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«THE §-POINCARE ESTIMATE”

W. J. SWEENEY

The main application of the theorem proved here is to
establish the local solvability of a system of linear partial
differential equations, in the analytic case, by a homological
procedure based on the associated Spencer resolution and
o-cohomology. The theorem states that the o-cohomology
associated with an involutive system of partial differential
equations vanishes in a normed sense., From this one can
show that the Spencer resolution associated with an involutive
system is exact for analytic data, and thus by a result of
D. G. Quillen the corresponding inhomogeneous system has
local solutions, provided the inhomogeneous term is analytic
and satisfies the appropriate compatibility conditions in the
overdetermined case. It is well known that if an arbitrary
system is prolonged a sufficient number of times, the resulting
system will have vanishing J-cohomology. According to a
result of J, P, Serre this is equivalent to the resulting system
being involutive. Thus the question of local solvability reduces
to the involutive case, and we obtain the classical existence
theorem of Cartan-Kihler.

We prove the theorem only in the case of first order systems.
However, there is no loss of generality here because any linear system
of partial differential equations can be changed into an equivalent
first order system by viewing the lower order derivatives as new
variables (see Quillen [3], Prop. 8.2). The theorem proved here was
first stated by Spencer [4], who subsequently gave a proof in his
paper [5] which, however, is incomplete. Later Ehrenpreis, Guillemin,
and Sternberg [1] obtained estimates, by a method different from ours,
which are equivalent as far as the above application is concerned.
The result of Quillen mentioned above is contained in [3], the result
of Serre can be found in [2].

1. The d-sequence. Let M be a C= manifold of dimension =,
and let £ and F be vector bundles over M with fiber dimensions m
and /. Denote by E and F the sheaves of germs of C~ sections of
E and F.

We introduce the jet bundles J.(E) for nonnegative integers p.
The fiber of J,(E) over ge M is obtained from the stalk E, by
indentifying germs which agree up to order g (in any local coordinate).
Coordinates in J,(¥) are introduced as follows. Choose a coordinate
neighborhood U c M, with coordinate x = (w,, ---, x,), over which E
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is trivial, and choose a coordinate in the fibers of E|U. Then for
ge U, oed, (E), will have components

Glj;Zapfj(q); |p|§#yj:1""9m

where f = (f?, ---, f™) is a local section representing ¢, p = (p,, + - -, D.)
is an m-tuple of nonnegative integers, |p| =, + -+ + p,, and

0, = 0"/0xP1e <o OxPn
There is a map j,: E — J,(E) which is given in local coordinates by
f— o[ llp|=pi=1,---,m}.
There is also a projection 7: J.(E) — J,._,(E) given in local coordinates
by
{oillpl=p,5=1, .-, m}—>{o}l[pl=p—-1,5=1,---,m}.

The same definitions apply to J.(F'). We define S;,, to be the kernel
of m: J(E)— J._(E), and T, to be the kernel of 7: J.(F)— J,._(F).

Now let &: E— F be a first-order linear partial differential
operator. < is represented by maps p.: J.(E) — J,._(F), # = 1, which
make the diagrams

JAE) —s J,_(F)

Pih ij-—l
E

(L.1)

-2 . R

commute. It follows that 0,.(S;.) C Ts._, and we define S, to be
the kernel of p.:S;.— T,,... We shall assume that S, is a sub-
bundle of S,,. for each g = 1.

Let Uc M Dbe a coordinate neighborhood, with coordinate z =
(®;, +++, x,), over which E and F' are trivial. In terms of this coordi-
nate there are maps 0,: J (B) | U—dJ _(E)|Up =1, .--, n) given by

0.0) = 04,5 IPI=p—-137=1---,m

where D + 1v = (ply ceey Dy, Py + 1y Dut1y * pn)' The maps 514 repre-
sent the operator

0
ox,

in the sense of (1.1). It follows that 6,(S;,.|U)CS,,.-.|U and that
0,(Su|U)c S,._.|U. Similarly, we have maps 0,: J(F') | U — J,._(F)|U
with 0,(7;,.|U)C Ty,.—.|U. We shall use the following notation for
various objects G (e.g., for one of the bundles S,|U or for a fiber

(E|U— E|U
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(Swq or (Sa,u), over ge U):

G =G
1.2) G =1{0eG|0,(0) = +++ = d,1(0) = 0}, 1sv<n
G=0.

DerFINITION. The local coordinate x is called regular at ge U if
the maps

1.3) 0,: (Sus; — (SWy

are surjective for 1 = v < n and all # = 1. The operator & is called
involutive if there is a regular coordinate at each qe M.

We denote by T* the cotangent bundle of M and form the o-
sequence

0 — Surn — Sprns @ AT* 2 oo 25 8, @ 42 T* — 0,

where ¢ is formal exterior differentiation. In terms of a local coordinate
x, 0 is given by

3 = Sidw, A SL .

In terms of a local coordinate x on a neighborhood Uc M and a
coordinate in the fibers of E|U we can define a norm |[|-|| in the
fibers of S*|U by

loll=sup{lo;||Ip|=p,5=1,.-+,m}.
This norm can be extended to (S, ® A"T*)|U by
HEl =sup {[| i, 111 S0 < 2 < v oe <4 S 1}

if C = EC’”I ,,,,, irdxil /\ e /\ dxir, C
paper can now be stated.

i, € Su.  The main theorem of this

THEOREM. Let & be tnvolutive. Then for every q€ M there
exists a local coordinate x = (x,, +++, x,) on a metghborhood U of q,
a coordinate in E|U, and a constant K > 0 such that whenever
Ee(S. QA T*|U,r =1 and 6 =0, then & = 6C for some L€ (S, @
AT*) | U with ||C]] = K||&].

2. The constant coefficient case. In this section we shall
assume that M c R" is the open unit disk and that £ = M X R™ and
F =M x R' are trivial bundles. We assume that &: E — F' has the
form
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@.1) of =342
T 0x;

in the given coordinates, where each A; is a constant [ X m matrix,
f=(fY -+, f™), and offox; = (3f"[ox;, - - -, Of "[0x,).

Denote by E’ and F' the restrictions of the bundles E and F' to
the unit disk in R™'= R X 0cC R", and define the operator
91: Er__)Er by

zf=5aL.
1 ox;

The data already defined for <» are defined for <7’ in a corresponding

manner. The maps pL: J(E') — J._(F') represent <’, S}, is the

kernel of 7: J (E') — J,._,(E"), Tj,. is the kernel of 7: J (F") — J._.(F"),

and S/, is the kernel of 0.:S;,.— Tj,. ..

Because of the assumption of constant coefficients, it will suffice
to work in the fibers over a single point in M, say 0. To simplify
notation we will abbreviate (S;,.)., (Swo, (Si), etc., by Su.., S., Si, ete.
According to this convention we can write S, = S (see (1.2)).

The element o€ S,,, can be identified with the polynomial

xp
o= ~0,,
Ipl=p p!
where p! = p!« +- e p, !, 22 = 2P .+« 2% and g, = (6}, +++, 0") € R™.

Similarly, ze T,,,. can be identified with

xl’

T = A
lal=n p!

Ty

Under these identifications p, goes over into & (see (1.1)).
We now identify S;, with S;, B S,. P --- D S),. by writing
o€ Sy, as a polynomial

o = i Ty o
& Gt

where ¢ is a homogeneous polynomial of degree v in x, -+, %,
with coefficients in R™, i.e., ¢*'e S},. We write ¢ = (¢, ---, ™).
Similarly, we identify T}, with T;, & --- @ T},..

Now let 0 = (6, +++,0"™) e S,,. and let p,0 =7 = (z, «-., TD),
We have
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T = 0u0 = <$ o 0<”>>

— p)!
_ < ' xﬁ_y oW A 0 v ) }
;{9 <(y — )l >+ " oz, <(p —v)! 7 >
_ ﬁ:‘ x#«—‘ ( (y)) + Z ,vu—u—-l A O-(V)
T (¢ —y)! (p—y—=11"
_ i ah {(0 o+ A 0.(»»—1)}
(gt =)
Thus
(2.2) T = 0lg 4 A0

for v=1, ..., o

ProrosiTiON 1. Let <7 be given by (2.1) and assume that the
coordinate 2 is regular at 0. Then there exist nonzero constants
t, -+, t, a constant ¢ > 0, and maps

7 0u(Saw) — Sau s r=1,

with p.r. =1, ||7r.ll £ ¢, and 0,7,,, = 7.0, for # = 1, where the norm
[| -] is defined by the coordinate (¢, .-, t,x,) in M.

Proof (by induction on n). The case n =1 is trivial; assume
the proposition true when = is replaced by » — 1. Since the coordinate

(g, +++,2,,) 1is regular for <’, the inductive hypothesis yields
tyy =+, tu_y, ¢ >0, and maps
7l LS — S p=1

with o), =1 and ||7.]| = ¢’ in the norm defined by (¢,x,, «--, t,_.®,_).

The map 0, defined by the coordinate (¢, ---,t, %, ) is a
nonzero multiple of the map o, defined by (x, ---,2,). Thus if we
change to the coordinate (t.x,, +--, ¢, 2, ;, ®,) the kernels and images
in (1.3) do not change; and the new coordinate is regular at 0 for
<. We shall assume that this change has already been made so that
b= eee=1t,, =1,

Let 72 0.(S;,:) — Sa,. be any splitting of the sequence

0 S, Sy 25 0(Ss) — 0 ;

we can assume that |7, || <¢. Let £ >1,0€8S,, and ¢ = p,0. Let

o= (O-(O)y tt 0-(#')) ’

T = (T(O)’ t T(IL—‘I)) ’
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so that by (2.2)
£ = 0o A,gt, lsvsp.
We define r,z = =[(y"?, -+, 7*) as follows. Define 7 and 7 by
@, 7)) = ry(z?) .

This is possible since (%) = p,(¢", 6) € 0,(S;,). Now (" —
g, n® — g") = 0, and thus (” — o, p — g) € S,. Since §,: S,— S,
is surjective, there is a £* € S}, such that (p'* — ¢, " — g, £®) € S,.
By (2.2) we have pix® + A,(n" — o) = 0. Since 7" = plg® + A0,
we have 7 — 4,9 = 0i(c® + k™) € 0i(S;,.). Thus we may define

77(2) — T;(T(l) — Anﬁ(l)) .

It follows from (2.2) that o,(n", n®, »®) = (z”, 7'¥). Repeating this
procedure several times we obtain r,c =5 = (4, .-, 7**) such that

O =7
7](u) — T:(T(”*l) — Anv(v—l)) , 2=y ®.

The map r, is clearly linear and the commutativity 6,r.,, = 7.0, is an
immediate consequence of the construction, We turn to the statement
about norms.

We have ||| = sup, |7 ||, || || = sup, || < [|, and || 7| < ¢[| 7 |
for y=1,2. For 2 <y = ¢ we have

g™ = llzll+ ¢ [ Al n* 1.

Suppose we make the coordinate change y, = t,x,. Then (2.1) becomes

J— o af af
gf =S, A=~ t,A
f T 3 axi ( n 7L) ayn .

We shall assume that this coordinate change has already been made
with ¢, # 0 small enough to insure || A4,] =< 1/2¢’. Then for v = 2,

v ’ 1 v—
I = el + Sl

S 4274 e+ 27 ]| + 27| ]
=3[zl

We may take ¢ = 3¢'.
PROPOSITION 2. Assume that 2z is regular at 0 and that the

conclusion of Proposition 1 holds with ¢, = .-+ = ¢, =1, Then there
exists a constant C > 0 and maps
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Nut Sps — Sy, n=2,
such that 0,7, =1 and [[7.|| = C for ¢ = 2.

Proof. For p = 2 we have the exact commutative diagram (see
(1.2)):
0 0

St = u(Sen)™™

(2-3) 0— S/J- — deu &, (O/L(de) —0

0— S/L—l -_— Sd,u—l R pu—l(Sd,u—l) —0

l

0 0
By hypothesis d,: S, — S,_, is surjective, and thus by diagram chasing
008571 = 0.(S4,)"". Let ¢, r, be the data from Proposition 1. Since
0,70 = Tu_10,, We have r,(0.(S,;,.)"") < Sy,!. Define o_,: S;,._; — S;,. by
; 0-;;—1 ’ if pn > 0
o= 1)
=) {0, if p, = 0

where p—1,=(p, *+*, Dus, », —1). Then 4,6_,=1. Diagram
chasing now shows that the map »,: S, — S, defined by

N0 = (5—7& - r#pﬂ-a—-n)a ’ o€ S}L—-l ’

satisfies 0,m. = 1. If we take M = || A,|| + -+ + [| 4,]|, then || p.]| =
M for all £ = 1. Thus

Ipull = 1ol +llrullllOulll[0_nll =1+ ¢M .
We may take C =1 + ¢M.

ProposIiTION 3. Let & be given by (2.1) and assume that the
coordinate 2z is regular at 0, Then there exist constants ¢, K > 0 and
nonzero constants ¢,, ---, ¢, such that:

(i) there exist maps 7. 0.(S;,.) — Si..(t = 1) satisfying p.r. =
L, 0,7 s = 70, || Tull = ¢

(ii) for any £e€ S, Q A T*( = 1, r = 1) satisfying 62 = 0 there
exists (€S, @ A'T* with 6 =¢ and ||| = K|/ £]|; where the
norm || -|| is defined by the coordinate (¢, «--, t,x,).

Proof (by induction on n). The case » = 1 is trivial; assume the
proposition true when # is replaced by n — 1.
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Applying the inductive hypothesis to <’, we obtain nonzero
constants ¢,, -+, ¢,_, and constants ¢/, K’ > 0 such that (i) and (ii)
hold for the primed data. By the inductive step of Proposition 1,
there exist ¢, # 0 and ¢ > 0 such that (i) holds for &= We can
assume that a coordinate change has already been made so that ¢ =
««. = t, = 1. Proposition 2 yields a constant C > 0 and maps
Nt Su_y — S, such that 0,7, =1 and |[7,]| = C for 1 = 2.

Now let £e S, ® A"T* and assume o6& = 0. Write & = dx, A & +
¢*, where ¢' and & have no terms involving dx,. If we set 7 = 7,.,&
(more precisely, 7= (., @ 1)(§"), then o7 = dw, A & + (terms not
involving dz,) so that & — 6z has no terms involving dwx,. Since
0(& — 0t) = 0, we must have dx, A 6,(6 — 07) = 0 and thus §,(&6—07) =
0. This means that & — 7€ S,® A"T* and thus by the inductive
hypothesis & — ot = do0 for some oceS,, , Q@AT* with |o] =
K'|[& —ot|l.

If we let {=0+4+7, then 6 =¢ and ||| o]l + ]| =
K'||2|| + K'||3c|| + |||l Since [[3]| = n and [|z|| = C||£ ||, we have
¢l = (K" +nK'C+ C)|l¢|l, and we may take K = K’ 4+ nK'C + C.

With part (ii) of Proposition 3 the theorem is proved in the
constant coefficient case. In treating the general case, we shall use
some additional results.

PRrROPOSITION 4. Let < be given by (2.1) and let ¢ = 1. Then
the maps

(2'4) 51,: S;+1 E— S; (]J = 1, ) .y In)
are surjective if and only if the maps
(2.5) Ou+1: S — 10;;+1(Sd,n+1)y =1+, m—1)

are surjective (see (1.2)).

Proof. For 0 <y =<n — 1 we have the following exact commuta-
tive diagram.
0
l v+1 v

00— S:H—l — S‘;,MH — (O;L+1(Sd,#+1

l

0 0

0 S.h Sl Pur1(Siti) — 0
5y+1 lav-}«l 5v+1
0 Sit Sai 0uSey) —0

i
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By diagram chasing we find that the surjectivity of the maps (2.4) is
equivalent to

Our(Shus1) = Pua(Silin)”

for 1 =y =<n—1. Thus if the maps (2.4) are surjective, then

Puia(Shu1) = Ouri(Seikn)” = [0usa(Si12 )"
= 0u(S5)" = o0 = 0pi(Shut)” = Opri(Saynir)”

and the maps (2.5) are surjective, Conversely, if the maps (2.5) are
surjective, then for 1 = v = n — 1 we have 0,.,(S},.,1) C 0. (S5 )" C
Opr1(Sa,pr)” = 0us1(S%.1), and the maps (2.4) are surjective.

PropPoSITION 5. Suppose the maps (2.4) are surjective for p =
k = 1. Then they are surjective for £ = k -+ 1 (and thus for all p = k).

Proof. By Proposition 4 the maps (2.5) are surjective for p = k.
We will show by induction on vy that the maps (2.5) are surjective
for ¢ =k + 1. The inductive step follows from the five lemma and
the following diagram.

Oy
00— S;,_kl-r—z — S;,k+2 — S:l,k+1 —0

lpkﬂ lpk+2 lpk—kl

Oy
0 — 0442(Sa k42" — Os2(Sarn40)” — Prsi(Sappsr)” — 0

l

0

Note that when v = 1, the left column consists of zeros so that the
induction has a beginning.

ProPoSITION 6. Let <& be given by (2.1) and assume that <7 is
involutive, Assume that the maps (2.4) are surjective for # =k + 1,
where k¥ = 1. Then these maps are surjective for ¢ = k (and thus
for all ¢ = 1).

Proof. Since & is involutive, there is a regular coordinate at 0,
and by Proposition 3 the d-sequences

0——)Sk+r—_) Sk+'r—-1® T —— o

o 8, Q@ AT — 5(S, @ A/ T*) — 0

are exact. In particular, we obtain the exact diagram
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Sk+2 ® An—lT* e Sk+1 ® .AﬂT* — 0

J» I

Sk+1®A”"1T*——>Sk®A"T* '—_)0

l

0

and we conclude that 4,: S,,,— S, is surjective. We now claim that
the

0— S — St QT —— -+

s S Q AT —— (St ® AT*) — 0

are exact. Indeed, this follows by applying homology to the following
diagram,

0 0 0 0
0 — Sizh——- - QAT —— Sp @A T* — §(Sp'@47T™)
0 Sk+’r e Sk+1®Ar_1T* —‘*Sk®ArT* "_—)B(Sk®ArT*)
0— Spirs = —— 8, QA T* — 0,(S, ® 4T*)

0 0 0

As before, we conclude that 4, ,: Si;1— S is surjective. Several
repetitions of the above argument complete the proof.

3. The general case. We now leave the constant coefficient
case and return to the general situation described in § 1. Accordingly,
we no longer use the abbreviation for bundles introduced in §2; from
now on S, will denote a bundle and not the fiber over a particular
point.

The results of §2 carry over to the general case in a pointwise
fashion. After introducing coordinates about g€ M, we observe that
the fibers (S,), depend only on the coefficients of the principal part of
<7 at q. For the purposes of studying these fibers we may therefore
assume that <7 has the form (2.1). Thus the arguments of §2 apply
to the fibers over each qge M separately. The following proposition,
which is implicitly contained in Quillen [3] and in the work of Serre
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(see [2]), will allow us to make these arguments uniformly for ¢ in
small compact sets.

PrOPOSITION 7. Let & be involutive and assume each S, is a
bundle. Let x be a local coordinate on a neighborhood V — M which
is regular at ge V. Then there is a neighborhood U of ¢, contained
in V, such that:

(i) 2 is regular at each pe U

(i) each (S,|U)*, 1=y <mn,px =1, is a bundle,

Proof. Since z is regular at ¢, the maps
0ut Surt | V—> 8,1V, l=p=2n

have maximal rank at q. It follows that they have maximal rank in
a smaller neighborhood U of ¢, and thus the maps

8,08, |U— S, |U, lsp=2n

are surjective. Moreover, (S,|U)"* is a bundle for 2 = ¢ < 2n + 1,
and this permits us to repeat the argument for the maps

Opst (Sppr | U —— S.1o)m, 2=p=2n.
Eventually, we obtain a neighborhood U such that
8, (Sues | Uy — (S, U, nsp=2m1svsn

are surjective and (S,|U)* is a bundle for n = g =2n,1=v = n,
From Propositions 5 and 6 we conclude that x is regular at each pe U.

(i) now follows by a remark of D.G. Quillen, For each pe U
and 1 = v =< n we have the following exact sequence (see the proof
of Proposition 6).

0— (Slt+n)p - (S2+n—-1)p ® T:;k T T/ (S;)p ® AnT;Jk —0.

The exactness expresses a relation among the dimensions of the spaces
involved. Accordingly, if dim (S;), is a constant function of pe V
for each k < p =k + n (resp. k = ¢ <k + n), then the same is true
for p =k (vesp. ot =k + m). This provides the inductive step which
yields the proof of (ii).

The following proposition contains the theorem stated in §1.

ProprosiTiON 8. Let < be involutive and let the coordinate x =
(%, +++, %, be regular at ge M. Then there exists a neighborhood
U of g, on which « is defined, a coordinate in the fibers of E|U,
nonzero constants ¢, «--,¢,, and a constant K > 0 such that whenever
£e (S.QAT*)| U and 0¢ = 0, then & =6 for some e (S,,, QA T*)|U
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with ||{|| = K]||&]||, where the norm ||- || is defined by the coordinate
(tlwly Yy tnxn)'

Proof. Choose a compact neighborhood U of ¢ which satisfies
the conclusion of Proposition 7 and which is contained in the domain
of definition of the coordinate . We can assume that E'|U and F|U
are trivial, and we fix a coordinate in the fibers of each. We apply
Proposition 3 to the fibers over each p€ U and claim that the constants
t, +++,t,, K can be chosen uniformly for pe U. Indeed, from the
proofs of Propositions 1, 2, and 3, we see that the choice of these
constants depends on upper bounds for each of the coefficient matrices
for the principal part of & and upper bounds for the chosen splittings
of the sequences

0— (S, | U)* — (San | U)* 25 0,((San | U)") — 0,

1<y =mn. Since each (S;|U)* is a bundle, these splittings can be
chosen as bundle maps, which are thus bounded uniformly for pe U.
Since the coefficient matrices can be uniformly bounded, the proof is
complete,
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