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ON THE LATTICE OF CLOSED SUBSPACES
OF HILBERT SPACE

NEAL ZIERLER

The purpose of this note is to answer two questions which
have arisen in connection with the lattice-theoretic characteri-
zation of the set of closed subspaces of a Hilbert space of
countably infinite dimension which appears in ‘‘Axioms for
nonrelativistic quantum mechanics,” Pacific Journal of
Mathematics, Vol. 11, No. 3, 1961, pages 1151-1169.

The material in this section is to replace [2, p. 1165, lines 10-32].
Up to that point it has been shown that the lattice under each finite
element of P is isomorphic to the lattice of subspaces of a Hilbert
space over a fleld D which is either real or complex. The orthocom-
plementation induced in a Hilbert space by such an isomorphism gives
rise to an involution of D (vide infra). In this section we show that
such an involution is continuous, thereby closing a gap brought to
our attention by a comment of M. D. Maclaren.

Let ae P, with » = dima > 0. Choose pairwise orthogonal points
A, +--, A, in (a) and in each line I; = 4,V 4;,1 =1, .-+, n, choose,
a point E; different from 4, and A,. Clearly the points 4,, &}, ---, E,
are independent and the choice of 4, \/ -+ \V A, as improper hyperplane,
A, as origin and K, - .., E, as unit points leads to the unique introduction
of homogeneous coordinates in (@) in standard fashion. In particular,
the proper points of I, are precisely those with homogeneous coordinates
(1, 7, 0, -++,0) which we abbreviate as (1, ) — ), of course, being any
member of the field D that has been constructed. The topology for
D is obtained as follows: The subset N of D is a neighborhood of 0
if {(1,v):ve N} is a neighborhood of 4, in I,, Under this topology,
D is either the real or complex field (cf. [2, Lemma 2.11 et seq., p.
1164]).

It is shown in [1] that there then exist an involution ¢ of D and
numbers (= members of D) »,, -+, n, such that

(1) %=1,

(2) S apxy =0 if and only if all x; =0,

(3) If (%, -, x,) e (a), then a(x, ---,x,) (the complement of
(o, + =+, @) I (@) = V A{(Wo, *++, Yu) € (@)o: % ¥ = 0}

Note that by (2), no 7; is 0 and that 1, 7./n, * -+, 1./1, defines the
same orthomorplementation as #,, ---,7,; i.e., we may assume that

. = 1,

! Again confining our attention to I, observe that if X\ s 0 and
1,(1,7)" (the point of I, orthogonal to the point (1,)) has coordinates
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1, o), then = — 1/p\°. Hence if ), — 1 and is never 0, (1,),)—
(1, 1) by definition (of the topology for D) so (1, \,,)’ — (1, 1) = (1, — 1/n)
by [2, Lemma 2.8]. But (1,)\,) = (1, z,,) with ¢,, = — 1/p\5. Then

1, ¢#.) — 1, — 1/p,) which implies g, — — 1/p;; i.e., — 1/pAg — — 1/p,
so Ao, — 1, Thus, ¢ is continuous at 1 and hence is continuous
(if X, —0 then \,, +1—1s0 (A, +1)° =15 +1—1s0oxr;,—0). Of
course, this result was automatic in the real case. It follows that o
is either the identity or, in the complex case, conjugation. It follows
now from (2) that %, --.,», are positive real numbers, If D is the
complex numbers, ¢ is conjugation, for otherwise (1, ;"% 0,---,0)
would be self-orthogonal.

Taking the Hilbert space of # + 1 tuples of D as H,, the mapping
(@, * =y @,) — {\(x,, -+, &,): e D} clearly induces a continuous isomor-
phism @, of (@) on the lattice L, of subspaces of H, such that the
orthocomplementation induced by o, in L, is obtained from the inner
product (x, y) = >, x4y, for H,.

2. The following is a replacement for {2, p. 1165, lines 33 to 41].
Its purpose is to insure that all the isometries «+,,, are linear rather
than conjugate linear. I am indebted to V. S. Varadarajan for calling
my attention to this omission.

Let a < b be finite and suppose that, in accordance with what has
preceded, we have selected a Hilbert space H, over D of dimension
1+ dim ¢ and a continuous isomorphism ¢, of (@) on the lattice L,
of subspaces of H, which is orthogonality-preserving in the sense that

(13) @.(c) L @ (d) if and only if ¢ L d.

Suppose that H,, ¢,, have been similarly chosen for b.

Now @,p;' is a continuous, orthogonality-preserving isomorphism
of L, in L,. Hence, as is well-known and not difficult to show, there
exists a continuous automorphism ¢ of D and a g-isometry q,,,, unique
up to multiplication by a number of modulus one, providing dima > 0
(see below), such that +r,,, induces p,p;" in the sense that p,p;'|v] =
[v4,.0] for all ve H,, where [v] denotes the linear subspace generated
by v. A o-isometry « of H is 2 mapping of H in itself with the
following three properties:

Additivity: Y (u + v) = Y (w) + 4y (v)
(14) o-linearty: (M) = Nyr(ut)
v-isometry: (yo(u), »(v)) = (v, v)° .
A o-isometry is said to be limear or conjugate-linear when o is

the identity or conjugation respectively.
If D is the real field, the automorphism ¢ is the identity, while
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in the complex case, in view of its continuity, ¢ may be either the
identity or conjugation. Observe that if dim ¢ = 0 and u, v are unit
vectors in H,, ¢,(a) respectively, then \Mu — M and Au — xv both induce
the mapping ¢yp;* of L, in L,. In other words, +,, may be chosen
both linear and conjugate-linear when dim a = 0, independent of the
choice of H,, ¢, and H,, p,. In general, the linearity of «,, may be
achieved through the proper choice of H,, ¢, as follows. Suppose that
oy,. inducing @,@;" is conjugate-linear. Let {v;} be a complete ortho-
normal set for H, and define v: H, — H, by: v(\\v;) = D Aw;. Let
@ denote the automorphism of L, induced by v and let @, = pog,.
Then &, is a continuous, orthogonality-preserving isomorphism of (b)
on L, which is induced by the linear isometry +,,, = vo4,,,.

Suppose now that dim a > 0, that H,, ¢, have been chosen arbi-
trarily and that for every finite b > a, H,, ¢, has been chosen as above
so that @,p.* is “‘linear’” in the sense that every isometry of H, in
H, which induces it is linear. For each finite ¢ » a let H, = ¢,..(c)
and let @, = @.v. | (¢). Then @, ;" is linear, for it is induced by the
projection in H,,, of its subspace H..

Now that H,, ¢, have been assigned to every finite ¢, it remains
to show that ¢, @;} is in fact linear whenever ¢, < ¢,. The type of
argument we shall use involves the introduction of ¢, < ¢, for which
both @, @: and ¢.@;' are known to be linear. The linearity of
@.,@-; then follows from the equation @, @' = (Pe,@5)(@e,P5)-

Given finite ¢, < ¢, let b;=¢; Va,t=1,2. Now b, =< b, and
@y, @i, is linear, for @y,p.', 1 =1,2 are linear by construction and
on,0:" = (0,20 (o, p2").  Bince g, @y is linear and ¢,,¢;;' is linear by
construction, @, @;' = (9, @s,)(Pe,p-,) 18 linear. Finally, since ¢, @y}
is linear and @, @;;' is linearby construction, the linearity of Po,Per
follows from the equation ¢, @ = (;,0.)(®.27).

Thus, each finite ¢ has been provided with H,, ¢, in such a way
that ¢ < d implies pup;' may be induced by a linear isometry ;. of
H, in H, which is unique up to multiplication by a number of modulus
one. Our next task is to show that these arbitrary multipliers may
be chosen consistently; i.e., so that

(15) a < b < c implies q/fc,a - q/fc,bq/fb,a .

3. Erratum, page 1167, line 4 from bottom.
For “3oi M)y, 0,7 read 35, N(w)yry,0,u:" .
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