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-THE d-POINCARE ESTIMATE"

W. J. SWEENEY

The main application of the theorem proved here is to
establish the local solvability of a system of linear partial
differential equations, in the analytic case, by a homological
procedure based on the associated Spencer resolution and
d-cohomology. The theorem states that the d-cohomology
associated with an involutive system of partial differential
equations vanishes in a normed sense. From this one can
show that the Spencer resolution associated with an involutive
system is exact for analytic data, and thus by a result of
D. G. Quillen the corresponding inhomogeneous system has
local solutions, provided the inhomogeneous term is analytic
and satisfies the appropriate compatibility conditions in the
overdetermined case. It is well known that if an arbitrary
system is prolonged a sufficient number of times, the resulting
system will have vanishing d-cohomology. According to a
result of J. P. Serre this is equivalent to the resulting system
being involutive. Thus the question of local solvability reduces
to the involutive case, and we obtain the classical existence
theorem of Cartan-Kahler.

We prove the theorem only in the case of first order systems.

However, there is no loss of generality here because any linear system

of partial differential equations can be changed into an equivalent

first order system by viewing the lower order derivatives as new

variables (see Quillen [3], Prop. 8.2). The theorem proved here was

first stated by Spencer [4], who subsequently gave a proof in his

paper [5] which, however, is incomplete. Later Ehrenpreis, Guillemin,

and Sternberg [1] obtained estimates, by a method different from ours,

which are equivalent as far as the above application is concerned.

The result of Quillen mentioned above is contained in [3], the result

of Serre can be found in [2].

1* The ^-sequence* Let M be a C°° manifold of dimension n,
and let E and F be vector bundles over M with fiber dimensions m

and I. Denote by E and F the sheaves of germs of C°° sections of
E and F.

We introduce the jet bundles Jμ(E) for nonnegative integers μ.

The fiber of J^(E) over qeM is obtained from the stalk Eq by

indentifying germs which agree up to order μ (in any local coordinate).

Coordinates in Jμ.(E) are introduced as follows. Choose a coordinate

neighborhood UaM, with coordinate x ~ (xu . . . , # n ) , over which E
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is trivial, and choose a coordinate in the fibers of E\U. Then for
q e U, σe Jμ{E)q will have components

where / = (f1, , fm) is a local section representing σ, p = (j^, •••,#»)
is an w-tuple of nonnegative integers, | p | = ^ + . . . + pn, and

There is a map ^ μ: E —> Jμ(.E) which is given in local coordinates by

There is also a projection π: Jμ{E) —»JΓ

μ_1(£r) given in local coordinates

by

{tfίllPl £P, ΰ = 1, --^m} >{tf}||3>| ^ ^ - 1, i = 1, « ,m} .

The same definitions apply to Jμ(F). We define Sdφ to be the kernel
of π:Jμ(E)^Jμ^(E), and Td,μ to be the kernel of π: Jμ.(F) -> J^(F).

Now let 3f\ E-+ F be a first-order linear partial differential
operator. 3F is represented by maps p^ . Jμ,(E) —> J μ - 1 ( F ) , jte Ξ> 1, which
make the diagrams

commute. It follows that pμ(Sdfμ) c T^-i, and we define S μ to be
the kernel of /Oμ: S d,μ —> Td.^i. We shall assume that S μ is a sub-
bundle of Srf,μ for each μ*zl.

Let UczM be a coordinate neighborhood, with coordinate x =
(»!, , ajΛ), over which ί/ and .P are trivial. In terms of this coordi-
nate there are maps dv: Jμ,(E) \ U—*Jμ^x(E) \ U(v = 1, , n) given by

{δvσ)i = σJ

p+h | p | ^ ^ - 1, j = 1, , m

where p + l y = (^, , pu^u pv + 1, pv+ί, , p j . The maps δy repre-
sent the operator

9 >E\U
dxv ~~

in the sense of (1.1). It follows that δu(Sdttι \ U) c S^,^ \ U and that
<5v(Sμ I U) c S^ I U. Similarly, we have maps <?,: J^F) \ U^J^{F) \ U
with δu(Tdffl\U)cz T^μ^U. We shall use the following notation for
various objects G (e.g., for one of the bundles £ μ | ί 7 or for a fiber
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(Sμ)q or (Sdφ)q over qeU):

Gn = G

(1.2) Gv = { σ e G | S » = . . . = δ»+1(σ) = 0} , 1 ^ v < w

G° = 0 .

D E F I N I T I O N . The local coordinate x is called regular a t qeU if
the maps

(i.3) δy: (sμ+1yg — > (Sμyq

are surjective for 1 ^ v ^ n and all μ ^ 1. The operator &r is called
involutive if there is a regular coordinate at each qe M.

We denote by T* the cotangent bundle of M and form the <5-
sequence

0 > S μ + W -^-> S ^ ^ (g) Λ1 T * -i-> i + s μ (g) ̂  r * > 0 ,

where δ is formal exterior differentiation. In terms of a local coordinate
x, d is given by

δζ - Σ ^ v Λ δ,ζ .
1

In terms of a local coordinate a; on a neighborhood Ua M and a
coordinate in the fibers of E\U we can define a norm 11 11 in the
fibers of S» \ U by

||<7|| = sup {| o j I 11 p I = μ, j= 1, . .-,m} .

This norm can be extended to ( S μ ® ΛrT*) | [7 by

|| ζ || = sup {|| ζiv...fir || 11 ^ ί, < i, < . < ir £ n)

if ζ = 2 ^ , . . . , ^ ^ Λ Λ dxiγ, ζiv...,ireSμ.. The main theorem of this
paper can now be stated.

THEOREM. Let & be involutive. Then for every qeM there
exists a local coordinate x = (xu •••,#„) on a neighborhood U of q,
a coordinate in E\U, and a constant K> 0 such that whenever
ζe(Sμ,(S> ΛrT*) I U, r ^ 1 and δξ = 0, then ξ = δζ for some ζ e (Sμ+1 (g)
Ar^Tη\U with | |ζ || ^ if II ί||.

2 The constant coefficient case* In this section we shall
assume that Ma Rn is the open unit disk and that E = M x jβm and
F = M x Rι are trivial bundles. We assume that 2&:E—>F^ has the
form
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- V A df(2.1)

in the given coordinates, where each A{ is a constant I x m matrix,

/ = (/\ , / w ) , and df/dxt = (dΓ/dXi, , 3Πdx%).
Denote by E' and F' the restrictions of the bundles E and F to

the unit disk in Rnl = j ? n l x 0 c Rn, and define the operator
^':Ef-+F' by

The data already defined for £& are defined for &f in a corresponding
manner. The maps pi: Jμ{E') —> J^F') represent ^ ' , S'd,μ is the
kernel of π: Jμ(£7') -> J^{Er), T'dφ is the kernel of π: Jμ(F') — J^(F')9

and S'μ is the kernel of p^: Sd>μj—» Ti,μ_i.
Because of the assumption of constant coefficients, it will suffice

to work in the fibers over a single point in M, say 0. To simplify
notation we will abbreviate (Sd,μ)0, (£μ)0, (Sμ)09 etc., by Sd,μ, Sμ, Sμ9 etc.
According to this convention we can write Sμ = S μ

- 1 (see (1.2)).
The element σ e SdtlM can be identified with the polynomial

where pi = pj p j , ccp = x?1 xζn, and σp = (σ\, , σ™) e Rm.
Similarly, τe Td>μ can be identified with

r — V χP
 T

|p l= μ 791

Under these identifications pμ goes over into &f (see (1.1)).
We now identify Sdf[M with Sj,0 0 S'd9l 0 © Siμ by writing

σe Sdffl as a polynomial

where σM is a homogeneous polynomial of degree v in a?!, « ,a; Λ - 1

with coefficients in /2m, i.e., ^ ^ e S ^ . We write σ = (σ(0), « ,(7(/Λ)).
Similarly, we identify Td>(Jj with Γd',0 0 0 Γd',μ.

Now let σ = (α (0), , σ(/Λ)) e Sr f,μ and let ρμσ = τ = (τ ( 0 ), , r^- 'O.
We have
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μ - i

^ (μ-v)\ K } V { μ - v - 1)! n

i {μ-v)\

Thus

(2.2) τ(^- ]) = p[σ[v) + A^^"^

for v = 1, •••, μ.

PROPOSITION 1. Let & be given by (2.1) and assume that the
coordinate x is regular at 0. Then there exist nonzero constants
tlt , tn, a constant c > 0, and maps

with (Oμrμ = 1, || r μ || ^ c, and δ nrμ + 1 = rμ<5% for μ ^ 1, where the norm
|| || is defined by the coordinate (^a ,̂ , tnxn) in M.

Proof (by induction on n). The case n = 1 is trivial; assume
the proposition true when n is replaced by n — 1. Since the coordinate
(xl9 , xn_i) is regular for &', the inductive hypothesis yields
ίi, , ίΛ_i, c' > 0, and maps

, tn^xn^with ^rjL = 1 and || r'μ \\ ^ c' in the norm defined by ( ί ^ ,
The map δv defined by the coordinate (t^, , tn^xn^ is a

nonzero multiple of the map du defined by (xl9 « ,x%). Thus if we
change to the coordinate (tλxu , tn_λxn_u xn) the kernels and images
in (1.3) do not change; and the new coordinate is regular at 0 for
&. We shall assume that this change has already been made so that

ίx = • = ίn_i = 1.

Let TV. Pi(Sd>1) —> Sd>1 be any splitting of the sequence

0 > S, > S d i l - ^ ^(S.,0 > 0

we can assume that || rx || ^ c'. Let // > 1, σ e SdtlL, and τ = p^σ. Let
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so that by (2.2)

We define r μ τ = η ={(/j{0), , Vμ)) as follows. Define η{0) and τj{1) by

This is possible since (τ(0)) = ίo1((j(0), <r(1)) e p^S^). Now ft(j/°>
<τ{0), τ?(1) ~ σ(1)) = 0, and thus (η{0) - σ{0\ τ?(1) - <7(1)) e S,. Since <5W: S, —
is surjective, there is a Λ;(2) e S'd>2 such that ()y(0) - σ(0), τy(1) - σ(1), Λ:(2)) e
By (2.2) we have pfr™ + Λ(J?(1) - ^(1)) - 0. Since τ (1) = ^σ ( 2 ) + ^ π σ
we have τ (1) - Λ^ ( 1 ) = ^(σ ( 2 ) + Λ:(2)) G ρί(SίΛ). Thus we may define

It follows from (2.2) that pt(ψ\ ηw, η™) = (τ(0), τ ( 1 )). Repeating this
procedure several times we obtain rμτ — η — (η{0\ . . . , ^(/A)) such that

The map r μ is clearly linear and the commutativity dnrμ+1 — rμdn is an
immediate consequence of the construction. We turn to the statement
about norms.

We have \\η\\ = sup, || η{v) ||, || r || = sup, || τ(i° ||, and || ηw \\ ^ c' | | τ ||
for v = 1, 2. For 2 g y ^ / i we have

Suppose we make the coordinate change yn = tnxn. Then (2.1) becomes

We shall assume that this coordinate change has already been made
with tn Φ 0 small enough to insure || 4*11 ^ V 2 c ' Then for v ^ 2,

^ 3c'| | τ || .

We may take c = 3c'.

PROPOSITION 2. Assume that x is regular at 0 and that the
conclusion of Proposition 1 holds with tί~ = tn = 1. Then there
exists a constant C > 0 and maps
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7]μ: S^ > Sμ, μ ̂  2 ,

such t h a t δj)μ. = 1 and || ημ || ̂  C for μ >̂ 2.

Proof. For μ ̂  2 we have the exact commutative diagram (see

(1.2)):

0 0

(2.3) 0 > Sμ > Sd,μ - ^ p,{

\on

L > &d,μ-l > Pμ-l\&d,μ-l)

0 0

By hypothesis δn: Sμ —> Sμ_i is sur jective, and thus by diagram chasing
pμ(S27μ) = pμ(Sdφ)

n"K Let c, r μ be the data from Proposition 1. Since
δnrμ = r ^ A , we have r^p^S^)"-1) c Sj"1. Define ^_w: Sdfμ_! -> Sd,μ by

(δ σ)J - ί^" l n 5 i f P" > °
" " (0 , if pn = 0

where p - l n = (plf , p w - 1 , pΛ - 1). Then δΛδ_n = 1. Diagram
chasing now shows that the map τjμ: Sfl^1 —> S μ defined by

satisfies δ%^μ = 1. If we take .M ̂  || Ax || + + || An ||, then || pμ \\ S
M for all μ ̂  1. Thus

We may take C = 1 + cikf.

PROPOSITION 3. Let & be given by (2.1) and assume t h a t the
coordinate x is regular a t 0. Then there exist constants c, K > 0 and
nonzero constants tu , tn such t h a t :

(i) there exist maps rμ,: Pμ.(Sdtfί)-+Sd,μ(μ ^ 1) satisfying Pμ.rμ =
1, δj μ+i = r Λ , | | r μ | | ^ c;

(ii) for any ζ e Sμ (g) ΛrT*{μ ^ 1, r ^ 1) satisfying δf = 0 there
exists ζeS μ + 1 ®>- 1 !Z τ * with δζ = f and || ζ || ^ ίΓ|| f ||; where the
norm || |] is defined by the coordinate (tjX^ , tnxn).

Proof (by induction on n). The case n = 1 is trivial; assume the
proposition true when n is replaced by n — 1.
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Applying the inductive hypothesis to ^ ' , we obtain nonzero
constants tu , tn^ and constants c\ K' > 0 such that (i) and (ii)
hold for the primed data. By the inductive step of Proposition 1,
there exist tn Φ 0 and c > 0 such that (i) holds for £&. We can
assume that a coordinate change has already been made so that tx =
. . . = tn = 1. Proposition 2 yields a constant C > 0 and maps
J?μ: S^x-* S μ such that δjtjμ, = 1 and || η^ \\ S C for μ ^ 2.

Now let £ G S μ 0 Λ rT* and assume δ£ = 0. Write ξ = dxn A ξ1 +
ξ2, where ξ1 and f2 have no terms involving dxn. If we set τ — ημ+1ξ

ι

(more precisely, τ = (^ μ + 1 ® l)(f1)), then 3τ — dxn A ξ1 + (terms not
involving dxn) so that ξ — §τ has no terms involving dxn. Since
g(ξ - δτ) = 0, we must have dxw Λ δn(ξ - δτ) = 0 and thus δΛ(£-δr) =
0. This means that ξ — δτe S'μ<g> ΛrT*r and thus by the inductive
hypothesis £ - δτ = δσ for some σ e S'μ+1 (g) A'^T*' with \\σ\\^
K'\\ξ-δτ\\.

If we let ζ = o + τ, then δζ = f and || ζ || ^ || σ \\ + \\ τ || ^
ίΓ' || £ II + i^ΊI δr || + || τ ||. Since || δ \\ ^ n and || τ || g C || £ ||, we have
II ζ II ̂  ( ^ ' + nK'C + C) II £ II, and w e m a y t a k e K= Kr + wίΓ'C + C.

With part (ii) of Proposition 3 the theorem is proved in the
constant coefficient case. In treating the general case, we shall use
some additional results.

PROPOSITION 4. Let 3f be given by (2.1) and let μ ^ l . Then

the maps

(2.4) δv: S;+1 > S; (v = 1, . . . , n)

are surjective if and only if the maps

(2.5) pμ+1: S^μ+1 —-> p^iS^^Y (v = 1, , n - 1)

are surjective (see (1.2)).

Proof. For 0 ^ v g w - l we have the following exact commuta-

tive diagram.

0 0 0
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By diagram chasing we find that the surjectivity of the maps (2.4) is
equivalent to

for 1 ̂  v ^ n — 1. Thus if the maps (2.4) are surjective, then

Pμ.+l(Sd,μ+l) — Pμ+l(Sdΐμ + lY ~ [Pμ.+ l(&dΐμ + l)" J"

~ Pμ>+l\^d,μ + l/ := = |0μ,+ 1 ( θ j , μ + 1 ) 1 ' = Pμ.+l\&d>μ.+ l) *

and the maps (2.5) are surjective. Conversely, if the maps (2.5) are
surjective, then for 1 ̂  v ^ n - 1 we have ρμ+1(Su

dφ+1) c pμ+1(Su

d^+1)
u c

pμ.+i(Sdφ+i)u = Pμ+i(Sv

d,μ.+1), ^d the maps (2.4) are surjective.

PROPOSITION 5. Suppose the maps (2.4) are surjective for μ =
k ^ 1. Then they are surjective for μ — k + 1 (and thus for all μ^k).

Proof. By Proposition 4 the maps (2.5) are surjective for μ — k.
We will show by induction on v that the maps (2.5) are surjective
for μ — k + 1. The inductive step follows from the five lemma and
the following diagram.

0 > Sd~k+2 > Sd,k+2 > Sd,k+ι > 0

pk+2 pk+2 pk+1

^ > Pk+2\^d,k+2y > Pk+2\&d,k+2)V > Pk+li^dyk + l)^ > "

i
0

Note that when v = 1, the left column consists of zeros so that the
induction has a beginning.

PROPOSITION 6. Let & be given by (2.1) and assume that 2$ is
involutive. Assume that the maps (2.4) are surjective for μ Ξ> k + 1,
where k ^ 1. Then these maps are surjective for μ ^ k (and thus
for all μ^ΐ).

Proof. Since & is involutive, there is a regular coordinate at 0,
and by Proposition 3 the δ-sequences

0 > Sk+r > S,+r_, ® Γ* > . .

• Sk (g) / Γ * > d(Sk (g) ̂ Γ * ) > 0

are exact. In particular, we obtain the exact diagram
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\δ

Sk+1 ® AnT*

Sk+1 6ζ) A*-*T* > S, 6d ΛnT*

0

and we conclude that dn: Sk+1 —• Sk is surjective. We now claim that
the

0 — > S n l — > S ί ; J _ i < 8 > Γ * — > . . .
1 Θ Λrτ*) — > o

are exact. Indeed, this follows by applying homology to the following
diagram.

0 0 0 0

I !
4 T *

• Sk 6$ ΛrT* •
i
\δn

ι ΛrT*)

0 0 0

As before, we conclude that Sn-1: Sj+ϊ —> S^"1 is sur jective. Several
repetitions of the above argument complete the proof.

3* The general case* We now leave the constant coefficient
case and return to the general situation described in § 1. Accordingly,
we no longer use the abbreviation for bundles introduced in § 2; from
now on Sμ will denote a bundle and not the fiber over a particular
point.

The results of §2 carry over to the general case in a pointwise
fashion. After introducing coordinates about qe M, we observe that
the fibers (Sμ)ff depend only on the coefficients of the principal part of
& at q. For the purposes of studying these fibers we may therefore
assume that &r has the form (2.1). Thus the arguments of §2 apply
to the fibers over each qe M separately. The following proposition,
which is implicitly contained in Quillen [3] and in the work of Serre
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(see [2]), will allow us to make these arguments uniformly for q in
small compact sets.

PROPOSITION 7. Let 2$ be involutive and assume each Sμ is a
bundle. Let x be a local coordinate on a neighborhood V a M which
is regular at ge 7. Then there is a neighborhood U of q, contained
in V, such that:

(i) x is regular at each pe U
(ii) each (Sμ | U)\ 1 ^ v ^ n, μ ^ 1, is a bundle.

Proof. Since x is regular at g, the maps

δn:S,+1\V >Sμ\V, lSμS2n

have maximal rank at q. It follows that they have maximal rank in
a smaller neighborhood U of g, and thus the maps

δn: Sμ+11 U > S,\U , 1 ^ μ g 2n

are surjective. Moreover, (Sμ | ϊ/)*-1 is a bundle for 2 ^ μ ^ 2n + 1,
and this permits us to repeat the argument for the maps

δ.-i: ( S w I Ϊ7)- 1 > (Sμ I C^)-1 , 2 ^ JM ̂  2^ .

Eventually, we obtain a neighborhood U such that

are surjective and (Sμ\ U)v is a bundle for n ^ μ ^ 2n, 1 ^ y S n.
From Propositions 5 and 6 we conclude that x is regular at each pe U.

(ii) now follows by a remark of D. G. Quillen. For each pe U
and H y ^ % we have the following exact sequence (see the proof
of Proposition 6).

0 > (Sl+n)p > ( S Ϊ + ^ O P <8> T* > > (Sl)p ®ΛnTt > 0 .

The exactness expresses a relation among the dimensions of the spaces
involved. Accordingly, if dim (Su

μ)p is a constant function oίpeV
for each k < μ ^ k + n (resp. k ^ μ < k + ri), then the same is true
for μ ~ k (resp. μ — k + n). This provides the inductive step which
yields the proof of (ii).

The following proposition contains the theorem stated in § 1.

PROPOSITION 8. Let &ί be involutive and let the coordinate x =
(xl9 , x J be regular at qe M. Then there exists a neighborhood
U of g, on which x is defined, a coordinate in the fibers of E\U,
nonzero constants tu , ίw, and a constant iΓ > 0 such that whenever
£ G {S^ΛrT*) I [/ and <5f = 0, then ξ = δζ for some ζ e (Sμ+1<g)Λ^T*) | U
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with || ζ || ^ -KΊI £ II, where the norm || || is defined by the coordinate

Proof. Choose a compact neighborhood U of q which satisfies
the conclusion of Proposition 7 and which is contained in the domain
of definition of the coordinate x. We can assume that E \ U and F | U
are trivial, and we fix a coordinate in the fibers of each. We apply
Proposition 3 to the fibers over each p e U and claim that the constants
tu •••,*», K can be chosen uniformly for pe U. Indeed, from the
proofs of Propositions 1, 2, and 3, we see that the choice of these
constants depends on upper bounds for each of the coefficient matrices
for the principal part of 3f and upper bounds for the chosen splittings
of the sequences

o —>(S 1 \ uy — > (sΛΛ i uy -£-> Pι((Sd9ί \ uy) — > o,

1 <; v g n. Since each (Sj. \Uy is a bundle, these splittings can be
chosen as bundle maps, which are thus bounded uniformly for peU.
Since the coefficient matrices can be uniformly bounded, the proof is
complete.
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