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THE EXISTENCE OF WAVE OPERATORS
FOR NONLINEAR EQUATIONS

A. R. BRODSKY

In this paper, conditions will be found on nonlinear per-
turbations of the evolution equation with skew adjoint generator
sufficient to guarantee the existence of nontrivial mild global
solutions of the perturbed equation which converge to solutions
of the unperturbed equation as t —> + oo or — oo# These results
are used to prove the existence of wave operators for certain
semi-linear hyperbolic equations.

Let H be a real separable Hubert space and A a skew adjoint
linear operator on H. Denote the one parameter unitary group
generated by A by etΛ.

Let K be a map from R x H-+H denoted by Kt(u) for ue H,
t e R. Assume also that Kt(0) = 0 e H for all t e R. The object of
study in this paper will be functions u:R—*H such that Kt(u(t)) is
Bochner measurable and

(1) u(t) = β'X + [e{t-s)AKs(u(s))ds
Jo

where u0 is some element of H. Note that it is assumed that u is
defined for all real t; i.e., it is a global solution of (1). An elementary
sufficient condition that there exist such "u is that Kt is globally
Lipschitzian. That is, there exist k such that

\\Kt(u)-Kt(v)\\^k\\u-v\\

for all t e R and u,veH.
If u(t) is strongly differentiate, is in &Λ for all t and satisfies

(1) then

4 ^ = Au
( 2) 4

at
For this reason solutions of (1) are called global mild solution of (2).
These are the only type of solutions this paper will be interested in.

The main question of this paper is whether there are solutions
of (1) which behave for large positive or negative t like etAv for some
veH. If \\Kt(u) - Kt(v)\\ ^ σ(t)\\u - v\\ for all u,veH and σ

bounded integrable then u(t) exists for all uoeH and behaves in this
manner (Prop. 3). If K does not depend on time, the results are not
as straightforward. Propositions 4 and 5 give sufficient conditions on
an element v0 e H that there exist a solution of (1) behaving as t —> — oo
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or + oo like etAv0. These results are then applied to the question of
existence of wave operators certain semi-linear hyperbolic equations
which may be written in the form (1) or (2).

2* Wave operators* It is convenient to define a number of
terms which will be useful later.

DEFINITION. CWL{ W"+) is a map from a subset ^ L ( ^ + ) of H to
a subset ^?_(^? + ) of H defined as follows. uoe 3$_ if l i m ^ ^ e " ' ^ ^ )
exists where u(t) is a solution of (1) with initial condition u0.

lu0 = lim e~~tΛu(t) .

is the backward (forward) wave operator.

REMARK. 1. The above objects depend on A and Kt. If neces-
sary they will be written ^ZAiK, ^A'κ, etc.

2. All proofs will be for ^ 1 , ^ L , ^ _ . Similar proofs with the
obvious changes will work for W"+, 3ί+, &+.

3. If u0 e £%L and w0 = ^ l ^ 0 e R_ then etΛw0 satisfies (1) with
Kt = 0 and initial condition w0. Moreover || etΛw0 — u(t) \\ —> 0 as

PROPOSITION 1. Let wQ be in H. Suppose there exists a Bochner
measurable function v : R—>H such that

(a) Γ \\Kt(e"v(t))\\dt< -
J-oo

(b) v(t) = wQ + Γ β-s4iίs(es4i;(s))cίs ί ^ 0 .
J-oo

Then wo£^_ and v(0)e ̂ _ with ^lv(O) = w0.

Proo/. Let w(ί) = eMv(ί). Then w(0) = v(Q). By (b) ,

u(t) = etΛw0 + Γ e{t~8)AKs(u(s))ds
J-co

= e'MO) + [*e{t-s)AKs{u{s))ds .
Jo

^(ί) is a solution of (1) and with initial data t (O), and

|| e~tAu(t) - Wo || = || v(t) - w0 \\ ^ Γ || Kt(etAv(t)) \\ dt-*0 as t — - oo.
J-oo

COROLLARY 1. Le£ ̂ 0 be in H such there exists a solution v(t) to
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S o
|| Ks(u(s)) || ds < oo 9 uQ e £^_ and

- O O

Wlu0 = uQ - Γ e~sΛKs(u(s))ds .
J-oo

PROPOSITION 2. If ίΓt is Lipschitzian with constant k and w0 and
v0 are £^L with Wlu0 — cWLvQ then M0 — v0 if

Γ II u(t) - v(t) || dί ^ τec s s ^ 0, c > k
J-oo

and %(£) and v(t) satisfy the hypothesis of Corollary 1.

Proof.

|| u(t) - v(t) || ^ Γ || Ks{u{s)) - JSΓ.(φ)) II ds
J-oo

^ fc \ II ̂ (s) — v(s) 11 ds

L e t σ(t) = | |w(ί) - v ( ί ) | | and

is absolutely continuous and φf = o .

at

T dt

i.e. ^(ί)e~ f c ί ^ ^(Γ)e- f e Γ ^ 7 e ^ - f c ) r ~> 0 as T-> - oo.

Λ <p(ί)β-fcί g θ . ί > - oo

.-. 9,(0) = 0 => σ(0)

The following classical result will be helpful.

LEMMA 1. Let py σ, e be positive real valued measurable functions,
p and e bounded and σ integrable such that

p(t) g s(ί) + Γ σ(s)p(s)ds .
J-oo

Then

p(t) g ε(t) + exp ί \ σ(s)dsj\ e(s)σ(s) exp (\ σ(a)dajds .
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The following is a result of Segal [21 and Strauss [6]. For H = En,
this result is classical.

PROPOSITION 3. If || Kt(u) — Kt(v) || ^ σ(t) \\ u — v || where σ(t) is
bounded integrable then 3?_ — &__ — H, CW__ is one-one, Lipschitz
continuous with a Lipschitz continuous inverse.

Proof. Let~'uoczH. Let u(t) be the solution of (1) with data u0.
Thus

u(t) - e ' X +

Thus

\\u(t)\\ £

Then by a classical result,

II u(t) || ^ || uQ || (1 + cβc) where c =
J

Λ Γ || JΓ,(W(8)) || dβ ^ Γ σ(s) | j t t (s) | |c ίs<c(l + cec)l!tt«|| .
J-oo J-oo

Thus uoe 3ί_ by Corollary 1. Λ ^__ = ίZ". Let u0 and v0 be in H.
Let %(ί) and v(t) be the corresponding solutions. Then

u(t) - v(t) || ^ || %o - Vo || + J V ( s ) || u(s) - v(s) \\ds ί ^ O .

". II u(t) - v ( ί ) || ^ || u0 - v 0 1 | ( 1 + cec) Vt ^ 0

o - ΎJT.V, II ^ | | w0 - Vo II (1 + cec) .

Thus <W'_ is Lipschitz continuous. Now suppose ^ " _ u 0 =

e~tAu(t) = u0 + [le-sAKs(u(s))ds .

Similarly,

e~tΛu(t) = β - ^ ( )
JίP

e-'^(ί) = e~TΛv{T)

Therefore
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" v(t) |i g I!

v(s) \\ds O^

II u(t) - *(i) || g || M(Γ) - ι>(Γ) II + \[jτ(s) || φ ) - v(s)

By Lemma 1,

( 3 ) || u(t) - v(t) || ^ || u(T) - v ( Γ ) || (1 + cec) O^t^T .

B u t \\u(T) -v(T)\\-+0 a s T - > - oo.

Λ || u(t) - t (ί) 11 = 0 V ί ^ 0. In particular for t = 0.

σ(s)ds = c' < 1. Let ^0 e fί. Define re-

cursively

uβ(t) = u0 + Γ β-^ίΓ^β ^ ^ ) ) ^ . ί ^ T .
J-oo

Claim (a) 11 un(t) - t6^(ί) 11 g c'% 11 u0 \ \ t^T

(b) ||

These are proved by induction. Some care must be taken since un+ί

is not defined until (b) is proved for un.
It follows that there exists a measurable v(t) such that ujt) —> v(t)

uniformly on (-<χ>, T]. Also, || v(t) \\^\\uQ (|/(1 - c') for t ^ Γ.
It 's trivial show there a unique w(t): R—*H satisfying

w(t) = etAv{T) + [e{t~s)ΛKs(w(s))ds .

For t < T, e~tΛw(t) = v(ί). Let v(ί) = e~tΛw(t). v(t) satisfies the
hypothesis of Proposition 1. /. u0 € &_. .'. ^ _ = jff. It follows from
(3) that

) - v(t) II ^ II ^ l ^ o ~ ^ l ^ o II (1 + cec) t ^ 0
- vo\ <> || <WLuQ - WJVQ\\ (1 + cβc) for u0 & voe

^0 li ^ II wo - v0 II (1 + cβc) .

COROLLARY 2. £ = y^J. cWs~x exists and is Lipschitz continuous.

PROPOSITION 4. Let β e H. Let K independent of t and Lipschitz
cont. with Lipschitz constant k. If || K(etΛβ) \\ S dect fort^T (some
fixed T) and c > k, then βe&_ and in fact there is a solution u(t)
such t h a t
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| e~tAu(t) - β II ^
c — k

Moreover, u(t) is unique among solutions satisfying *.

Proof. The proof is a Picard iteration. Because of the technical
details, a proof is included. Let vo(t) — β.

f*
J-co

Claim (a) || vn{t) - vn^(t) II ̂  ^ τ ~ eCt ι = T

(b) Γ || K{esAvn{s)) || ds S — ect Σ (—Y t ^ τ

_oo /̂

.'. (a) holds for n — 1. Moreover

S t ct

= J_oo

+ (' \\K(e

.*. (b) holds for n = 1.
Assume vΛ_i(ί) exists and satisfies (b). Thus vn(t) exists.

vn-

But

| | K(esAvnAs)) \\ds ^—e^Yjl — Y t

ds £ ± β« + 1

L
t S T

Thus vΛ(ί) exist for all w and ί ^ T and satisfy (a) and (b).
Thus vn(t)-+v(t) uniformly on (— oo? T). In fact,
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fc — c

v(t) satisfies

- Γ e-^iΓ(β s^

If T^ 0 then v(0) is already defined and by Theorem 1, βeR_.
If T < 0, let w(ί) satisfy

= etA
etAv(T)

w(t) exists for all t and w(ί) = e^t (ί) for t ^ Γ.
If v(t) — e~tAw(t) then v(ί) satisfies the hypothesis of Proposition 1.

Thus β 6 ^ ? _ . w(t) is our sought after u(t). For ί ^ Γ,

v(t) -β\\g \\v(t) - ^ ( ί ) | | + \\vjjt) -β\

k\n dect

 + dec< Λ /Jfc_V' ^

c / c — k k i=i \ c / c — k

Suppose 3ίO(0) = /3 || «(ί) - etΛβ \\ S Ίfec>t of > k for t ^ T\
Then

|| «(ί) - w(t) || ^ τβc' f + — ^ — βcί ί < min (T, Γ') .
c — k

Then 2(0) = w(0) by Proposition 2.

PROPOSITION 5. Let

= sup IIW-TOII
H l U I M I ^ — V

Assume k(s) is bounded on compact subsets of R+. Assume also that
for any u0 e H, there is a solution of (1) with data u0. Let β e H and
assume || K{etAβ) \\ ̂  yect for t ^ T" and c>k(2\\β\\). Then β e &_.

Proof. Let T be such that if t ^ T", τe c ί ^ (c - fe) || β ||, & =
fc(2 !| /9 | |) . Let Γ = min (Γ', Γ"). Let vo(ί) = β. Let

V l(ί) = β + Γ e-sAK(esAβ)ds t ^ Γ
J-oo

( i ) I j ^ ί ) — / 9 | | ^ (-y/c)^* t^T
(ii) ||

It follows that v2(t) is defined as is Proposition 4.
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C l a i m !| v n ( t ) || ^ ( 2 - ( — J ^ \\β\\. t £ T T r u e t o n = 1 .

II vn{t) - υ^it) II g Γ II K{e^vn_.χs)) - K{e^vn_2{s)) \\ds t^

By induction assumption, 11 vn_x{s) \ \ and 11 i>M_2(s) 11 are both less than
2 II β II for s l ϊ 1 .

••• II vn{t) - «,_i(t) 11^

But | | «olU|Vi | | H ^ i l l ^ 2II/8H.
Λ for j < «,

II vtf) - v^^ί) II ̂  fc Γ II vUs) - vU

by induction.

βί ^ (2 f AV

Now proceed as in Proposition 4.

3* Nonlinear wave equation* Consider the partial differential
equations

( A \ I I 11 — 0 ΊI((X\ — wCηΛ Ίi (C\\ — Q(nϊ\

( 5 ) • u = g F ( π ) «(0) =

where Π = Σ5=i (d2/dx)) — (d2/dt2), q is a function on iϋ3, and F is a
real valued function of a real variable. Let H= ^ v — ] 0 L2 where
^[V^j] is the completion of the domain of -]/ — A in L2 with respect

G \ 1/2

|Vtt I2 . The Sobolev inequality shows that
we may treat the elements of ^Lv—] as functions. ( ^ [ V ~ c L6). Let

on f ί , i.e., A( ) — ( // i ]#) for such ( ^ ) w h e r e i t is denned. A is

^ = II V % | | a + ||

'u

v , M . . . l ι a , ,, . l ιa w h e r e || ||2 isskew-adjoint w i t h respect to

the L2 norm. Let K:H->H be defined by KΓ) = ί ^ ,J. If
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Ut{t)/
r e CΓ and s e C? then u e C r for each t. Then (u^l) e H and

\U{t)/

( β ) -
d

where u satisfies equation (5). In general true solutions to

( 6) $°L = Aa + Ka
dt

are not strict solutions to (5) but are solutions in a weak sense. In
fact however this paper will be interested in solutions to (6); i.e., mild
solutions. For a discussion of the above see [2, 3, 4, 5].

PROPOSITION 6. Assume F(0) — 0, | F(x) — F(y) \<k\x — y\ and
Iq(x) I S je~φι, \x\ = (xl + x\ + xl)m where

r . / 2kyπllsd \ 1 / 2

c > v — 3 — 7

d = supB e σ~ (|| M||β/|| Vtt||2). (d is finite by the Sobolev lemma). Then

if φ0 e Cr φ CΓ C Jϊ, <?„ e ^ _ (and ^ _ ) .

Proof.

2kyπllsd
\\K(P)-K(ψ)\\^V\\φ-f\\ where 57 =

3c

Thus there exist unique solutions of (6) for any initial data. By
Huygen's principle, etΛφ0 is detached; i.e., 3ί0 such that if

u(t) and ut(t) vanishes in a cone {| x \ < 111 + ί0}. Thus

II K(etAφ0) | | 2 = [q*F\u(t))dzx S k2 ( g V = k2 [ q2u2

J J J\χfe\t\+t0

^Vd\\φo\\W\\ e
9c2

for any ε > 0 and | ί | > Γ(e). Our result then follows from Proposition 4.

REMARK. Note that only the fact that u(t) is detached is used.
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PROPOSITION 7. Assume F(u) = n\ \ q(x) | ^ je~c]xl\ Then if
Γ © C?, cpo e ^ ? + and ^ _ .

Proof. It is proved in Segal [2] that for this case, solutions exist
for any initial data. || K(a) - K(β) || ^ 3τeZV \\ a - β || where || a ||,
| |/3| |<Ξr, i.e, A(s), is the notation of Proposition 5, is 3γdV (use
Sobolev inequality). Suppose φoe C~ © C~. It will be shown that for
111 sufficiently large

|| K(etAφ0) || ^ T ^ ' 1 * 1 where c' > fc(2 || φ01|) .

The result then follows from Proposition 5. Let <po(£) =

But ^(ί) is detached so

J i x i ^ i ί i + ί 0 }\

^ e-e(UI+*o)2dβ||<po|Γ

For I ί I sufficiently large

for arbitrary c'.
By Propositions 7 and 5 there exists a ψrt(έ) satisfying (2) mildly

such that

\\ψ±(t)-e"φ0\\^7e-™ \t\^ T(c)

where φ and K satisfies the hypothesis of Proposition 7 where c is
arbitrary. Fix c. Then for 11 \ sufficiently large, || ψ± \\ S 2 || φQ ||. Thus

|| K(ψ±(t)) II ̂  II K(ψ±(t)) - ίΓ(e*V) II + II K(etAφ0) II
^ k(2 || (̂ o ||)7β~cl ί l + τ 'e- c l ί l = τβ- c ! ί l

i.e. || K(ψ±(t)) || < τ + e- c ί for t ^ Γ+(c) ( * )

II K(f_(t)) || < 7_ecί for ί ^ Γ_(c) (**)

for arbitrary positive β. Thus:

COROLLARY. If K is as in Proposition 7, there exist solutions
to (dφ/dt) = Aφ + ϋΓ(<p), satisfying (*) and (**).

REMARK 1. It is not clear whether there exist φ satisfying (*)
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and (**) simultaneously.

REMARK 2. Strauss [4, 5] by using energy inequalities has shown
for the case F(u) — qus that there exist solutions u(x,1) such that
11 K(u(t)) 11 are integrable which implies they are in the domain of

1 by Proposition 1.

4* Nonlinear relativistic wave equation* Consider the partial
differential equation

(7) G u = m%u + qF(u) u(0) = r ut(0) = s

where m > 0. By a result of R. W. Goodman [1], has no finite energy
detached solutions. As in §3, consider mild solutions to

& = Aφ + K(φ) φ(0) = φ0

where in this case H — i^Ί v^szΓ] 0 L2 and

0 I

\- (m2 - A) 0

= I l l / m 2 - J u\\l+ \\v\

The following will be proved elsewhere (in a somewhat stronger
form).

LEMMA. Let r(x) and s(x) be in L2(R3). Let r and s be their
Fourier transforms. Assume (m2 + | x |2)2f and (m2 + | x \2fs are) in
Γ where Γ is the image under Fourier transform of LX{RZ). Then
II u(x, t) ||oo = 0(1/ 111) where u(x, t) satisfies (4) with F = 0.

PROPOSITION 8. Suppose q is bounded, F Lipschitz and F = 0 in
a neighborhood of 0. Then if the initial data satisfy the requirements
of the above lemma || K(etΛφQ) || —> 0 exponentially. In fact || K(etΛφ0) || =
0 for 111 sufficiently large. Thus ^ l have nonempty range by
Proposition 4.

Proof. As before, if

Let φQ = (M where r and s satisfy the above lemma. Then
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(u(x,t)

Thus

But there exists ε > 0 such that if | y | < ε, F(y) = 0 by hypothesis.

By the above lemma, there exists a T such that if \t\ > T,

| | u(x, ί) IU < e. Thus for 111 > Γ, F ( i φ , t)) = 0 for all x e R\ If F

is Lipschitz continuous, so then is K.

I. E. Segal has recently obtained by similar methods stronger

results along the above lines.

Added in proof. The hypothesis of Proposition 4 and 5 may be

S o
e~ct || K(etAβ) \\dt< °o for some c > k.
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