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MODULAR PAIRS IN ORTHOMODULAR LATTICES

ERIK A. SCHREINER

Call an orthomodular lattice L ikf-symmetric if M(e,f)
implies M(f,e) for all e,feL and O-symmetric if M(e,f)
implies M(f;, er). To check for these properties it is sufficient
to consider only those modular pairs in which the two elements
are complements. Every O-symmetric lattice is M-symmetric.
In an atomic orthomodular lattice, ikf-symmetry is equivalent
to the atomic exchange property.

The orthomodular lattice L(H) of closed subspaces of a Hubert
space H satisfies both symmetries but apparently for separate reasons.
G. Wv Mackey has shown [4, Theorem IΠ-6] that two closed subspaces
of H form a dual modular pair in L(H) if and only if their vector
sum is a closed subspace. Thus the natural symmetry, ikf-symmetry,
depends on the topology of H. O-symmetry arises in L(H) as a
consequence of properties of bounded linear operators on H with closed
ranges. It is the purpose of this paper to investigate these symmetries
in arbitrary orthomodular lattices. Recent results of A. Ramsay [8]
and M. D. MacLaren [7] have shown M-symmetry to be of importance
in the study of locally finite dimension lattices. The Baer ^-semigroup
coordiπatίzation theory for orthomodular lattices, developed by D. J.
Foul is [2], enables us to adapt the idea of an operator with a closed
range and conveniently and naturally introduce O-symmetry into
arbitrary orthomodular lattices.

Confining our attention to orthomodular lattices, we first establish
certain general properties of modular pairs. Using these results we
develop characterizations of M-symmetric lattices and O-symmetric
lattices in Theorem 7 and Theorem 8. That O-symmetry implies
ikf-symmetry is established in Theorem 9. In § 4, atomic orthomodular
lattices satisfying the atomic exchange property introduced by MacLane
[5] are considered. Using specializations of the approach and procedure
used by Ramsay in [8] it is shown that M-symmetry is equivalent to
the atomic exchange property.

The author would like to express his appreciation to Professor
D. J, Γoulis for the many helpful suggestions he has made during the
writing of this paper.

2* Modular pairs* In order to establish certain properties of
modular pairs in orthomodular lattices, we shall make use of the
Baer ^-semigroup approach as defined and developed in [1, 2, 3]. We
shall restrict our resume of definitions and results to a minimum of

519



520 ERIK A. SCHREINER

chiefly notational conventions. An orthomodular lattice is a lattice L
with 0 and 1 which is equipped with an orthocomplementation ': L —> L
which satisfies the orthomodular identity e 5Ξ f=>f = e V (/ Λ e')
Recall that an orthocomplementation maps each element e e L onto a
complement er of e in L in such a way that e" = e and e ^ / ==> / ' ^ e'
for all e,feL. Examples and basic properties of orthomodular lattices
may be found in [1, 2, 3]. While some of the following concepts make
sense in arbitrary lattices we shall make the following restriction; L
will always represent an orthomodular lattice.

If e,fe L, the ordered pair (e,f) is called a modular pair, written
M(e, f), if g e L with g ^ / implies g V (e A f) = (g V e) A f. For
e,fe L, we say that e commutes with /, written eCf, if e — (e A f) V
(e Λ / ' ) . If e^f, the interval L(e, f) = {g e L: e ^ g ^ /} is an
orthomodular lattice with orthocomplementation g-^ g* = e V (/ Λ Qr) =
(̂  V ^0 Λ /.

In a Baer ^-semigroup S, P' = P'(S) denotes the set of all cίosβrf
projections, i.e., ee Pr if e — e* = β2 and e = e". In S one may
generalize the concept of a bounded linear operator on a Hubert space
with closed range as follows: [1, p. 890] x e S is range-closed if
geP'(S), g g x" and (#&*)" = (a?*)" imply # = α". This is equivalent
to the condition [(ex*)'x]" = ef A x" for all ee P'. We shall use the
following result of Foulis [3, Theorem 28].

THEOREM 1. Let S be a Baer ^-semigroup and e,f elements of
the orthomodular lattice P'(S). Then M(e, f) in P'(S) if and only
if e'f is range closed in S.

In P'(S) one has e Λ / = (β'/)7 and eCf if and only it ef = fe
in S.

LEMMA 2. Let S be a Baer ""-semigroup, x,yeS. Then xy
range-closed implies x"y is range-closed. Conversely, if x and x"y
are range-closed, then xy is range-closed.

Proof. Suppose xy is range-closed and geP'(S) with g g (x"y)"
and (gy*x")" = (y*x")". Then g ^ (xy)" and (gy*x*)" = ((gy*x*)"x*)" =
(2/*α;"a;*)" = (2/*»*)". Hence g = (xy)" = (#":?/)" so .τ"τ/ is range-closed.

Conversely, let x and £"# be range-closed. Then

[(eu*x*)'xy]" - [{((ey*)"v*Y*}"v]" = [((W*)' Λ

^ ) ^ " ! / ] " = e' Λ

for all e e P'(S) so xy is range-closed.
Applying Theorem 1 and Lemma 2 one has for ee P'(S) and a

range-closed element x e S that xe is range-closed if and only if M(x\ e).
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Therefore, if x is range-closed and xe = ex, xe must be range-closed,
for xe = ex implies that x'e = ex', so #'Cβ and hence M{xf, e).

THEOREM 3. Let e,f,geL = P'(S). If M(e,f), gCe and gCf,

then:

( ί ) M(e V g, /Vflf).
(ii) Λf(e Λ flf, / Λ flf).
(iίi) M(e, /Λflf).
(iv) M(e V </, / ) .

Proof. By Theorem 1, β'/ is range-closed. The hypothesis on g
implies that g and gr permute with er and / and thus with erf. Now
(e V g)'(f V g) - e'g'if'g'Y = * ' (/ Λ flf') - e'/flf' which is range-closed by
the preceeding remark. Thus M(e V g, fV g). The other three cases
may be proved in a similar manner or by direct lattice theoretical
arguments.

Of the four other possible alterations of the pair (e, /) using g,
the pairs (e V flf, / Λ flf) and (e Λ flf, / Λ flf) are automatically modular
since the elements are comparable. The pairs (e, / V flf) and (e Λ flf, /)
are not necessarily modular.

One may derive another result as a consequence of Lemma 2
which amounts to an essential simplification of part of a theorem due
to Foulis [1, Theorem 10].

THEOREM 4. The orthomodular lattice L = P'(S) is modular if
and only if So, the sub-Baer *-semigroup generated by the closed
projections in S is range-closed.

Proof. We point out that for an arbitrary orthomodular lattice
L there are, unfortunately, many Baer *-semigroups that coordinatize
L. However, there is a unique (up to isomorphism) minimum one,
namely So, coordinatizing L. If So is range-closed, that is, if every
element of So is range-closed, then for all e,feL, e'f is range-closed
so M(e, f) and L is modular. Conversely, suppose L is modular. We
use induction on the number of closed projection factors in the element
xeSύ. If x = ee P'(S) then x is range-closed. Now assume that all
products of n closed projections are range-closed and let x ~
exe2 enen+1, β< e P'(S) Since exet en is range-closed and M{{eγe^ en)',
βn+dy by the remark following Lemma 2, x is range-closed

The pair (e, /) is not modular if there is a g < f with
g V (e Λ / ) < (flf V e) A f. Letting h = flf V (e Λ /) one has h V
(e A f) < {h V e) A f where e A f < h < f. As a result, the pair (e, f)
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is modular in L if and only if it is modular in L(e A f, e V / ) .
More generally, if e,feL{a,b), then (e,f) is modular in L if and
only if (e,/) is modular in L{a,b). This observation simplifies our
considerations.

The ordered pair (e, /) is said to be a dual modular pair, written
M*(e,f), if h ^ / implies h A (e V f) = {h A e) V /. As the final
result of this section, we collect a number of facts about modular and
dual modular pairs.

THEOREM 5. Let e,feL. Then:
(i) M*(e,f) if and only if M(e',f').
(ii) If e,feL{a,b), M*{e,f) in L if and only if M*(e,f) in

L(α, b)

(iii) M(e,f) for all feL if and only if M*(e,f) for all feL.
(iv) M(e,f) for all feL if and only if M(e',f) for all feL.
(v) M(e,f) for all eeL if and only if M(c,f) for all comple-

ments c of f in L.
(vi) If e A f = 0, e1 ^ β, f ^ /, then M(e, f) implies M{elt f).

3* Symmetries of modular pairs* In this section we consider
some general properties of two symmetry conditions on modular pairs.

DEFINITION. An orthomodular lattice L is said to be M-symmetric
if for all eJeL, M(e,f) implies M(f,e).

An ikf-symmetric lattice is sometimes said to be semi-modular.
Referring to the remark following Theorem 3, if L is M-symmetric,
we do have M(e,f), gCe and gCf imply M(e,fV g) and M(e A g,f).
However, these implications do not imply that L is Λf-symmetric.

If P is any lattice property, then a lattice is relatively P if every
interval L(a,b) satisfies P. Since we have for e,feL(a,b) that
M(e,f) in L if and only if M(e,f) in L(α, 6), it follows that an
M-symmetric lattice is relatively M-symmetric.

The second type of symmetry to be considered considered concerns
the ordered pairs (β,/) and (/', e'). In terms of coordinatizing Baer
^-semigroups this arises in the following natural manner. In the
semigroup of all bounded operators on a Hubert space, it is known
that an operator is range-closed if and only if its adjoint is range-
closed. Thus if e' and / are projections, then e'f is range-closed if
and only if {e'f)* = fe' is range-closed. Using Theorem 1, this trans-
lates into M{e, f) if and only if M{f', er). The orthocomplementation
involved is reflected in the following terminology.

DEFINITION. An orthomodular lattice L is said to be O-symmetric
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if for all e,feL,M(e,f) implies M(f, e').
The third possible symmetry, connecting (β,/) and (e',/'), will

not be considered since there seems to be no natural way in which it
occurs. Morever, it is a composite of Λf-symmetry and O-symmetry.

Now,̂  using the fact that the relative orthocomplement of g e L(a, b)
is g* ̂  (gf Λ b) V a and Theorem 3, we derive the following result.

THEOREM 6. // e,feL(a,b) then M{f\e*) if and only if
M(f, e'). Thus an O-symmetric lattice is relatively Osymmetric.

Proof. Assume M(β, β»). Since /* and e* both commute with
α', M{f\ e") implies M{f A a', e* A α'). Since these two elements
commute with V we obtain Af((/* Λ a') V b', (β* Λ α') V &'). But
(/* Λ a') V δ ' - ([(/' Λ δ ) V α ] Λ a') V V = / ' and (e* Λ a') V 6' = β'
so we have ilί(/', β ' ) . Conversely, since / ' and e' commute with 6 and
since / ' Λ b and e' Λ 6 commute with a, M(f, e') implies M((f A 6) V a,
{ef A b) V α), that is, J|f(/*, β)*. The second conclusion now follows
immediately.

The mapping # -> g A af is an isomorphism from L(α, 6) onto
L(0, δ Λ α') that preserves relative orthocomplements. Denoting this
mapping by <?, we have for e, fe L(a, b), M(e, f) in L(a, b) if and only
if M{eφjφ) m L(0, b A a'). Since the first condition is equivalent to
M(e, f) in L we see that to investigate L for Λf-symmetry it is enough
to consider pairs (e,f) such that e A f = 0. This establishes the
equivalence of (i) and (ii) in the following characterization.

THEOREM 7. Let L be an orthomodular lattice. The following
conditions are mutually equivalent:

( i) L is M'Symmetric.
(ii) For e, fe L with e A f = 0, M(e, f) implies M(f, e).
(iii) For e,feL with e a complement off M(e, f) implies M(f, e).

Proof. We need only establish that (iii) => (ii). Thus suppose
that (iii) holds. Let e Λ / = 0 and M(e,f). Then e V (e V/) ' is a
complement of / and since e and / commute with (e V / ) ' , M(e, f)
implies M(e V (e V /) ' , / ) . By (iii) we obtain M(f, e V (e V /)')• Ap-
plying Theorem 5 (vi) we have M(f, e).

For O-symmetry we have a similar result.

THEOREM 8. Let L be an orthomodular lattice. The following
conditions are mutually equivalent:

( i) L is O-symmetric.
(ii) For e, fe L with e A f = 0, M(e, f) implies M(f, ef).
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(iii) For e,feL with e a complement of f,M(e,f) implies
M(f\ e').

Proof, (i) <=> (ii). By Theorem 6, when considering the pair (e, /)
it is sufficient to consider the interval L(e A /, e V / ) . By the remark
preceeding Theorem 7, it is enough to consider only intervals of the
type L(0, g).

(iii) => (ii). Suppose M(e,f) where e A f — 0. As e and / both
commute with (e V / ) ' , M(e V (e V / ) ' , /) by Theorem 3. Since
eV (eV / ) ' is a complement of /, we have M(f', ef A (e V /)). Now
/ ' and e' A (e V /) both commute with (e V / ) ' so, again by Theorem
3, we obtain M{f V (β V / ) ' , \e' A (e V f)] V (e V /)') which is pre-
cisely M(f, ef).

That (ii) => (iii) is clear.
We are now in a position to establish the following connection

between the two symmetries.

THEOREM 9. Every Osymmetric lattice is M-symmetric.

Proof.1 Let L by O-symmetric, e,feL with e Λ / = 0 . By
Theorem 5, M(e, f) implies M(g, f) for all g ^ β. Thus, for all g 55 e,
Λf(/', fl'') which is equivalent to M*(f, g). This last statement implies
Λf(/, β).

Whether the converse of this theorem holds is still an open ques-
tion. In addition to the similarities shown in Theorems 7 and 8, both
properties are preserved under the taking of direct products.

4* Atomic orthomodular lattices* For a,heL, if a < b we
say that b covers a if a < c ^ b implies c — b. An element that
covers 0 is called an atom. L is called atomic if every nonzero
element dominates an atom. In an atomic orthomodular lattice every
nonzero element is the supremum of the atoms it dominates. An
atomic orthomodular lattice is said to satisfy the atomic exchange
property (AEP) if a and b atoms with a g b V e and a ^ e implies
b^a\J e.

Prime tools in the coordinatization theory of orthomodular lattices
are the mappings φe: L —> L defined for each e e L by aψe — (a V ef) A e.
φe is called the Sasaki projection determined by e. Such mappings
are monotone and preserve arbitrary suprema [2], An atomic lattice
is said to satisfy the atomic projection property (APP) if for all
atoms a and for all ee L, a ^ ef implies aφe is an atom.

1 The author is indebted to the referee for this simple proof.
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LEMMA 10. Let L be an atomic orthomodular lattice. The
following conditions are mutually equivalent:

( i) a an atom, a Λ b — 0 implies a V b covers b.
(ii) L satisfies APP.
(ίii) L satisfies AEP.
(ίv) b an atom, x S b V e and x ^ e imply b ^ x V e.
(Ύ) For all atoms ae L, M(a, e) for all ee L.

The proof, which is routine, is omitted. If L satisfies AEP it
also satisfies the condition a and b cover a A b if and only if a V b
covers a and b. In the sequel we make use of all these conditions.

LEMMA 11. Every M-symmetric, and hence every O-symmetric
atomic lattice L satisfies AEP.

Proof. For all atoms ae L and all ee L M(e, a) and hence M(ay e).

A nonempty subset A of L is an ideal if a, be A implies a V be A
and ae A,e ^ a implies ee A. If A and B are ideals, then A\/ B —
{e: e S a V b for some a e A, b e B} is the smallest ideal containing A
and B. For a,beL, say that a and b are orthogonal, written alb
if & < &'. For orthogonal elements write α 0 b for α V b. If
{α̂ : ΐ = 1, 2, , n} is an orthogonal family, that is, if i Φ j implies
a{ 1 a, we write aι φ α2 φ 0 an for αx V α2 V V an.

Henceforth, L will always denote an atomic orthomodular lattice.
We shall call be L finite if b = 0 or b is the join of a finite number
of atoms. Let J denote the set of all finite elements in L. Minor
modifications of the proof of [6> Theorem 4.1] enable us to show that
if L satisfies AEP then J is an ideal of L. Moreover, if we define
on J the integer valued function deg (6) — min {n: b is the join of n
atoms} then for beJ, deg (b) — n if and only if b = αx 0 α2 0 0 an

where each a{ is an atom.

LEMMA 12. If L satisfies A E P and beJ then bφe e J for all

ee L. Moreover, deg (bφe) ^ deg (b). If ae L has a common comple-

ment with b then aeJ and deg (α) = deg (b).

Proof. Let b = a10 0 an, α̂  atoms. Then bφe — aλφe V V
anφe and each nonzero a^e is an atom by APP. Thus deg (bφe)^deg (b).
Now if e is a complement of both a and b, then bφe, — ef so ef ej
with deg(e') ^ deg(6). Since β'<p& = b, deg(6) = deg(e'). Since e'φa = α
and α<τv = e\aeJ and deg (α) = deg (e') = deg (6).

T H E O R E M 1 3 . Let L satisfy A E P . Then beJ implies M(c, b)
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and M(b, c) for all ce L. Therefore J is a modular sublattice of L.

Proof. Since the modularity of the pair (δ, c) depends only on
the interval L(b A c, b V c) we may assume b A c = 0. Let deg (δ) = n
s o b — a>i 0 0 αn, α* atoms. Let e ^ c. To show ikf(δ, c) we must
prove h = (e V 6) Λ c Λ er = 0. Assume h Φ 0. Since A jΞ e, A ̂  α3 V β
implies a,^ hV e ^ c contradicting 6 Λ c = 0. Thus A ^ αx V e. If
A g£ <&! V V α^i V e, then A ^ αx V V aό V e implies a5 S
αx V V α, _! V A V e ^ t t i V V »,•_! V c. Let

d = «i 0 0 a>s-i 0 ai+1 φ φ α ,

and join d V c V (δ V c)' to both ends of the last inequality. This
yields l = dVcV(bV c)r. Since d A [c V (b V c)'] = 0, c V (b V c)r

is a common complement of 6 and d. But then w — 1 = deg (d) •=
deg (6) = n by Lemma 12. This contradiction establishes that
h ^ α! V V ad V β. By induction, A ^ 0 implies h ^b V e. How-
ever, A = (β V 6) Λ c A e! so we must have h — 0. Thus Λf(δ, c) for
all ce L.

By Theorem 5, to test Λf(c, 6) for all ceL it is sufficient to
consider only complements of b. If c is a complement of b such that
(c, δ) is not modular, there exists e < δ with e < (e V c) Λ 6. Since
(e V c) Λ δe J and e have the common complement c V (e V c)',
deg ((e V c) Λ δ) = deg (e) < deg ((e V c) Λ δ). This contradiction es-
tablishes the theorem.

Note that by Theorems 5 and 13, if beJwe also have M*(c, δ)
for all ce L.

A subset A of L is called join-dense in L if every element of L
is the join of some subset of A. In an orthomodular lattices this is
equivalent to the condition δ Φ 0 implies A Π L(0, δ) contains a nonzero
element. We point out that completeness of L is not necessary for
this equivalence. If L satisfies AEP, J" is a join-dense modular ideal
of L. For nonzero be L, let J(b) = JΠ 1/(0, δ). If L satisfies AEP,
since L(0, δ) and J are ideals of L, J(b) is an ideal of L as well as
an ideal of 1/(0, δ).

We now generalize the theorem of Mackey mentioned in the
introduction. Note that for A, Be L(H), A + B is closed and therefore
equals A V B if and only if there are no one-dimensional subspaces
contained in A V B but not in A + B. We first treat the analog of
a finite dimensional subspace, in which case A -\- B — A\f B always
holds.

LEMMA 14. Let L satisfy AEP. If ae L and be J, then
J(a V δ) = /(α) V J(b).
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Proof. Clearly J(a) V J(b) c J(a V b). Now let e e J(a V 6). Since
e V b β J, (e V δ) Λ α 6 /(α) and Λf(α, e V δ) so ((β V δ) Λ a) V δ =
eV&. Thus e V 6 G J(a) V J(δ) and since e g e V δ, β e J(α) V J"(δ).

THEOREM 15. Leί L be an atomic orthomodular lattice satisfying
AEP. Then for a, b e L the following conditions are mutually equiva-
lent:

( i ) J(aVb) = J(a) V J(b).
(iί) J(a) V J(b) is join-dense in L(0, a V δ).
(iii) M*(b,a).

Proof That (i) ==> (ii) is clear.
(ii) => (iii). Let α ̂  e ^ α V δ. To show c = αV( ί>Λc) , it is

enough to show J(α) V J(b A c) is join-dense in L(0, c). Thus let
e e i ( 0 , 0) with β ̂  0. Since 1/(0, 0) c £(0, a y b) there is an / e J(a)
and 0 e J(δ) with (/ v g) A e Φ 0. Set ex = (/ V g) A e. By Theorem

13, M(g,fVed so / V (g A (/ V e,)) = / V elβ Since gr Λ (/ V ex)e
i>(0, 6 A c),/V βi a n ^ hence ex belongs to /(α) V J(b A c). Since
βi Φ 0, J(α) V /(δ Λ c) is join-dense in L(0, c). Thus c = α V ( ί ) Λ c ) .
That is, ilί*(δ, α).

(iii) => (i). We need only show J(a V δ) c J(α) V J(δ). Let
e e J ( « V δ), sr = e^α, a n d / = (e V α) Λ αV&. Since M*(δ, α ) , / V flf' = 1.
As / Λ 0' = 0, #' is a common complement of g and /. Thus, by
Lemma 12, ee J implies geJ which in turn implies feJ. Making
use of the orthomodular identity and M*(b,a) we have α V / =
a V (a A b) V / = a V (6 Λ (a V β)) = α V e. Since / e /, by Lemma
14, J(a V e) = J(a V /) = J(α) V / ( / ) . Thus / ^ δ implies

β e J(a V e ) c /(α) V /(δ)

so (i) holds.

COROLLARY 16. An atomic orthomodular lattice is M-symmetric
if and only if it satisfies AEP.

Proof. Necessity was established by Lemma 11. By Theorem 5,
Λf-symxnetry is equivalent to the symmetry of dual modular pairs.
Sufficiency thus follows since condition (i) of Theorem 15 is symmetric
in α and 6.
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