AUTOMORPHISMS OF POSTLIMINAL C*-ALGEBRAS

E. C. LANCE

Let $\alpha(\mathfrak{A})$ denote the group of automorphisms of a C^* algebra \mathfrak{A} . The object of this paper is to give an intrinsic algebraic characterization of those elements α of $\alpha(\mathfrak{A})$ which are induced by a unitary operator in the weak closure of \mathfrak{A} in every faithful representation, and it is attained for the class of C^* -algebras known as GCR, or more recently postliminal. The relevant condition is that α should map closed two-sided ideals of \mathfrak{A} into themselves, and the main theorem (Theorem 2) may be thought of as an analogue for C^* -algebras of Kaplansky's theorem for von Neumann algebras, namely that an automorphism of a Type I von Neumann algebra is inner if and only if it leaves the centre elementwise fixed. The proof of Theorem 2 requires the—probably unnecessary—assumption that \mathfrak{A} is separable.

By a C^* -algebra we mean a Banach algebra over the complex numbers, with a conjugate-linear anti-automorphic involution $A \rightarrow A^*$ satisfying $||A^*A|| = ||A^*|| \cdot ||A||$. The mappings of C*-algebras which we consider (automorphisms, representations, etc.) will always be assumed to preserve the adjoint operation, and by a homomorphic image of a C^* -algebra \mathfrak{A} , we mean the image of a homomorphism from \mathfrak{A} into another C^{*}-algebra \mathfrak{B} (this is automatically a C^{*}-subalgebra of \mathfrak{B} [2; 1.8.3]). We shall refer to Dixmier's book [2] for all standard results that we need to quote concerning C^* -algebras. By the theorem of Gelfand-Naimark (see, e.g. [2; 2.6.1]), a C^{*}-algebra has an isometric representation as an algebra of operators on a Hilbert space, and we shall usually think of a given C^* -algebra as being "concretely" represented on some Hilbert space. A state of a C^* -algebra \mathfrak{A} is a positive linear functional of norm one. The set \mathfrak{S} of states of \mathfrak{A} is a convex subset of the (Banach) dual space of \mathfrak{A} . If \mathfrak{A} has an identity element then \mathfrak{S} is w^* -compact, but in any case \mathfrak{S} contains an abundance of extreme points, which are called *pure states*. The set of pure states of \mathfrak{A} will be denoted by \mathfrak{P} .

Given a state ρ of \mathfrak{A} , there is a representation ϕ_{ρ} of \mathfrak{A} on a Hilbert space H_{ρ} , and a unit vector x_{ρ} in H_{ρ} such that $\{\phi_{\rho}(A)x_{\rho}: A \in \mathfrak{A}\}$ is dense in H_{ρ} (i.e. the representation ϕ_{ρ} is cyclic) and

$$\rho(A) = \langle \phi_{\rho}(A) x_{\rho}, x_{\rho} \rangle$$

for each $A \in \mathfrak{A}$. ϕ_{ρ} is irreducible if and only if ρ is pure. Given a state ρ of \mathfrak{A} , and a representation ϕ of \mathfrak{A} on H, we say that ρ is a vector state (in the representation ϕ) if $\rho(A) = \langle \phi(A)x, x \rangle$ for some

unit vector x in H; and if ϕ is faithful, we say that ρ is normal if the map $A \to \rho(A)$ is continuous with respect to the topology induced on $\phi(\mathfrak{A})$ by the ultra-weak topology on the algebra $\mathfrak{L}(H)$ of all bounded operators on H. It is clear that a vector state is normal. Let \mathcal{O} denote the universal representation of \mathfrak{A} , formed by choosing one element from each unitary equivalence class of cyclic representations of \mathfrak{A} and taking their direct sum; and let Ψ denote the reduced atomic representation of \mathfrak{A} , formed by choosing one element from each unitary equivalence class of irreducible representations of \mathfrak{A} and taking their direct sum. Both \mathcal{O} and Ψ are faithful representations, and every state [resp. every pure state] of \mathfrak{A} is a vector state in the representation \mathcal{O} [resp. Ψ].

Let $\hat{\mathfrak{A}}$ denote the structure space of \mathfrak{A} , i.e. the set of unitary equivalence classes of irreducible representations of \mathfrak{A} , with the Jacobson topology [2; § 3.1]. Following Dixmier, we shall call a C^* algebra *liminal* if every irreducible representation consists of compact operators, *postliminal* if every nonzero homomorphic image has a nonzero closed two-sided liminal ideal, and *antiliminal* if it possesses no nonzero closed two-sided liminal ideals. If \mathfrak{A} is postliminal then $\hat{\mathfrak{A}}$ is a T_0 -space [2; 4.3.7 (ii)], and every representation of \mathfrak{A} has a Type I von Neumann algebra as weak closure [2; 5.5.2]. Also, \mathfrak{A} has a composition series $(I_{\rho})_{0 \leq \rho \leq \delta}$ (i.e. an increasing nest of closed two-sided ideals of \mathfrak{A} indexed by the ordinals less than or equal to some ordinal $\hat{\delta}$, such that $I_0 = (0)$, $I_{\delta} = \mathfrak{A}$ and I_{ρ} is the closure of $\bigcup_{\rho' < \rho} I_{\rho'}$ for every limit ordinal $\rho \leq \delta$) such that each difference algebra $I_{\rho+1} - I_{\rho}$ has Hausdorff structure space [2; 4.5.5 and 4.5.3].

Given a C*-algebra \mathfrak{A} , we denote by $\alpha(\mathfrak{A})$ the group of automorphisms of \mathfrak{A} . Each element of $\alpha(\mathfrak{A})$ is an isometric isomorphism of \mathfrak{A} onto itself [2; 1.3.7 and 1.8.1]. If ϕ is a faithful representation of \mathfrak{A} on H, an automorphism α of \mathfrak{A} is said to be *extendable* (in the representation ϕ) if there is an automorphism of the weak closure of $\phi(\mathfrak{A})$ which agrees with $\phi \circ \alpha \circ \phi^{-1}$ on $\phi(\mathfrak{A})$; and weakly-inner if $\phi(\alpha(A)) = U^* \phi(A) U$ for each A in \mathfrak{A} , where U is a unitary operator in the weak closure of $\phi(\mathfrak{A})$. If $\alpha(A) = U^* A U$ for a unitary operator U in \mathfrak{A} , then we say that α is *inner*. Following [6], we denote by $\varepsilon_{\phi}(\mathfrak{A})$ [resp. $\iota_{\phi}(\mathfrak{A})$] the set of elements of $\alpha(\mathfrak{A})$ which are extendable [resp. weakly-inner] in the representation ϕ , and by $\pi(\mathfrak{A})$ the intersection of all the sets $\iota_{\phi}(\mathfrak{A})$ as ϕ ranges through the faithful representations of \mathfrak{A} (the elements of $\pi(\mathfrak{A})$ are called *permanently weakly-inner*, or π -inner automorphisms). The sets $\varepsilon_{\phi}(\mathfrak{A}), \iota_{\phi}(\mathfrak{A})$ and $\pi(\mathfrak{A})$ are all subgroups of $\alpha(\mathfrak{A})$. According to [6; Lemma 3], $\alpha \in \varepsilon_{\phi}(\mathfrak{A})$ if $\phi \circ \alpha \circ \phi^{-1}$ is ultra-weakly bicontinuous, equivalently if $\rho \circ \alpha$ is a normal state in the representation ϕ if and only if ρ is. It follows that $\varepsilon_{\phi}(\mathfrak{A}) = \alpha(\mathfrak{A})$

since every state is normal in the universal representation.

If $\alpha \in \alpha(\mathfrak{A})$, we shall say that α preserves ideals if $\alpha(I) \subseteq I$ for every closed two-sided ideal I of \mathfrak{A} , and that α preserves ideals carefully if $\alpha(I) = I$ for each such ideal I. We shall denote by $\tau(\mathfrak{A})$ [resp. $\tau_0(\mathfrak{A})$] the set of elements of $\alpha(\mathfrak{A})$ which preserve ideals [resp. preserve ideals carefully]. It is clear that $\tau_0(\mathfrak{A})$ is a subgroup of $\alpha(\mathfrak{A})$, and that $\tau(\mathfrak{A})$ is a subsemigroup of $\alpha(\mathfrak{A})$, but it is not clear whether $\tau(\mathfrak{A})$ can contain elements not in $\tau_0(\mathfrak{A})$ (cf. Corollary 1 of Theorem 1). Since an automorphism preserves the property of being a maximal ideal, an element of $\tau(\mathfrak{A})$ must preserve maximal two-sided ideals carefully, so that $\tau_0(\mathfrak{A}) = \tau(\mathfrak{A})$ if every closed two-sided ideal of \mathfrak{A} is an intersection of maximal ones.

LEMMA 1. For any C*-algebra $\mathfrak{A}, \varepsilon_{\Psi}(\mathfrak{A}) = \alpha(\mathfrak{A}).$

Proof. To save writing Ψ constantly, we shall suppose that \mathfrak{A} is given in its reduced atomic representation. Let \mathfrak{R} denote the closure in the norm topology on \mathfrak{S} of the convex hull of \mathfrak{P} . Let $\alpha \in \alpha(\mathfrak{A})$, then it is easy to see that α preserves pure states, i.e. $\rho \in \mathfrak{P} \Leftrightarrow \rho \circ \alpha \in \mathfrak{P}$. Also, for any bounded linear functional f on \mathfrak{A} , $||f \circ \alpha|| = ||f||$. It follows that $\sigma \in \mathfrak{R} \Leftrightarrow \sigma \circ \alpha \in \mathfrak{R}$.

Let \mathfrak{N}_0 denote the set of normal states of \mathfrak{A} . We shall show that $\mathfrak{N}_0 = \mathfrak{N}$ from which it follows that α and α^{-1} preserve normal states and by [6; Lemma 3] the lemma will be proved. Now \mathfrak{N}_0 is norm-closed and convex, and contains \mathfrak{P} since every pure state is a vector state in the given representation, hence $\mathfrak{N}_0 \supseteq \mathfrak{N}$. Conversely, if $\rho \in \mathfrak{N}_0$, then ρ is a norm limit of convex combinations of vector states [1; Chap. I § 4 Théorème 1] so it will suffice to show that each vector state is in \mathfrak{N} .

Denote by ω_x the state $A \to \langle Ax, x \rangle$ where x is a unit vector in the space H on which \mathfrak{A} acts. Since \mathfrak{A} is given in the reduced atomic representation we can write $H = \bigoplus_{\tau \in \Gamma} H_{\tau}$ where each H_{τ} is a subspace of H invariant under \mathfrak{A} , and the restriction $\mathfrak{A} \mid_{H_{\gamma}}$ is irreducible. Write $x = \sum_{\tau \in \Gamma} x_{\tau}$, with $x_{\tau} \in H_{\tau}$. Then

$$egin{aligned} A \in \mathfrak{A} & \Longrightarrow & Ax_{ au} \in H_{ au} & ext{for each } \gamma \in arGamma \ & \longrightarrow & ig< Ax, \ x ig> & = \sum_{ au \in arGamma} ig< Ax_{ au}, \ x_{ au} ig> \,, \end{aligned}$$

so that

(1)
$$\omega_x = \sum_{\gamma \in \Gamma} \omega_{x_{\gamma}}$$
, where $\sum_{\gamma \in \Gamma} ||x_{\gamma}||^2 = 1$.

But $\omega_{x_{\gamma}}$ is either zero (if $x_{\gamma} = 0$) or a multiple $||x_{\gamma}||^{-2}$ of a vector state of an irreducible representation, which is pure. It follows from

(1) that $\omega_x \in \mathfrak{N}$, showing that $\mathfrak{N}_0 \subseteq \mathfrak{N}$.

LEMMA 2. For any C*-algebra $\mathfrak{A}, \iota_{\Psi}(\mathfrak{A}) \subseteq \tau_{\mathfrak{g}}(\mathfrak{A})$.

Proof. We shall again suppose that \mathfrak{A} is given in its reduced atomic representation with weak closure \mathfrak{A}^- . Writing $H = \bigoplus_{\tau \in \Gamma} H_{\tau}$ as in Lemma 1, we have ([3]) $\mathfrak{A}^- = \bigoplus_{\tau \in \Gamma} \mathfrak{L}(H_{\tau})$. If $\alpha \in \iota_{\Psi}(\mathfrak{A})$, let $U = \sum U_{\tau}$ be a unitary in \mathfrak{A}^- which induces α , where U_{τ} is a unitary operator on $H_{\tau}(\gamma \in \Gamma)$. Let π_{τ} be the irreducible representation of \mathfrak{A} on H_{τ} defined by $A \to A|_{H_{\gamma}}$ (for some $\gamma \in \Gamma$), and suppose $\pi_{\tau}(A) = 0$. Then

$$egin{array}{ll} \pi_r(lpha(A)) &= \ U^* \ A \ U \,|_{{}^{_{H_{oldsymbol{\gamma}}}}} \ &= \ U^*_r \ A \ U_r \ &= \ 0 \ . \end{array}$$

Thus a preserves the primitive ideal $\pi_r^{-1}(0)$. But every primitive ideal is of this form, and every closed two-sided ideal in \mathfrak{A} is an intersection of primitive ideals, hence α preserves ideals.

Since $c_{\Psi}(\mathfrak{A})$ is a group, α^{-1} also preserves ideals, and so α preserves ideals carefully.

As an immediate corollary to the above lemma, we have $\pi(\mathfrak{A}) \subseteq \tau_0(\mathfrak{A})$ for any C^* -algebra \mathfrak{A} , a fact which has previously been noted by **R. V. Kadison** (private communication).

THEOREM 1. If \mathfrak{A} is a postliminal C*-algebra, then $\tau(\mathfrak{A}) = \iota_{\Psi}(\mathfrak{A})$.

Proof. We continue to assume that \mathfrak{A} is given in the reduced atomic representation, and we shall use the notation established in Lemma 2. By that lemma, we have only to prove that $\tau(\mathfrak{A}) \subseteq \iota_{\mathfrak{P}}(\mathfrak{A})$.

For each closed two-sided ideal I of \mathfrak{A} , define subsets $\mathfrak{U}(I)$ and $\mathfrak{V}(I)$ of the structure space $\widehat{\mathfrak{A}}$ by

$$\mathfrak{U}(I) = \{\pi \in \widehat{\mathfrak{A}} \colon \pi(I) = (0)\} \;, \ \mathfrak{V}(I) = \{\pi \in \widehat{\mathfrak{A}} \colon \pi(I)
eq (0)\} \;.$$

These sets are, respectively, closed and open in $\hat{\mathfrak{A}}$ [2; 3.2.1].

Suppose that $\alpha \in \tau(\mathfrak{A})$. By Lemma 1, α has an extension to an automorphism $\overline{\alpha}$ of $\mathfrak{A}^- = \bigoplus_{\tau \in \Gamma} \mathfrak{A}(H_{\tau})$. Given $\pi \in \mathfrak{A}$ there is a unique subspace H_{τ} of H such that π is unitarily equivalent to π_{τ} . Let $E_{\pi} \in \mathfrak{A}^-$ denote the projection from H onto H_{τ} . The elements $\{E_{\pi} : \pi \in \mathfrak{A}\}$ are precisely the minimal central projections of \mathfrak{A}^- , and they generate the centre of \mathfrak{A}^- (as a von Neumann algebra). An automorphism

550

preserves the property of being a minimal central projection, so $\bar{\alpha}$ permutes the E_{π} .

Let $(I_{\rho})_{0 \leq \rho \leq \delta}$ be a composition series for \mathfrak{A} such that each difference algebra $I_{\rho+1} - I_{\rho}$ has Hausdorff structure space. Suppose that σ is an ordinal $(0 < \sigma \leq \delta)$ and that for $\rho < \sigma$ we have shown that

$$(2) \qquad \qquad \bar{\alpha}(E_{\pi}) = E_{\pi} \quad \text{for all} \quad \pi \in \mathfrak{V}(I_{\rho}) \; .$$

Clearly (2) is (vacuously) satisfied for $\sigma = 1$. If σ is a limit ordinal then $\mathfrak{B}(I_{\sigma}) = \bigcup_{\rho < \sigma} \mathfrak{B}(I_{\rho})$ so that (2) holds with $\rho = \sigma$. Suppose that σ is not a limit ordinal, and let $\theta \in \mathfrak{B}(I_{\sigma})$. Let $\overline{\alpha}(E_{\theta}) = E_{\phi}$. We shall suppose $\phi \neq \theta$ and obtain a contradiction.

Let $\{\phi\}^-$ denote the closure of $\{\phi\}$ in the Jacobson topology. We shall first show that $\theta \notin \{\phi\}^-$. To see this, note that

$$\mathfrak{A} = \mathfrak{B}(I_{\sigma-1}) \cup (\mathfrak{B}(I_{\sigma}) \cap \mathfrak{U}(I_{\sigma-1})) \cup \mathfrak{U}(I_{\sigma}) \; ,$$

so that ϕ must belong to one of these three sets.

(i) for $\pi \in \mathfrak{V}(I_{\sigma-1})$ we have by (2), $\overline{\alpha}(E_{\pi}) = E_{\pi}$, so that all the elements $E_{\pi}(\pi \in \mathfrak{V}(I_{\sigma-1}))$ are already bespoken as values for the (injective) mapping $\overline{\alpha}$, hence it is not possible that $\phi \in \mathfrak{V}(I_{\sigma-1})$ unless $\theta = \phi$. Thus $\phi \notin \mathfrak{V}(I_{\sigma-1})$ and also $\theta \notin \mathfrak{V}(I_{\sigma-1})$.

(ii) $\mathfrak{V}(I_{\sigma}) \cap \mathfrak{U}(I_{\sigma_{-1}})$ is homeomorphic with the structure space of $I_{\sigma} - I_{\sigma_{-1}}$ [2; 3.2.1], and this is Hausdorff (and hence a T_1 -space) so that if $\phi \in \mathfrak{V}(I_{\sigma}) \cap \mathfrak{U}(I_{\sigma_{-1}}), \theta \notin \{\phi\}^-$ since by (i) θ is also in $\mathfrak{V}(I_{\sigma}) \cap \mathfrak{U}(I_{\sigma_{-1}})$.

(iii) $\mathfrak{U}(I_{\sigma})$ is closed, and $\theta \notin \mathfrak{U}(I_{\sigma})$. Thus if $\phi \in \mathfrak{U}(I_{\sigma})$, it follows that $\{\phi\}^{-} \subseteq \mathfrak{U}(I_{\sigma})$ and $\theta \notin \{\phi\}^{-}$.

Thus in any case $\theta \notin \{\phi\}^-$, i.e. Ker $(\phi) \nsubseteq \text{Ker}(\theta)$. Choose $A \in \mathfrak{A}$ such that $\phi(A) = 0, \ \theta(A) \neq 0$. Then

$$egin{aligned} & heta(A)
eq 0 & \longrightarrow AE_ heta
eq 0 \ & \longrightarrow ar lpha(AE_ heta)
eq 0 \ & \longrightarrow ar lpha(A) \cdot ar lpha(E_ heta)
eq 0 \ & \longrightarrow lpha(A) \cdot E_ heta
eq 0 \,. \end{aligned}$$

On the other hand, $\alpha \in \tau(\mathfrak{A})$ so α preserves Ker (ϕ) , hence

$$\phi(A) = 0 \Longrightarrow A \in \operatorname{Ker}(\phi)$$

 $\Longrightarrow \alpha(A) \in \operatorname{Ker}(\phi)$
 $\Longrightarrow \alpha(A) \cdot E_{\phi} = 0$

We have arrived at a contradiction, thus showing that $\overline{\alpha}(E_{\theta}) = E_{\theta}$ for $\theta \in \mathfrak{V}(I_{\sigma})$, i.e. (2) holds for $\rho = \sigma$.

By transfinite induction, $\overline{\alpha}(E_{\pi}) = E_{\pi}$ for all $\pi \in \mathfrak{A}(=\mathfrak{V}(I_{\delta}))$. Since the centre of \mathfrak{A}^- is generated as a von Neumann algebra by the E_{π} and $\overline{\alpha}$ is ultra-weakly continuous (*cf.* Lemma 1), $\overline{\alpha}$ leaves the centre elementwise fixed. But \mathfrak{A}^- is Type I, so by Kaplansky's theorem [7] $\overline{\alpha}$ is inner, which proves the theorem.

COROLLARY 1. If \mathfrak{A} is postliminal, then $\tau_0(\mathfrak{A}) = \tau(\mathfrak{A})$.

Proof. By Lemma 2 and Theorem 1 we have

 $\tau_0(\mathfrak{A}) \subseteq \tau(\mathfrak{A}) = \iota_{\mathfrak{p}}(\mathfrak{A}) \subseteq \tau_0(\mathfrak{A}) .$

COROLLARY 2. If \mathfrak{A} is postliminal, $\alpha \in \tau(\mathfrak{A})$ and ϕ is an irreducible representation of \mathfrak{A} , then α induces a weakly-inner automorphism α_{δ} of $\phi(\mathfrak{A})$.

Proof. Suppose that \mathfrak{A} is given in its reduced atomic representation. ϕ is unitarily equivalent to the map $A \to AE_{\pi}$ (for some $\pi \in \widehat{\mathfrak{A}}$). By Theorem 1, $\alpha(A) = U^* AU$ (for all $A \in \mathfrak{A}$) for some $U \in \mathfrak{A}^-$. The map $AE_{\pi} \to (UE_{\pi})^* AE_{\pi}(UE_{\pi})$ is then unitarily equivalent to the required automorphism of $\phi(\mathfrak{A})$.

Our results so far have mirrored those of Miles [8] on derivations. In the case of derivations, it is now known ([5] and [9]) that every derivation of a C^* -algebra is permanently weakly-inner. We shall now show that the analogous result holds for ideal-preserving automorphisms of (separable) postliminal C^* -algebras, by making use of the decomposition of a representation of such an algebra as a direct integral of irreducible representations. For an account of this decomposition, see [1; Chap. II] and [2; §8].

LEMMA 3. If \mathfrak{A} is a C*-algebra, $\alpha \in \tau_0(\mathfrak{A})$ and \mathfrak{B} is any homomorphic image of \mathfrak{A} , then α induces an automorphism in $\tau_0(\mathfrak{B})$.

Proof. Let ψ be a homomorphism from \mathfrak{A} onto \mathfrak{B} , with kernel *I*. Define a map $\tilde{\alpha}$ on \mathfrak{B} by $\tilde{\alpha}(\psi(A)) = \psi(\alpha(A))$. $\tilde{\alpha}$ is well-defined since α preserves *I*. It is clearly a homomorphism, with range the whole of \mathfrak{B} , and since α preserves *I* carefully it is injective. Thus it is an automorphism.

If J is a closed two-sided ideal in \mathfrak{B} then $\psi^{-1}(J)$ is a closed twosided ideal in \mathfrak{A} containing I and is carefully preserved by α , from which it follows that $\tilde{\alpha}$ carefully preserves J. Thus $\tilde{\alpha} \in \tau_0(\mathfrak{B})$.

THEOREM 2. If \mathfrak{A} is a separable postliminal C*-algebra then $\pi(\mathfrak{A}) = \tau(\mathfrak{A})$.

Proof. We have already noted that $\pi(\mathfrak{A}) \subseteq \tau(\mathfrak{A})$. Suppose $\alpha \in \tau(\mathfrak{A})$,

and let ϕ be any faithful representation of \mathfrak{A} . We have to show that α is weakly-inner in the representation ϕ . Since \mathfrak{A} is postliminal, the weak closure $\overline{\phi(\mathfrak{A})}$ is a Type I von Neumann algebra, so is isomorphic to an algebra with abelian commutant, i.e. ϕ is quasi-equivalent to a multiplicity-free representation (*cf.* [2; 5.4.1]). Since the property of being weakly-inner is preserved by quasi-equivalence, we may suppose that ϕ is multiplicity-free and $\phi(\mathfrak{A})'$ is abelian (we use a prime to denote the commutant of a set of operators). Since we are assuming that \mathfrak{A} is separable, $\overline{\phi(\mathfrak{A})}$ is generated (as a von Neumann algebra) by a countable set of operators.

Let E be a cyclic projection in $\phi(\mathfrak{A})'$ (which is the centre of $\overline{\phi(\mathfrak{A})}$). The restriction of $\phi(\mathfrak{A})$ to E is a homomorphic image of \mathfrak{A} , so by Lemma 3 α induces an ideal-preserving automorphism on it. If the automorphism so induced on each cyclic portion of the centre of $\overline{\phi(\mathfrak{A})}$ is weakly-inner, then (taking a maximal orthogonal family of cyclic central projections) it follows that α is weakly-inner. We may thus restrict to a cyclic central projection and we can therefore assume that ϕ acts on a separable Hilbert space H.

There exist [2; 8.3.2] a standard Borel space Z, a bounded positive measure μ on Z, a measurable field $\zeta \to H_{\zeta}$ of Hilbert spaces on Z, a measurable field of representations $\zeta \to \pi_{\zeta}$ of \mathfrak{A} on the field (H_{ζ}) and an isometry from H onto $\int^{\oplus} H_{\zeta} d\mu(\zeta)$, which transforms $\phi(\mathfrak{A})'$ into the diagonal operators and ϕ into $\int^{\oplus} \pi_{\zeta} d\mu(\zeta)$. We shall equate $H, \phi(\mathfrak{A}), \& c.$ with their transforms under this equivalence. Since $\phi(\mathfrak{A})'$ consists of diagonal operators, almost every π_{ζ} is irreducible [2; 8.5.1]. For almost all $\zeta \in Z, \alpha$ induces an automorphism α_{ζ} of $\pi_{\zeta}(\mathfrak{A})$, which by Corollary 2 of Theorem 1 is weakly-inner, and so in particular extends to an automorphism (which we still call α_{ζ}) of $\mathfrak{L}(H_{\zeta})$. Define $\alpha_{\zeta} = 0$ on the exceptional null set. α_{ζ} is ultra-weakly continuous, hence strongly continuous on bounded sets. Thus we have a field (which we do not yet know to be measurable) of automorphisms α_{ζ} , such that for each $A \in \mathfrak{A}, \phi(\alpha(A)) = \int_{0}^{\oplus} \alpha_{\zeta}(\pi_{\zeta}(A)) d\mu(\zeta)$.

We now show that α is weakly continuous on the unit ball of \mathfrak{A} (in the representation ϕ). To do this it suffices, by [4; Remark 2.2.3], to show that α is weakly continuous at zero on the set of positive operators in the unit ball of \mathfrak{A} . Since H is separable, the unit ball is metrizable in the weak topology, and we need only deal with sequences. Suppose that $I \ge A_n \ge 0$ and $\phi(A_n) \to 0$ weakly. Then $\phi(A_n^{1/2}) \to 0$ strongly and by [1; Chap. II § 2 Prop. 4 (i)] there is a subsequence (n_k) such that, locally almost everywhere, $\pi_{\zeta}(A_{n_k}^{1/2}) \to 0$ strongly. Since α_{ζ} is strongly continuous on bounded sets, we have locally almost everywhere, $\pi_{\zeta}(\alpha(A_{n_k}^{1/2})) \to 0$ strongly. Since the sequence (A_{n_k}) is bounded, it follows from [1; Chap. II § 2 Prop. 4 (ii)] that $\alpha(A_{n_k}^{1/2}) \to 0$ strongly and so $\alpha(A_{n_k}) \to 0$ weakly. Thus α (and similarly α^{-1}) is weakly continuous on bounded sets in the representation ϕ , hence ultra-weakly continuous, and so α is extendable to an automorphism $\overline{\alpha}$ of $\overline{\phi(\mathfrak{A})}$.

We shall next show that the field of automorphisms $\zeta \to \alpha_{\zeta}$ induces $\overline{\alpha}$ on $\overline{\phi(\mathfrak{A})}$ (and so is measurable). Let A be a fixed element of $\overline{\phi(\mathfrak{A})}$, and let $\zeta \to A_{\zeta}$ be a measurable operator field representing A. Let $\zeta \to B_{\zeta}$ be a measurable operator field representing $\overline{\alpha}(A)$. By metrizability of the strong topology [1; p. 33] and Kaplansky's Density Theorem [1; Chap. I § 3 Th. 3], we can choose a sequence (A_n) in \mathfrak{A} such that $||A_n|| \leq ||A||$ and $\phi(A_n) \to A$ strongly. By passing to a subsequence and using [1; Chap. II § 2 Prop. 4(i)] again, we can even suppose that $\pi_{\zeta}(A_n) \to A_{\zeta}$ strongly, locally almost everywhere. Since $\overline{\alpha}$ is strongly continuous on bounded sets, $\phi(\alpha(A_n)) \to \overline{\alpha}(A) = \int_{-\infty}^{\oplus} B_{\zeta} d\mu(\zeta)$ strongly, locally almost everywhere. But since α_{ζ} is strongly continuous on bounded sets, $\varphi(\alpha(A_{n_k})) \to \alpha_{\zeta}(A_{\zeta})$ strongly, locally almost everywhere, we have $B_{\zeta} = \alpha_{\zeta}(A_{\zeta})$. Thus $\overline{\alpha}(A) = \int_{-\infty}^{\oplus} \alpha_{\zeta}(A_{\zeta}) d\mu(\zeta)$, as required.

Now since $\overline{\alpha}$ is induced by the field $\zeta \to \alpha_{\zeta}$, it is clear that $\overline{\alpha}$ leaves each diagonal operator fixed, i.e. $\overline{\alpha}$ leaves the centre of $\overline{\phi(\mathfrak{A})}$ elementwise fixed. Hence by Kaplansky's Theorem $\overline{\alpha}$ is inner (since $\overline{\phi(\mathfrak{A})}$ is Type I), and the proof is complete.

It is possible for an automorphism of a postliminal algebra to be weakly-inner in some representation without being π -inner, as the following example shows. Let ν denote Lebesgue measure on the interval [0, 1], and let $H = L_2([0, 1], \nu)$. Let \Re denote the set of compact operators on H. For $f \in C([0, 1])$ let T_f denote the operator defined by

$$T_f x(t) = f(t) x(t) ,$$

and let $\mathfrak{T} = \{T_f : f \in C([0, 1])\} \subseteq \mathfrak{L}(H)$. Then $\mathfrak{A} = \mathfrak{R} + \mathfrak{T}$ is a C^* -algebra [2; 1.8.4] and is postliminal since $\{(0), \mathfrak{R}, \mathfrak{A}\}$ is a composition series for which each difference algebra has Hausdorff structure space (because $\mathfrak{A} - \mathfrak{R} \cong \mathfrak{T}$). Let $U \in \mathfrak{L}(H)$ be the unitary operator defined by

$$Ux(t) = x(1-t) \; .$$

then U induces an automorphism of \mathfrak{A} : for if $K \in \mathfrak{R}$, $T_f \in \mathfrak{T}$ then $U^*(K + T_f) U = U^* K U + T_g$ (where g(t) = f(1 - t)). Let

$$I_0 = \{T_f \in \mathfrak{T}: f(t) = 0 \quad \text{for} \quad 0 \leq t \leq \frac{1}{2}\}$$

and let $I_1 = \Re + I_0$, then it is easy to see that $U^* \cdot U$ does not preserve I_1 , so by Theorem 2, $U^* \cdot U$ is not π -inner. (In fact, it is not weakly-inner in the representation of \mathfrak{A} on $H \bigoplus H$ defined by $K + T \longrightarrow (K + T) \bigoplus T$.) But it is clearly weakly-inner in the given representation, since this is irreducible.

This example also shows that an automorphism of a postliminal C^* -algebra can leave the centre elementwise fixed and yet not be π -inner: for the centre of $\Re + \mathfrak{T}$ consists just of scalar multiples of the identity.

We conclude with a few remarks about the antiliminal case. Let \mathfrak{A} be a factor of Type II₁. Then \mathfrak{A} has no nonzero proper closed two-sided ideals, so that $\tau_0(\mathfrak{A}) = \tau(\mathfrak{A}) = \alpha(\mathfrak{A})$ in this case. On the other hand, there are many outer automorphisms of \mathfrak{A} . Thus the sets $\tau_0(\mathfrak{A})$ and $\tau(\mathfrak{A})$ are probably not of great interest when \mathfrak{A} is antiliminal.

Let \mathfrak{A} be an antiliminal algebra with a faithful irreducible representation. Then \mathfrak{A} has uncountably many such representations, all inequivalent [2; 4.7.2]. Intuitively, it seems unlikely that an automorphism would be weakly-inner in all these representations without actually being inner. In [6; Ex. a] an example is given of such an algebra (the Fermion algebra \mathfrak{F}) together with an automorphism of \mathfrak{F} which is weakly-inner in one representation, but not π -inner. It would be interesting to have an example of an automorphism of \mathfrak{F} which is π -inner but not inner.

References

1. J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien, Gauthier-Villars, Paris, 1957.

- 2. ____, Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris, 1964.
- 3. J. Glimm and R. V. Kadison, Unitary operators in C*-algebras, Pacific J. Math. 10 (1960), 547-556.
- 4. R. V. Kadison, Unitary invariants for representations of operator algebras, Ann. of Math. **66** (1957), 304-379.
- 5. ____, Derivations of operator algebras, Ann. of Math. 83 (1966), 280-293.
- 6. R. V. Kadison and J. R. Ringrose, Derivations and automorphisms of operator algebras, Commun. Math. Phys. 4 (1967), 32-63.
- 7. I. Kaplansky, Algebras of type I, Ann. of Math. 56 (1952), 460-472.
- 8. P. Miles, Derivations on B*-algebras, Pacific J. Math. 14 (1964), 1359-1366.
- 9. S. Sakai, Derivations of W*-algebras, Ann. of Math. 83 (1966), 273-279.

Received January 17, 1967.

UNIVERSITY OF NEWCASTLE UPON TYNE