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THE EXISTENCE OF WAVE OPERATORS
FOR NONLINEAR EQUATIONS

A. R. BRODSKY

In this paper, conditions will be found on nonlinear per-
turbations of the evolution equation with skew adjoint generator
sufficient to guarantee the existence of nontrivial mild global
solutions of the perturbed equation which converge to solutions
of the unperturbed equation as { — + o or —co, These results
are used to prove the existence of wave operators for certain
semi-linear hyperbolic equations,

Let H be a real separable Hilbert space and A a skew adjoint
linear operator on H. Denote the one parameter unitary group
generated by A by e'4.

Let K be a map from R x H— H denoted by K,(u) for uwe H,
te R. Assume also that K,(0) = 0e H for all ¢t R. The object of
study in this paper will be functions «: R — H such that K,(u(t)) is
Bochner measurable and

(1) u(t) = e*4u, + S:e(“*’AKs(u(s))ds

where u, is some element of H. Note that it is assumed that u is
defined for all real ¢; i.e., it is a global solution of (1). An elementary
sufficient condition that there exist such % is that K, is globally
Lipschitzian. That is, there exist k& such that

| KEu) — K@) || = k[|u — v

for all te R and u,ve H.
If u(t) is strongly differentiable, is in <, for all ¢ and satisfies
(1) then

(2) L Au+ K@) w(0) = .
For this reason solutions of (1) are called global mild solution of (2).
These are the only type of solutions this paper will be interested in.
The main question of this paper is whether there are solutions
of (1) which behave for large positive or negative ¢ like e4v for some
veH. If ||K(u)— K®)| =o0@®)|luw—2v| for all u,veH and ¢
bounded integrable then wu(t) exists for all u,e H and behaves in this
manner (Prop. 3). If K does not depend on time, the results are not
as straightforward. Propositions 4 and 5 give sufficient conditions on
an element v, € H that there exist a solution of (1) behaving as t — — o
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or + o like e*4v,. These results are then applied to the question of
existence of wave operators certain semi-linear hyperbolic equations
which may be written in the form (1) or (2).

2. Wave operators. It is convenient to define a number of
terms which will be useful later.

DEFINITION. %.( %) is a map from a subset &7 (<,) of H to
a subset Z_(#,) of H defined as follows. w,e 2. if lim,,_.e "u(t)
exists where w(¢) is a solution of (1) with initial condition wu,.

Hu, = lim e *u(t) .

t——oo

w_( 9%7) is the backward (forward) wave operator.

REMARK. 1. The above objects depend on A and K,. If neces-
sary they will be written Z 4%, 4% etec.

2, All proofs will be for %7, &, <#_. Similar proofs with the
obvious changes will work for %7, &=,, ..

3. If uoe . and w, = Z_u,€ R_ then e'“w, satisfies (1) with
K, =0 and initial condition w,  Moreover || e"w, — u(t)||— 0 as

t— — oo,

PropPOSITION 1. Let w, be in H. Suppose there exists a Bochner
measurable function v : R — H such that

@ [ I Koot || dt < o
(b) ot) = wo + | e K (e to(s)ds 150,
Then w,e <#_ and v(0)e & with %Z-v(0) = w,.
Proof. Let u(t) = e*v(t). Then u(0) = v(0). By (b),
ut) = ew, + | oK (u(s)ds
— ¢49(0) + S:e““““Ks(u(s))ds .

u(t) is a solution of (1) and with initial data #(0), and

letu) — woll = [ o(t) — w, | < |1 K(eo(t)) | dt—0 as t— — oo,

COROLLARY 1. Let u, be in H such there exists a solution v(t) to
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0
(1) with initial data w,. Then if S || Kj(u(s)) || ds < oo, uy€ & and
0
Ly = Uy — S e—AK (u(s))ds .

PropPOSITION 2. If K, is Lipschitzian with constant £ and %, and
v, are &7 with % u, = % v, then u, = v, if

S;“ u(t) — v(t) || dt < ve* s=0, c>k
and u(t) and v(f) satisfy the hypothesis of Corollary 1.
Proof.
) — o) | = |11 Ku(uls) — K.(0(s)) || ds
< k| lluts) = o@)llds
Let o(t) = || u(t) — »(¢) || and
p(t) = | _llute) = v(s) || ds = e

#(t) is absolutely continuous and ¢’ = .

P = ke

gt— (pe™™) =0

S;%«pe-’“) <0 t=T

ie. gt)e™ = p(T)e™™ < ve T —0 as T— — oo.
P(t)e™ < 0. t> — oo
»(0) = 0= 0(0)

The following classical result will be helpful.

LEMMA 1. Let p,0,¢ be positive real valued measurable functions,
o and & bounded and o integrable such that

o(t) = &(t) + g;a(s)p(s)ds .
Then

o(t) < e(t) + exp (Sima(s)ds>gt_we(s)a(s) exp (S;o-(a)da>ds
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The following is a result of Segal [2] and Strauss [6]. For H = E*,
this result is classical.

ProposiTION 3. If || K, (u) — K,(v)|| £ 0(t)|| u — v || where o(t) is
bounded integrable then < = <_ = H, 9% is one-one, Lipschitz
continuous with a Lipschitz continuous inverse.

Proof. Let u,c H. Let u(t) be the solution of (1) with data u,.
Thus

u(t) = eu, + gte“‘s“‘Ks(u(s))ds £<0.
Thus
) 1l = |+ ['o6) 1) 1 ds

Then by a classical result,

u@) ] = || %] (L + ce®) where ¢ = go o(t)dt .

—oco

—oco

[ I K@) lds = " o) llue)]1ds < ot + o) |l -

Thus u,€ &7 by Corollary 1. .. < = H. Let u, and v, be in H.
Let u(t) and v(¢) be the corresponding solutions. Then

lu(t) = v(®) || = o, = vl + [ o) [ ute) = v(s) 1 ds ¢ =0.

fu@) — v@) |l = [Jug — 0o || (L + ce) Vi =0
1977 e — 77w [l = [[ % — v || (1 + c€°) .

Thus g7 _ is Lipschitz continuous. Now suppose %7 _u, = ¥ _v,.

etau(t) = up + g:e‘“‘Ks(u(s))ds :
et (t) = v, + S:e‘“Ks(v(s))ds .
Similarly,
etau(t) = ¢Tau(T) + S;e““S)“Ks(u(s))ds

e~to(t) = e T4u(T) + S;e(‘“S’AKS(v(s))ds .

Therefore
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llet4u(t) — eo(t) || = [ u(t) — v(®) || S | a(T) — o(T) |
+ |06 us) —v@) ds  0ztzT
lu(t) = o(0) || = | (T) = o(T) | + |_(e) 11 96) — v(s) [ ds .
By Lemma 1,

(3) [u@) —ov@O = [|wT) —v(T)[|[L+ce) 0zt=T.
But || w(T) — o(T)|| — 0 as T — — oo.

[lu(t) —v(t)||=0 Vvt=0. In particular for ¢ = 0.
uo = Vg

Let T = 0 be such that r o(s)ds = ¢ < 1. Let u,e H. Define re-
cursively

U, (t) = Uy + §;e”“Ks(e“uﬂ_l(s))ds . t=T.
Claim (a) || %.(t) — wua(®) || = €™ || %o || t=T
(b) NuB) | = 1% || Sikoc™ t<T.

These are proved by induction. Some care must be taken since u,.,
is not defined until (b) is proved for wu,.

It follows that there exists a measurable v(¢) such that w,(t) — v(¢)
uniformly on (—oo, T]. Also, |[v@®)]|| = ||w ||/l —¢) for t < T.

It’s trivial show there a unique w(t): R— H satisfying

wlt) = e o(T) + S;e(“s)*‘Ks(w(s))ds :

For ¢ < T, e7tw(t) = v(t). Let ¥(t) = e *4w(t). ¥(t) satisfies the
hypothesis of Proposition 1. .. w,€ #_, ... “#_= H. It follows from
(3) that

[u@) —v@® | S || Zue— Z o ll(1+ce) t=0
| %o — o || £ || Pty — #vol| 1 + ce) for u, & v,e H.
|| 2wy — Z 70| = ||t — || (L + ce) .

COROLLARY 2. S = 9%, 7. ewists and 1s Lipschitz continuous.

PropPOSITION 4. Let B8e H. Let K independent of ¢ and Lipschitz
cont. with Lipschitz constant k. If || K(e*B)|| = de** for t = T (some
fixed T) and ¢ > k, then S€ &Z_ and in fact there is a solution w(t)
such that
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d

e t=T.
c— £k

() e~ “u(t) — Bl =

Moreover, w(t) is unique among solutions satisfying *.

Proof. The proof is a Picard iteration. Because of the technical
details, a proof is included. Let v,(t) = 8.

ol(t) = B + S;e"”K(e“vn_l(s))ds t=T.

Claim (&) | 0,(t) = 0,it) | = 25— L= T
¢ SA4 d ct = k I

W) | 1K o)lids = Lo 5 (L) t=T

o) = 1l = |l K p) )1 ds = %ect .

—oo

(a) holds for » = 1. Moreover
| IKe @ lds = || Ko — Kl ds
R R

+| Kl sLo(E L) s

(b) holds for n» = 1.
Assume v,_,(t) exists and satisfies (b). Thus »,(¢) exists.

[ ke @las=] ln-gld+Le iz
But
lou =Bl = I Ko, () 1 ds = Lo (LY tsT

St_wH K(ev,(s)) || ds = %eu T d oot ﬁ (_]gy

C 3=1 4
_d _{C_ 7
= e si(5) t=T
[v.(0) — v, (O || = k S_w [ uei(s) — v,_5(s) || ds
= dlcc:_l ect t<=T.

Thus v,(t) exist for all » and ¢ < T and satisfy (a) and (b).
Thus v,(t) — v(¢) uniformly on (— o, T). In fact,
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ot — o) = (L)L

v(t) satisfies
v(t) =B — Siwe'*AK(e"‘v(s))ds .

If T = 0 then v(0) is already defined and by Theorem 1, B€ R_.
If T<0, let w(t) satisfy

w(t) = e4o(T) + S;e‘t“s)AK(w(s))ds :

w(t) exists for all ¢ and w(t) = et4w(t) for ¢t = T.
If 9(t) = e ™w(t) then ¥(t) satisfies the hypothesis of Proposition 1.
Thus Be #_. w(t) is our sought after u(t). For t = T,

e~ “w(t) — Bl = llv(t) — Bl = [[v(t) — v.(@) || + [[va(t) — B

= <Jci)n cdjotk * dle:t 92:‘1(%>] - cdftk )

Suppose 77°2(0) = B 2(t) — etB|| = vet ¢/ >k for t = T'.
Then

|l 2(t) — w(t) || = ve** + ———6-176“ t < min (T, T") .
C —
Then 2(0) = w(0) by Proposition 2.

PROPOSITION 5. Let

ko) — sup LK) — K@)
Hull, liollr lu— vl

Assume k(s) is bounded on compact subsets of RB*. Assume also that
for any u,€ H, there is a solution of (1) with data »,. Let 8¢ H and
assume || K(e*p)|| = ve fort < T” and ¢ > k(2| B]|]). Then Be .ZZ_.

Proof. Let T’ be such that if t < T, ve* < (¢c—k)||BIl, k=
E@2IB|). Let T=min(T", T"). Let v,(t) = 5. Let

u(t) = B + Si”e‘sAK(e“B)ds t< T
(1) Jlo®) — Bl = (v/e)e* t=T
(i) [lo @)l = 1Bl + (v/e)e* = (2 —Kkfe)[|B]] t=T.

It follows that v,(t) is defined as is Proposition 4.
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Claim || v,(t)|| < (2 — (fz_)) 18], t= T True to n = 1.
[[0,(8) — v, () || = St_m || K(e**v,_,(s)) — K(e*w,_,(s))||ds t = T.

By induction assumption, ||v,_.(s)|| and || v,_.(s)|| are both less than
2118 for s = T.

120 = v [ = 1 | _1104s(6) —0ss)) 11 s -

But [[v, ], [odl] =« [[vaa || = 21| B].
for j < m,
T

t

o) = 0@ 1 S & [ 11056) = 0, ] ds =

by induction.

n—1
nmm—aHmné”@ et

< ,),kn-—-l ot < - ﬁ n
o011 = ) |+ 2o = (2= (£) ) 1811
Now proceed as in Proposition 4.

3. Nonlinear wave equation. Consider the partial differential
equations
(4) Ou=0 u(0) = (@) u,(0) = s(Z)
(5) 0w = qF(u) u(0) = (@) u,(0) = s(@)
where [ = 3., (8°/0x%) — (0°/0t?), q is a function on R? and F is a

real valued function of a real variable. Let H = <,— @ L, where
Dv=r is the completion of the domain of 1/ —4 in L, with respect

1/2
to the norm [|Vu ||, = (S |Vu|2> . The Sobolev inequality shows that
RS

we may treat the elements of &7 ,—, as functions. (Z.=r C L;). Let

-0

40
on H, i.e., A<Z> = ( AZJ for such (Z) where it is defined. A is
skew-adjoint with respect to H@)l '2 = || Vu |} + [|v ][]} where [| [, is

the L, norm. Let K:H-— H be defined by K(jj) — ( qF‘?(u)>. If



THE EXISTENCE OF WAVE OPERATORS FOR NONLINEAR EQUATIONS 9

re C? and se Cy then uwe CP for each t. Then (;:,L((?D € H and
1

(6) —‘fl-(” :A(”’ —I—K(u)
dt \ y, u, u,
where u satisfies equation (5). In general true solutions to

da
6 —Z =A K
(6) o a + Ka

are not strict solutions to (5) but are solutions in a weak sense. In
fact however this paper will be interested in solutions to (6); i.e., mild
solutions. For a discussion of the above see [2, 3, 4, 5].

PROPOSITION 6. Assume F(0) =0, |F(») — F(y)| < k|x — y| and
lg(@)| = ve=, |2 | = (a} + a3 + «3)* where

c> (2k7g1’3d )1/2 _

d = sup,eo= (|| % |ls//| Ve [l-). (4 is finite by the Sobolev lemma). Then
if p,eCe P CrcH, p,€ Z_ (and F_).
Proof.

2kymtéd

1 K(0) — K || =7l — ¥l where z=—2=

Thus there exist unique solutions of (6) for any initial data. By
Huygen’s principle, e¢t4p, is detached; i.e., 3t, such that if

u(t) o
(mmb“e¢”

u(t) and u,(t) vanishes in a cone {2 | < |¢|+ t}. Thus

1K) = |ermnde < & few = g
z[z[t]+e
2/3 ’
ska(| o) lalr
Jlzlzlt+tg
e
c2

for any € >0 and |t| > T(¢). Our result then follows from Proposition 4.

REMARK. Note that only the fact that w(¢) is detached is used.
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PROPOSITION 7. Assume Fl(u)= %’ |q®)| = ve~*?.,  Then if
P, € Cy P Cy, p,e¢ . #, and FZ_.

Proof. It is proved in Segal [2] that for this case, solutions exist
for any initial data. || K(a) — K(B)|| = 3vd*»*||a — 8| where ||«||,
[|B]| =r, i.e, k(s), is the notation of Proposition 5, is 3vd®»r (use
Sobolev inequality). Suppose ¢,€ Cy B Cy. It will be shown that for
| t| sufficiently large

| K(e"“po) || = vie="™" where ¢ > k2| o)) .
The result then follows from Proposition 5. Let ¢, (t) = (;E%)

| Kt | = farue
But wu(t) is detached so

qzus < e-—-c(lt[—(—tg)2 S us
[z1Z1t+tg

1 Kt | = |
Jzlz i+t
=< e—c(ltl+to)2d6 H Po He .
| K(e*p,) || = d° || o |Pe 10"
For |t| sufficiently large
e—cltl+ig)? < ,ﬁe—c'ltl .
for arbitrary ¢'.

By Propositions 7 and 5 there exists a «,(t) satisfying (2) mildly
such that

la(t) — €|l = v 1] = T(o)

where @ and K satisfies the hypothesis of Proposition 7 where ¢ is
arbitrary. Fix ¢. Then for | ¢ | sufficiently large, ||+ || = 2| @y||. Thus
| K(y)) || = || K(y(t)) — K(e“@o) || + || K(e @) ||
< k(2 | ullyye - e = e
ie. | K(pa(®) || < vie™ for ¢ = Ty(c) (*)
I K(yp_(t) ]| <v_et for t=T_(c) (**)

for arbitrary positive e. Thus:

COROLLARY. If K is as in Proposition 7, there exist solutions
to (do/dt) = Ap + K(p), satisfying (*) and (**).

REMARK 1. It is not clear whether there exist ¢ satisfying (*)



THE EXISTENCE OF WAVE OPERATORS FOR NONLINEAR EQUATIONS 11

and (**) simultaneously.

REMARK 2. Strauss [4, 5] by using energy inequalities has shown
for the case F(u) = qu® that there exist solutions u(x,t) such that
|| K(u(t))|| are integrable which implies they are in the domain of
%~ by Proposition 1.

4. Nonlinear relativistic wave equation. Consider the partial
differential equation

(7) Ou=mu + qF(u) u(0) =1r u,(0) = s

where m > 0. By a result of R. W. Goodman [1], has no finite energy
detached solutions. As in § 3, consider mild solutions to

d
dCf:) =Ap + Klp) o0) = ¢,

where in this case H = v P L, and

A:( <m20— 4) é)
[}

=lVm—dulll+ [[v]}.
The following will be proved elsewhere (in a somewhat stronger
form).

LEMMA. Let r(x) and s(x) be in L(R*). Let ¥ and § be their
Fourier transforms. Assume (m* + |z )7 and (m* + |2 [*)*S are] in
I’ where I is the image under Fourier transform of L(R®. Then
lu(z, t) [l« = O/ |t]) where u(x, t) satisfies (4) with F = 0.

ProPOSITION 8. Suppose ¢ is bounded, F' Lipschitz and F = 0 in
a neighborhood of 0. Then if the initial data satisfy the requirements
of the above lemma || K(e*p,) || — 0 exponentially. In fact || K(e*p,) || =
0 for |t| sufficiently large. Thus 97, have nonempty range by
Proposition 4.

Proof. As before, if

. 0
o= (v) €H, Kip) = (_ qF(u)) )

Let ¢, = <§> where » and s satisfy the above lemma. Then
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fthop, — (u(w, t)) .
(%, )

o 0
K(e <Po) - (___ qF(u(x, t))) .

But there exists € > 0 such that if |y]| <e, F(y) =0 by hypothesis.
By the above lemma, there exists a 7T such that if |¢]| > T,
[|w(x, t) ||l < e Thus for |[t| > T, F(u(x,t)) =0 for all xe R, If F
is Lipschitz continuous, so then is K.

I. E. Segal has recently obtained by similar methods stronger
results along the above lines.

Thus

Added in proof. The hypothesis of Proposition 4 and 5 may be
weakened to S" o=t || K(e*B) || dt < oo for some ¢ > k.

BIBLIOGRAPHY

1. R. W. Goodman, One sided invariant subspaces and domain of wuniqueness for
hyperbolic equations, Proc. Amer. Math. Soc. 15 (1964), 653.

2. 1. E. Segal, Non-linear semi-groups, Ann. of Math. 78 (1963), 339-364.

3. , Differential operators in the manifold of Solutions of a non-linear differ-
ential equation, J. Math. Pures Appl. 44 (1965), 71-105.

4. W. Strauss, La decroisance asymptotique des solutions des equations d’onde non-
lineaires, Comptes Rendus 256 (1963), 2749-2750.

5. , Les operators d’onde pour des equations d’onde non-lineaires independantes
du temps, Comptes Rendus 256 (1963), 5045-5046.

6. , Scattering for hyperbolic equations, Trans. Amer. Math. Soc. 108 (1963),
13-37.

Received July 15, 1965. Portions of this paper were contained in the author’s
doctoral dissertation directed by Professor I. E. Segal and presented to the Massa-
chusetts Institute of Technology.





