(μ), then s(λ)α =
bs(μ) = 0.

Proof. We may assume that αeeAe, 6 e fAf. Since Bj. Γ\ β 2 = 0,
we have λw = bμv and ^α = bu. Since v = ^(^), va = 6̂  so that λίw =
δ^v. Thus, since fAf/fNf is a division ring, λ& = bμ (mod fNf) =
μ& (mod fNf). Since λ ^ μ (mod fNf)9 6 = 0 (mod fNf). Since v e Jlf,
the lemma follows.
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LEMMA 2. If a,b, c, de A and s(X)a + vb = es(λ) + cfa;, <£Aew vα =
cv, ua = CM, αticZ v6 = efo;.

Proof. Since J5X Π i?2 = 0 and v = ψ(u), we have cu — ua, cv =
t α, and λ'yα + ?;&-— cλv — dv — 0. Hence, since Xc — cX (mod fNf),
vb — dv.

For each positive integer n, let Xn be the direct sum of n copies
of Ae9

and let Yn denote the socle of Xn. For λ e A, define

): α 0 = 0, α 4 6

Let Hi = X /Γλ and S^ = ΓVΓJ. Since the length of Tl is w, the
length of St^2n — n = n.

We proceed to show that Hi and H% are not isomorphic, provided
X Φ μ e A. Suppose θ: Hi ~ Hi. Since Xn is protective [3], there
exists θ; Xn —> Xn such that /97Γλ = πβ, where πλ1 π μ are the natural
projections of Xn onto Hi, JEZjί, respectively. There exist ^ , , xn e eAe,
such that

Since πλε%s(λ) = 0, and ^τrλ = π^θ, we have πμθens(X) = 0 and hence
ίεns(λ) e Γ;. Thus,

" e4(β(λ)a?4) = θεns(X) e Tl .

According to the definition of Γj, there exist α0 = 0, au , an e A,
such that

s(X)Xi = α^ii; + M μ ) , i = 1, , n .

Using an induction and Lemma 1, we conclude that xu , xneeNe,
and hence

0πλεn{v) = πμ Σ ^(raO = 0 .

This contradicts the assumption that θ is an isomorphism.
Next, suppose that Hi decomposes. Let η be the idempotent

endomorphism of Hi associated with an indecomposable direct sum-
mand of Hi such that ηπλen(v) Φ 0.
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LEMMA 3. The restriction of ΎJ to Si is a monomorphism.

Proof. Since Xn is projective, rj may be lifted to an endomor-
phism fj of Xn. There exist yiά e eAe such that

= Σ ei(Vij) > 3 =
1

From the definition of T", we have that

Wi-M\)) + φ)) eTt, j = 2,

and γe.(8(λ)) e Γ;. Thus,

for j = 2, •••, n, and

= Σ
i

Hence, there exist ai3> e fAf such that

and

for ί, j= 2, 3, •••, n .

Since fsλe — sλ and fve — v, we may assume that ai3- e fAf, i, j =
1, 2, •••,%. Applying Lemma 2, we obtain,

uyiά = ai3-u ,

and

vyi3.= ai3v , ΐ, i = 1, 2, - . , w

vyiQ — α^!,^!^ , ,̂ j — ^, ό, , n ,

and

2/<-i,» = 0 (mod βiVe) , i = 2, 3, , n .

Suppose i < j . Then we have

vyi3 = ai3 v == vyi+U3+1 = = vyί+n_3-,n = 0 .

Therefore, T/̂  = 0 (mod eiVe). Suppose ΐ > y. Then



INDECOMPOSABLE MODULES OVER RINGS 27

Also,

3̂/ » > ft = 1, 2,

Since ^ ( ε ^ ) ) = πλεn(vynn) Φ 0, we have 2/ww =£ 0 (mod eNe). From
these equations and the idempotence of ΎJ it follows that

I e (mod eNe), if i = j .

0 (mod eJVβ), if i < j .

Vi-s+ui (mod eNe), if i > j .

Next assume that x e Yn and ηπλ(x) = 0. Then "̂(a;) e Γ;. There
exist elements r3- of the socle of Ae such that # = Σ?=i εiri> from
which the equation

7){x) = Σ

f o l l o w s . S i n c e f}(x) e Γ J , t h e r e e x i s t bQ = 0, 6^ • • • , & » € A e s u c h t h a t

ΐ - l

Σ rjVi-s+i.i + r ^ = & i s ( λ ) + 6<-i^ > i = 2, , % .

Defining

fc-1

«* = δ* - Σ <Xj<t>k-s+ι,i , * = 2, , n .

it follows that

rk = αλs(λ) + α A _^ , ft = 1, , w .

Thus, cc 6 !F£ and τrλα; — 0. This proves Lemma 3.
From Lemma 3, we conclude that Si is contained in an idecom-

posable direct summand Vλ of Hi. Calculation of HljSl ~ XnjYn

shows that every direct summand of Hi not equal to Vλ is isomor-
phic to Ae/S(Ae), S(Ae) the socle of Ae. Thus, F λ ~ F μ if and only
if Hi ~ Hi and hence Vλ & Vμ if λ Φ μ 6 Λ. This completes the
proof of the theorem.

3* Commutative rings*

THEOREM. If A is commutative, then A is of finite type if and
only if the ideal lattice of A is distributive. Otherwise, A is of
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unbounded type, strongly so if the endomorphism ring of each
simple A-module is infinite.

Proof. It is sufficient to show that, if the ideal lattice of A is
distributive, A is generalized uni-serial (see [5]). Let e be a primi-
tive idempotent in A and consider the lattice of submodules of Ae.
Since A is commutative, these submodules are ideals in A. Suppose
the lattice contains a vertex

where we assume, without loss of generality, that the lattice from
(0) to Lo is a chain. Then LQ = Nk+1e for some k, and L± + L2 £ Nke.
Choose ax e Li — LQ, i — 1, 2, and define

L3 = Ae{ax + α2) + Lo .

The mapping αe —> αβ(αx + α2) + Lo induces an isomorphism L3/L0 =
Ae/Ne so that we have Lo c L3 c L± + L2. Since Lx Π I/2 = ί/0, it
follows directly that L3 Π Lx = L3 Π I/2 = Lo. Clearly Lλ + L2 = Lx + L3^
L2 + L3. Hence the ideal lattice of A contains the protective root

U +

which contradicts the assumption that the lattice is distributive. Thus,
A is generalized uni-serial and of finite type.

4* Lattices with vertex of order four* In this section we as-
sume that the center of the endomorphism ring of each simple A-
module is infinite.

THEOREM. // the ideal lattice of A contains a vertex V of
order greater than three such that for some primitive idempotent
ee A, the image Ve of V is a vertex of order greater than three in
the submodule lattice of Ae, then A is of strongly unbounded module
type.
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Proof. There exists an ideal Bo £ A with distinct covers Bu J52,
JB3, J54 such that B& Z)Boe, ί = 1, 2, 3, 4. Since A/JB0 modules are A-
modules we can assume that Bo = 0. Because of the theorem of § 1,
we assume that the ideal lattice of A is distributive and hence that

4 4

Si.

There exist primitive idempotents f{e A such that fiBβ ΦQ, i = 1,2,3,4.
Let J c βAβ be a set of representatives for the nonzero cosets of the
center of eAe/eNe. Choose ut — f^e Φ 0 e JÊ e, i = 1, 2, 3, 4. For λ e J
we have Afi/Nfi ~ Aut ~ Au^, i — 1, 2, 3, 4. For each positive integer
7i define

and denote the socle of Xn by Yn. Define

{ n

Σ ε^α^i + c^3 + di^Λ + di^Ut) + εi+

d 0 = 0 , a u bi, c i t d i e A , i = l, •••,

Hi - X /ΓJ ,

and

si = y/r*.

Since the composition length of !T£ is equal to An and the com-
position length of Yn is greater than or equal to 8n, the composition
length of Si increases without bound as n increases.

Let λ Φ μ be elements of A. We next prove that Hi and H^ are
not isomorphic. Suppose Θ is an isomorphism from Hi onto H^. Since
Xw is protective, Θ can be lifted to a endomorphism £ of X\ There
exist xl9 , a?2Λ, ̂ , , i/2n in eAe such that

and

^β.(β) = Σ 6,(2/,)

Since, ^τrλεm(w4) ^ 0, we have
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Thus, since u4 G M, there exists k, 1 S k ^ 2n, such that

2/fc $ eNe .

Since w ^ e Au2 + Aw3 + Au4 for i > n, we have w ^ = 0 for i > n,
and hence, since eAe/eNe is a division ring, ^ G eNe, for i > ?ι.
Similarly, Θe2n(u2) e Γ^ implies aĵ  G eNe, for i ^ n. It follows that

ΐ=Λ+l

Therefore, u^yi = ^63^ί+w for i = 1, , w, and hence,

l/< = x ί + w, (mod βiVβ) i = 1, •••,%.

From this we obtain

ff(eΛ(^4λ) + M ^ ) ) - Σ Siί^λi/i) + Σ SiiuMi-n) e Tl .
τ=l i=n+l

Hence, using the definition of T^ there exist du , dne A such that

and

Replacing d ! ^ by ^T/^ in these equations, we have

and

u4λτ/, = %42/^ + ^i/^i , j = 2, , n .

Since u4e M, a simple induction shows that

2/i G βiVβ , i = 1, , % .

We conclude that i ϊ j and J3J are not isomorphic.
Next, suppose that Ht decomposes and let rj be an idempotent

endomorphism of Hi such that 7jπλ(εn(u5)) Φ 0. Since X is protective,
η can be lifted to an endomorphism rj of Xn. There exist y{j e eAe
such that yj{eά{e)) = Σ?=i s»(2/ij). I f i ^ »̂ w e h a v e

and hence

yiS = 0 , (mod eiVe) 1 <L ί ζ£ n, n + 1 ^ j ^ 2n .
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For j 5Ξ n, we have,

η(s5{uz) + εj+n(u3)) = Σ e*(w8»ίi) + Σ eί(w8»*.i+ ) e T £ .

Thus, by the definition of Γj,

Vϋ = Vi+n.j+n (mod eiSΓe) , 1 ^ i, i ^ w .

We infer that

ί?(εκ(w4λ) + e2K(w4)) = X ε{(w4λ2/«) + Σ e ^ y ^ , . ) e T£ .

Hence, there exist dQf ---,dneA,d0 = 0, such that

and

^ 4 2 / y = ^ 4 , i = 1 , • • - , * & .

Replacing dy^4 by ^4τ/iw, we have

and

X + %4Kyβl,n , i = 2, , n

Hence, for i < n we obtain # ί f l = 0 (modβJVe). And, since η is idem-
potent and eAe/eNe is a division ring, ynn — β (mod eNe). Now suppose
Λ < n. Then

= Σ ei(u4\yik + u4yiίk+1) + Σ ^(^Vi-n,k)

Hence, there exist df, dj, , d* e A, df = 0, such that

and

Replacing dj^4 by ^42/i/b we obtain u4yuk+1 ~ 0, and u{yjyk+1 — u±y^1>k,
j — 2, , n, k = 1, , ^ — 1. It follows from these equations that
yίk = 0, (mod βiVe) for fc = 2, , w, and ^yfc = yί+uk+1 (mod eJVβ), i, k =
1, , n — 1. If i < j ^ n, then

ί/»y = 1/ί-i.y-i = = i/i,y-ί+i = 0 (mod eiVβ) .
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And, if n ^ % ^ j 9

11 — II — = Ίl
iJ%3 y%—l>3—l &%—3Λ

These results imply

Ό (mod eNe) , if ί < j , or j ^ n < i ,

e (mod eiVβ) , if i = i ,

i-i+i.i (mod eiVe) , if i < i ^ w, or n < j < i .

We shall now show that the restriction of η to Si is a monomorphism
and that η(Sl) — Si. Suppose that x e Yn is such that πλ(s) is an
element of the kernel of 7)9

We have ηπκ{x) = πλyj{x) = 0, and so

η{x) G Tl .

i(XjVi3')

n n

Vi-i+ui) + Σ Σ Sifayi-d+Li)

Thus, there exist au bi9 cifdi9i = lf •• ,n in A, d0 = 0 such t h a t

and

*
Σ Xn+jVij = &̂ 2 + c^ 3 + d^4 , for i = 1, 2, , n .
5 = 1

Using the definition of Γ;, it follows t h a t

Xj = «,-%! + 7^3 + δ ^ λ + δ^Ut ,

and

where ^ = al9 β± — bu Ύi = c±, 50 = 0, δx = d^ and

for k > 1 .
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Hence, πλ(x) — 0, and the restriction of η to Si is a monomorphism.
The proof can now be completed as in § 1.
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