
PACIFIC JOURNAL OF MATHEMATICS
Vol. 22, No. 3, 1967

A PHRAGMEN-LINDELOF THEOREM
FOR FUNCTION ALGEBRAS

I. GLICKSBERG

Let A be a function algebra, considered as a closed sub-
algebra of C(W), where Wl is the space of multiplicative linear
functionals on A. Let d denote the Silov boundary of A.
We shall call Wl\d the "interior of W and say a function g
on this "interior" is A-holomorphic if each ψ in Ή\d has a
neighborhood on which g is uniformly approximable by ele-
ments of A.

What we shall observe here is that results of the Phrag-
men-Lindelόf type apply to certain A-holomorphic functions.

These results follow easily from the type of argument used in
an earlier paper [1] in which function-algebra analogues of some clas-
sical results of function theory were obtained; the present note is
essentially an addendum to [1] (where "A-holomorphic" [3] was "locally
approximable"). Other results of the Phragmen-Lindelδf type have
been obtained by Quigley [2].

Our analogue of the usual Phragmen-Lindelδf result replaces the
point at infinity by a peak set lying in the Silov boundary.

THEOREM 1. Suppose feA peaks on Fad, and g is an A-holo-
morphic function defined and continuous on W\F. Suppose g is
bounded on d\F and for some a, 0 < a < 1, and k > 0

is bounded on the interior of 90ΐ. Then g is bounded on W\F by its
bound on d\F.

Thus an unbounded A-holomorphic function continuous on W\F
cannot increase too slowly as we approach F. Actually g need only
be defined on 3Jl\3 (and A-holomorphic) if we replace d\F by a deleted
neighborhood of it in 2W.

THEOREM 2. With /, F and a as above, let g be an A-holomor-
phic function which is bounded on the intersection V of a neighbor-
hood of d\F with the interior of 9JΪ, and suppose (1) holds. Then g
is bounded by its bound on V.

Both of these results are easy consequences of the local maximum
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modulus principle [4] and classical arguments. A little more is needed
for the following extension of the Phragmen-Lindelδf corollary con-
cerning a bounded analytic function on a sector having a limit as
z —» co along the bounding rays.

THEOREM 3. Suppose g is a bounded function on 3K which is
A-holomorphic, has its restriction to d continuous, and in fact is
continuous at each point of 3\(jΓ=i Kn, where Kn is a zero set of A
lying in the{1) Choquet boundary. Then g is continuous on 2JΪ.

Thus we cannot have too small a set of discontinuities for an
A-holomorphic function which has a continuous restriction to the Silov
boundary and also is continuous at a fairly large set of points
in <3.

As a mixture of Theorems 1 and 3 we obtain

COROLLARY 4. Suppose g is a (not necessarily bounded) function
on 9JΪ which is A-holomorphic, has its restriction to d continuous
and is continuous at each point of 3\U«=i Kn, where Kn is a zero
set of A lying in the Choquet boundary. Suppose feA peaks on Kx

while (1) is bounded on the interior of Sϋϊ. Then g is continuous on
SSI.

Proofs. Our proof of Theorem 1 is simply an imitation of a
classical argument [5]. To begin let a < β < 1; noting that

I arg(l - /) I ̂  ττ/2 ,

we have an element (1 — f)β in A (where we apply the principal branch
of zβ to 1 - /, so I arg(l - ff | ^ βπ/2 < ττ/2). Now fix β and β > 0.
For Re z ^ 0 and z = reiθ Φ 0 (| θ \ ̂  π/2)

exp - — exp
k = exp(-εr~^ cos βθ + kr~a)

( 2 )
= exp{ — r~β(s cos βθ —
<£ exp( — cr~β)

for some c > 0 if r is sufficiently small, and this of course implies
(2) is bounded on Re z ^ 0. Thus

w The Choquet boundary consists of all points in the Silov boundary having
unique representing measures. In the metric case it coincides with the set of peak
points.
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( 3 ) exp -
(i - fY

is bounded on W\F, whence

( 4 )

exp

g exp -
(i - fY

is bounded on W\F as the product of (1) and (3). But the exponen-
tial in (4), and thus (4) itself, is A-holomorphic and we can argue
that by [1, Th, 4.8], (4) is bounded on %R\F by its bound over d\F,
hence by sup | g(d\F) | since the exponential is of modulus ^ 1. So
for any φ in W\F we have

( 5 ) ^ sup I g(d)\F)
(1 - f(φ)Y

and letting ε—>0 yields the desired result.

Actually, once we have seen (4) is a bounded A-holomorphic func-
tion we should appeal directly to Rossi's local maximum modulus
principle [4] to obtain (5). Indeed, extend (4) to all of 2Jί by setting
it equal to zero on F; since (3) tends to zero as we approach F (by
(2)) we obtain a continuous function h on 2Jί. Now let B be the
closed subalgebra of C(9Ji) generated by h and A. To obtain (5) we
need only see dBad since then

h(φ) I ^ sup I h(dB) I <Ξ sup | h(d) | = sup | h(d\F) | ,

because h vanishes on F, and this is (5).
We now argue exactly as in [1, 3.2]: if φedB n ($Dl\d) we choose

a neighborhood Uφ of φ in W\d on which h (and thus any element
of B) is uniformly approximable by elements of A. Since φ e dB we
must have a φ' in Uφ and an hi in B with

( 6 ) K'(φ') I > sup I /*/(bndry Uψ)

and thus this holds for some approximating element h" in A. But
that violates the local maximum modulus principle, so dB Π (2ft\3) = 0 ,
and dBdd.

This a r g u m e n t yields a simple proof of Theorem 2. I n t h a t resul t ,
a s is now a p p a r e n t , we need only show t h e function

h = g exp — ε
(i - fY

on sM\d is bounded by its bound on V.
Now choose a deleted neighborhood W of F on which
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\h\< sup | / ι (F) | + η

(where η > 0), which is possible since h-^Q as we approach F, ex-
actly as before. Removing ( 7 U W)~ from the interior 3J£\3 we obtain
an open subset U of 3JJ\3 with U~ Π 3 = 0 so that bndry C/c ( F U TF)~.
With B now the closed subalgebra of C(U~) generated by A and h we
see that dB c bndry Z7 by just the above application of local maximum
modulus. Hence 3 s c ( F U W)~, so that

sup ί Λ,(2R\3) I ̂  sup | h(V U FT) | ^ sup | ft(F) | + η

since 77 > 0 is arbitrary, this shows h is bounded by its bound over
F, as desired.

We can now proceed to the proof of Theorem 3, which involves
some modifications in the arguments of [1, §4]. Let BQ denote the
uniformly closed algebra of bounded functions on 2JΪ generated by g
and A; trivially 2JΪ can be viewed as a subset of 3DrijBo and we let X
denote the closure of Wl in WIBQ. X is a boundary for BQy so B ~ B^\X
is a closed subalgebra of C(X).

Since g and the elements of A are continuous when restricted to
either 3 or 2JΪ\3, the natural injection of each of these spaces into X
is continuous, and of course one-to-one. In particular then the com-
pact space 3 is imbedded homeomorphically in X. But in fact the
same is true of 3JΪ\3 since the map p:X—>2Ji dual to A—>B clearly
provides inverses for the injections 3 —> X, W\d —> X. (Note that f(x) =
f(ρ(x)) for feA,xeX.)

Now each of the sets 2Ji\d and d\(2Jl\9)~ is imbedded as an open
subset of X. To see this note that each φQ in 3Ji\9 has a compact
neighborhood in Wl disjoint from 3 of the form

U = {φ e SDΪ: {Uφ) - Uφ0) I ̂  ε, i = 1, . . . , n}

since X = (W\U)- U J7" - (9Ji\C/)~ U i7, a; e X\U implies x e
and so \fi(x) — fi(φ0) | ^ ε for some i, whence

e/2, i = 1

= {xeX: \f,{x) - Uφ,) I < e/2, i = 1,

is a neighborhood of φ0 in X lying wholly within 2JΪ\d, so S0ϊ\3 is open
in X as asserted. The same argument, starting from a compact
neighborhood in 3 disjoint from (ϊΰl\d)~~, yields a neighborhood TFff0 of
φ0 6 3\(3Ji\3)~ in X lying wholly in 3\(2Ji\3)~, so this set is also open
in X. Moreover, the existence of WψQ shows p is one-to-one over
2Ji\3 and 3\(2Ji\3)~. For fax) =fi(p(x)),xeX,fieA, so p(x)em\d
implies x e Wp{x) c 2Ji\3; similarly p(x) e d\(W\d)~ implies x e dX^d)-. So

= 3\(2»\3)- ,
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and thus p is clearly one-to-one over these sets.
Since 3Ji\3 is open in X local maximum modulus applies to show

dB Π (2JΪ\3) = 0 exactly as in [1, 3.2] or in our proof of Theorem 1:
for any φ e dB Π (3Qΐ\3) has a neighborhood Uφ in 2Ji\3 on which g (and
so any element of B) is uniformly approximate by elements of A;
since 3JΪ\3 is open in X, Uφ is open in X and thus we find φf in Uφ

and /&' in B satisfying (6) since φ e dB, and this contradicts local
maximum modulus exactly as in the proof of Theorem 1. Thus

dB Π (2Jl\3) = 0 ,

and since p~\Tl\d) — 3JJ\3, we conclude that p(dB) c 3.
To complete our proof we need only see p is one-to-one on X:

for then p is a homeomorphism of X with 2DΪ (since ,o(X) c SDΐ and
/>(X) =) (3W\3) U (3\(3Ji\3)-)), and continuity ofέ/o^ = ^ o n l implies that
of g on <m = p(X).

We have already seen p~\x) = {x} for x in (2K\3) U (3\(3ft\3)-), and
for a; in 3 \ U ^ the assumed continuity of g at a; implies p" 1 ^) = {x}:
for each Λ in Bo is continuous at x, and so if (̂7/) = x and the net
{φs} in 9Ji converges to y in X then jθ(φδ) = φ5 —> (θ(?/) = x in 3Ji,
whence /ι(τ/) = lim /ί(cpδ) = fe(a ) for all h in β0, and y = x. Thus we
need only see ρ(y) = x for x in iΓTO implies y = x, and since we know
this holds for x in d\(W\d)~, we can assume x e (9Jl\3)~ as well.

So suppose |θ(2/) = x e Kn n (3Ji\3)~. Since if% lies in the Choquet
boundary of A, only the unit point mass δx at x, among all probability
measures on 3, can represent x on A. Thus if we knew dB = 3 then
any probability measure μ on dB = 3 representing y on B would neces-
sarily represent ρ(y) = x on A, whence μ = Sx and y — x.

So we need only see 35\9 = 0 (since clearly 3 c dB). As we saw,
fi(dB) c 3, and ^ is one-to-one over (8\\JKn) U (3\(3Ji\3)-) so that

p(dB\d) c (2«\3)- ΓΊ

So by category if 3S\9 ^ ψ one of the closed sets

En = p-^ [Kn n (2K\3)-] n (3δ\3)

in the locally compact space 35\3 has nonvoid interior in dB\d, hence
in dB. But Kn = ^ ( 0 ) , ^ e ^. so that 2/ e En lies in ^ ( 0 ) = (gn <> p)-\0).
In fact y lies in the topological boundary in X of ^ ( O ) . For

p(y)e(lΰl\d)-,y<εd ,

and thus y has a neighborhood in X disjoint from 3, whence y lies
in the closure in X of 2Ji\3 (since (2JΪ\3) U 3 is dense in X). But
^ ( 0 ) Π (2Jϊ\3) = ^ ( 0 ) n (5Ul\3) = ^, so that 7/ lies in the topological
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boundary of (^(O) as asserted.
Thus we have seen that En has nonvoid interior in dB and lies in

the topological boundary of g~ιφ) in X, which contradicts [1, 2.2],
Our assumption that dB\d is nonvoid must therefore be false, and
dB = 8 as desired, completing our proof.

Corollary 4 follows directly from the preceding. Indeed if we set

(o on Kl9 a < β < 1 ,

then h \ d is continuous and Theorem 3 implies h e C(2J1). So h is
bounded by its bound over 3, exactly as in the proof of Theorem 1,
and so we see the same is true of g. Hence by Theorem 3, g e C(9Jl).
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