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A NOTE ON DAVID HARRISON'S THEORY
OF PREPRIMES

D. W. DUBOIS

A Stone ring is a partially ordered ring K with unit
element 1 satisfying (1) 1 is positive; (2) for every x in K
there exists a natural number n such that nΊ — x belongs to
K; and (3) if 1 + nx is positive for all natural numbers n
then x is positive. Our first theorem: Every Stone ring is
order-isomorphic with a subring of the ring of all continuous
real functions on some compact Hausdorff space, with the usual
partial order. A corollary is a theorem first proved by Harrison:
Let K be a partially ordered ring satisfying conditions (1) and
(2), and suppose the positive cone of K is maximal in the
family of all subsets of K which exclude —1 and are closed
under addition and multiplication. Then K is order-isomorphic
with a subring of the reals.

The present paper is inspired by David Harrison's recently begun
program of arithmetical ring theory where the basic objects are primes
and preprimes; the positive cones of a ring are example of preprimes.

Throughout the paper, K will be a ring with unit element 1, and
N will denote the set of positive integers. A preprime P in K is a
nonempty subset of K excluding —1 and closed under addition and
multiplication. A prime in if is a preprime maximal relative to set
inclusion. A preprime P is infinite provided it contains both zero
and 1, and is conic if P f] ( —P) = {0}. A conic preprime is simply a
positive cone and induces a partial order: x^y<=>y^x<=>x — yeP.
A preprime P is Archimedean if for all x in K there exists a natural
number n with n — x in P, (condition (2) in the definition of Stone
ring) and is (AC) if from 1 + nxe P for all ne Nfollows xe P (condi-
tion (3)). We redefine a Stone ring as a pair ζK, P> where P is an
infinite conic Archimedean (AC) preprime in if. An imbedding of
<if, Py in <if', P'> is an injective ring homomorphism ψ: K —+ K' such
that P = ψ~\Pf). If X is a compact Hausdorff space, C(X) denotes
the ring of all continuous real functions on X, P(X) denotes the subset
of nonnegative functions. If K is any subring of C(X) then
ζK, K n P(X)y is a Stone ring. The principal tool in the proof of
Theorem 1 is the Stone-Kadison ordered algebra theorem [3; Theorem
3.1], which characterizes C(X) as a complete Archimedean ordered
algebra. To imbed a Stone ring <JSΓ, Py in such an algebra we show
that K is torsionfree, imbed it in a divisible ring KNί put a norm on
KN and then complete it to if*. At each step we have an imbedding
of Stone rings:
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where the last is Kadison's order-isomorphism. If P is a prime then
so is Pπ. [An order-isomorphism is an imbedding onto.]

In the proofs following, <(if, P> is a Stone ring, JV is the set of
all positive integers.

PROPOSITION 1. If n e JV, a e K, and na ̂  0 then a ^ 0.

Proof. By the unique factorization in JV, it is enough to prove
the proposition for the case where n is a prime number. Suppose for
all primes q < p and all ae K, qa ̂  0 implies a ^ 0β Then for all
n < p and all a e K, na ̂  0 implies a ^ 0. Now suppose that pa ^ 0
but a ̂ t 0. By the Archimedean property choose m in JV with
m + α ̂  0, α = m - 1 + ^ 0. Then px :> 0,1 + x ^ 0 and for all w
in JV, 1 + (pn + ώ)α? ̂  0, if d — 0 or cί = 1. [In case p = 2 this
implies that 1 + kx ̂  0 for all &, so a; ̂  0 by (AC), a contradiction;
hence 2α ̂  0 implies a ^ 0.] Now let 1 < d < p, with d in JV. Since
p is a prime there exists e in JV, with 1 < e < p, βd ~ 1 + pn, for
some n in JV. Then β(l + dx) — e + (1 + pπ)x = (β — 1) + (1 + x) +
(2m#) ^ 0. Since e < p this implies that 1 + dx Ξ> 0. So for all &
in JV, 1 + (pk + d)α = 1 + dx + p&sc ^ 0, Og d ̂  p - 1. That is, 1 +
nx g: 0 for all π in JV. By (AC) again, x ^ 0, a contradiction. So
α ^ 0 and the induction is complete.

Now put

= {kin; keK,neN} ,

Pjsr = ίί>M; P e P , ̂  G JV} .

φ:K->KN,φ{k) = fe/1 .

PROPOSITION 2. <iΓ^, P^> is also a Stone ring. If P is a prime
then so is PN. φ is an imbedding.

Proof. That φ is injective follows from Proposition 1. If k/n,
for k in K,n in JV, belongs to P^, then & belongs to P. For &/w
in P^ implies k/n = p/m, for some p in P, m in JV, so mA: = npeP.
By Proposition 1, J G P . Hence φ is an imbedding. The preprime,
infinite, and conical properties of PN follow easily from the correspond-
ing properties for P. For the Archimedean property, let k/m be
arbitrary in K# (k in K, m in JV) and choose n in JV with n > k.
Then n — k/m = (nm — k)/m belongs to P^ since nm > k,me JV. Now
if 1 + n(k/m) ̂  0 holds in KN, with m in JV, k in Z", and for all n
in JV, then for all n, φ(l + nk) = 1 + mn(k/m) e PN. Since φ is an
imbedding, 1 + nk e P. By the (AC) property for P7keP, k/m e PN.
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This establishes (AC) for PN. Finally let P ' be a preprime containing-
P# and let P1 = φ-\Pf). Then P2 is a preprime containing P. If the
first containment is proper so is the second. This proves that if P is
a prime then PN is a prime.

NOTE. The additive group of KN is divisible. If K were already
divisible then φ would be an order-isomorphism of ζK, P> onto
<i£#, Pχr)>. The rational multiples of 1 in JK̂  form a field order-
isomorphic with Q.

Now define £ on KN by

ί(aθ — inf {r; — r<x<r,re Q).

PROPOSITION 3. The function t is a norm on KN\
( a ) t(x) ^ 0; ί(a) = 0 if and only if x = 0.
(b) t(s + y) ^ ί(α?) + % ) .
(c) t(xy) £ t(x)t(y)
(d) ί(ra) - | r | ί (α) for r in Q.

Put JSΓ* equal to the completion of i£^, P* equal to the closure of P#
in if*. Then <i?*,P*)> is a Stone ring and an Archimedean ordered
algebra as defined by Kadison.

Proof. The property (a) follows from (AC). Properties (b) and
(c) follow from: if — r < x < r, — s < y < s then — (r + s) < x +
y < r + s, and — rs < a y < re. See [l], §2. The proofs there make
no use of commutativity or of multiplicative inverses. Property (d) is
a consequence of: — r < x < r if and only if —rq<qx<, rqy where q
is a positive rational. It is clear that t( — x) = ί(a?) and for rational
r, ί(r) = I r |. We now identify JSΓ̂. with its injection in its completion
if* and note that P* n KN = P^: for if ft e P* n if̂ r then ft = lim pnf

pnePN, and pw may be chosen so that —1/n < k — pn < 1/n for all
neN; it follows that 1 + nk > wj>Λ > 0 for all ne N and thence by
(AC) that kePjf. The reverse inclusion is obvious. It remains to
prove that P* is an infinite conical Archimedean (AC) preprime. It is
certainly closed under addition and multiplication. Let xe P* Π ( —P*).
Then there exist positive sequences pn and qn with x — limp%, — x =
limg%, 0 = \\m(pn + #J. Thus if ε is any positive real then for all
large n, 0 ^ pn ^ p% + qn < ε, so a? = lim #>„ = 0; P* is therefore coni-
cal. Let xn e KN, with x — lim a?n. The Cauchy sequence {xn} is bounded
in norm so there exists an integer m with m > xn for all n. Hence
m — x — lim (m — xn) e P*, m > x. This shows P* is Archimedean.
Now let 1 + M G P * for all n in N (xeK*). P*, as closure of P,
is closed and hence contains x = lim(# + 1/w), since x + 1/n belongs
to P*. Thus P* is (AC). That l e P * and - l g P * are obvious, and
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it has now been proved that <(i£*,P*)> is a Stone ring. The closure
of Q in K* is (order-isomorphic with) the reals R. Using t for the
induced norm in ϋΓ* we have

( e ) t(rx) = I r I t(x) for all r in R.
R is contained in the center of K* and so <X*,P*> is an algebra
over the reals. For the sake of completeness we list Kadison's axioms
for an Archimedean ordered algebra. Each is obviously satisfied by
<X*,P*> with e = l.

1. K* is a real algebra with unit e.
2. P* is closed under addition, multiplication, and multiplication

by positive reals.
3. For every x in K* there exists a positive real r with re > x.
4. If re 2: # for all positive real r, then ίc^O.

An Archimedean ordered algebra is complete if and only if it is
complete in our norm t. Thus ζK*,P*y is a complete Archimedean
ordered algebra. Collecting results of Propositions 1, 2, and 3 and
applying Theorem 3.1 of Kadison we get our Theorem 1.

Now we are ready to prove the corollary. As we remarked earlier,
Harrison showed that a prime P satisfying the hypotheses there is also
(AC). By Proposition 2, PN is also a prime. Now identify each of
<iΓ,P>,<iί^,P^>,<iί*,P*> with its imbedding in <C(X), P(X)>, so
that PiPjv) is the set of all nonnegative functions in K(KN). The
proof is completed by showing that X is a singleton. Suppose that
x and y are distinct points of X. Since X is normal and KN is dense
in C(X), Urysohn's lemma guarantees that there is a function / in
Kx with f(x) > 0, f(y) < 0. Then Pf = {g; g e KN and g(x) ^ 0} is a
preprime in K^ containing PN and /, while / is not in PN. This
contradicts the primality of PN and the corollary is proved.

Two EXAMPLES. 1. Example of a ring <ϋΓ, P> where all the
conditions of Theorem 1 hold for P except the Archimedean condition.
Let K be the ring of all 2 x 2 real matrices, P the set of matrices
with every entry nonnegative.

2. Example of a ring ζK', P')> where P ' satisfies all except the
condition (AC). Put Kf equal to the set of all triangular 2 x 2
matrices over R and let Pf be the subset consisting of 0 and all
matrices with strictly positive diagonal entries. Thus if either of the
Archimedean conditions is omitted then commutativity cannot be
deduced.
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