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A NECESSARY CONDITION FOR d-POLYHEDRALITY

DAaviD BARNETTE

A graph is d-polyhedral provided it is isomorphic to the
graph of a d-dimensional convex polytope. One of the un-
solved problems in the field of convex polytopes is to charac-
terize the d-polyhedral graphs for d > 3. There are, however,
several necessary conditions known for a graph to be d-poly-
hedral. In this paper we present a new necessary condition
which is not implied by the other conditions but which has
two of them as corollaries, We also show how this new con-
dition may be useful in solving problems dealing with ambi-
guity of d-polyhedral graphs,

2. Preliminary remarks. The 3-polyhedral graphs have been
shown by Steinitz [8] to be those that are planar and 3-connected.
The known necessary conditions for d-polyhedrality, d > 3, are:

(i) A d-polyhedral graph is d-conmected |[1].

(ii) A d-polyhedral graph contains a subgraph homeomorphic
to the complete graph of d + 1 wertices [3, 4, 6].

(iii) The maximum number of components into which a d-poly-
hedral graph may be separated by removing n > d vertices is equal
to the maximum number o(d, n) of facets of a d-dimensional polytope
with n vertices [7].

Let G be a graph homeomorphic to C, (the complete graph of d
vertices). If @ is the homeomorphism then the images under @ of
the vertices of C, will be called the principal vertices of G.

3. The main result.

THEOREM 1. Given a wvertex v of a d-polyhedral graph G, let V
be the set of wertices joined to v by edges of G. Then V 1is con-
tained in a (d — 1l)-polyhedral subgraph G’ of G ~ {v}, and G’ con-
tains a homeomorphic image of C, whose principal vertices lie in
the set V.

Proof. We shall make use of the pulling process which is dis-
cussed in detail in [2]. We say that a d-polytope P’ is obtained from
a d-polytope P by pulling vertex v of P, when we replace the vertex
v by a point v’ such that the segment (v, v'] does not intersect any
(d — 1)-flat determined by vertices of P ~ {v}, and then take as P’
the convex hull of v and the remaining vertices of P. It follows
from the results in [2] that when v has been pulled to +' all (d — 1)-
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dimensional faces of P’ incident to v’ are pyramids over certain sub-
facets of P.

We define the linked complex of a vertex v in P to be the inter-
section of the star of v with the antistar of v in the boundary
complex of P. It also follows from the results in [2] that if » is
pulled to »' then the linked complex remains unchanged.

Let P be a d-polytope (d > 2) and let a vertex v be specified.
We pull v to a new vertex v and then intersect this new polytope
P’ by a hyperplane, H, which separates ¢’ from the remaining ver-
tices of P’. This intersection is a (d — 1)-polytope P* and we shall
show that P* is combinatorially equivalent to the linked complex of
v, Let F be any facet (i.e. (d — 1)-face) of P*. The facet F' is the
intersection of H with some pyramidal facet F' of P’. Let @ be a
function from the collection of facets of P* to the collection of
(d — 1)-faces of the linked complex of v, which takes F' into the facet
of # which misses v'. Since every face of the linked complex of »
is a face of some pyramidal face of P’ which meets v’, the function
@ is one-to-one and preserves incidences and is therefore a combina-
torial equivalence. For d = 2 the graph of a d-polytope is a subset
of the boundary complex and thus the graph consisting of the vertices
and edges of the linked complex of v is the required (d — 1)-polyhedral
subgraph of G ~ {v}.

We now prove the second part of our theorem by induction on
d. The theorem is obvious for d = 3. For d > 3 we intersect P with
a hyperplane H which separates V from the remaining vertices of
P. Let @ = HNP. The projection from v of P onto the linked
complex of v provides a homeomorphism of the graph of @ onto a
subgraph of the linked complex of v. Let ¢’ be a vertex of @Q; then
by the induction hypothesis the set of vertices V' connected to v’
contains a set of principal vertices of a homeomorphic image of C,_,.
Thus {v'} U V' contains a set of principal vertices of a homeomorphic
image of C,; whence the linked complex contains a graph homeomorphic
to C;. The principal vertices of this graph in the linked complex are
joined to v and the theorem is proved.

COROLLARY 1. A d-polyhedral graph contains a subgraph homeo-
morphic to Cyy,.

COROLLARY 2. A d-polyhedral graph is d-connected.

Proof. The result is obvious for d < 2. Proceeding by induction,
we assume the theorem to be true for all dimensions less than d.
Suppose G is a d-polyhedral graph which can be separated by d — 1
or fewer vertices. Let V be a minimal set of vertices separating G.
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Let ve V, then there are vertices v, and v, each joined to v by an
edge and lying in different components of the separation. By the
above theorem, v, and v, lie in a (d — 1)-polyhedral subgraph @ of
G ~ {v} and thus @ can be separated by removing d — 2 or fewer
vertices which contradicts the induction hypothesis.

The following example shows that (i), (ii) and (iili) do not imply
the conditions of Theorem 1.

Let G be the graph obtained from C, by removing a circuit of
length 3 (Figure I). This graph satisfies (i), (ii) and (iii) for d = 4,
however, the vertices connected to v, do not belong to any 3-polyhedral
subgraph of G ~ {v,}. To see this, suppose G’ were such a subgraph.
Then G’ must contain each edge incident to v,, v, and v,, but these
are the edges of the complete bipartite graph K,; which is not planar
and thus G’ is not 3-polyhedral.

Uy
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FIGURE 1 FIiGure II

A more complicated example is the graph in Figure II which
satisfies (i), (ii), (iii) and the first part of our theorem for d = 4 but
there is no 3-polyhedral subgraph containing the set V of vertices
attached to v, which contains a homeomorphic image of C, whose
principal vertices lie in V.,

A graph may satisfy the conditions of Theorem 1 and (iii) and
still not be polyhedral as is shown by the following theorem and
example,

The complete bipartite graph K,, is defined to be the graph
whose vertices consist of two nonempty sets, 4 and B with a and b
vertices respectively, and two vertices are joined by an edge if and
only if one is in A and the other is in B.
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THEOREM 2. The complete bipartite graph K,, s d-polyhedral
only ifd=2, a=2,and b=2; ord=1a=1, and b = 1.

Proof. The theorem is obvious for d < 2. Suppose K,, is 3-
polyhedral. The sets A and B must each contain three vertices for
otherwise K, , would not be 3-connected. But if @ and b are greater
than or equal to three then K,, contains K, and is therefore not
planar.

Suppose K,,, is d-polyhedral for d > 3. Let G be the graph of
some 3-dimensional face F' of a d-polytope whose graph is K,,. If
two vertices of G are joined by an edge in K,, then they are joined
by an edge in G because F' is convex. Therefore, G is a complete
bipartite graph which has been shown to be impossible.

It is easy to check (using the results mentioned in Remark 2
in §4 of this paper) that K, satisfies (iii) for d = 4. The graph in
Figure III has 37 vertices, is bipartite and is 3-polyhedral. The vertex

FI1Gure III

set with 19 vertices contains the principal vertices of a homeomorphic
image of C, as is indicated in Figure III. This shows that K,
satisfies the conditions of Theorem 1, but Theorem 2 shows that it
is not 4-polyhedral.

4. Unambiguous graphs. A polyhedral graph G is said to be
completely unambiguous provided

(i) G is the graph of only one d-polytope P for some d
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(ii) G is not the graph of any e-polytope for e=d

(iii) G can be realized as the graph of P in only one way. That

is, if P, and P, are two combinatorially equivalent realizations of G
and if a set of vertices of G determine a face of P, then it determines
a face of P,.
One of the unsolved problems on polyhedral graphs is whether there
exist completely unambiguous graphs of d-polytopes for d = 5. The
main difficulty is in finding graphs which are d-polyhedral for d = 5
but are not e-polyhedral for any ¢ < d. The only examples of such
graphs have been constructed by Klee [7] using (iii) and by Griinbaum
[5] using related ideas, but these graphs are ambiguous. An affirma-
tive answer to the following question would provide a completely
unambiguous 5-polyhedral graph:

Does there exist a 4-valent 4-polyhedral graph G which is com-
pletely unambiguous and which does not contain a 3-polyhedral sub-
graph using all vertices of G?

If P were a realization of such a 4-polyhedral graph G then a
pyramid over P would provide a 5-polytope whose graph G’ could not
be 4-polyhedral by our theorem. It could not be e-polyhedral for
¢ > 5 because it contains 5-valent vertices and is thus not e-connected.
There must be at least one 4-dimensional face of any realization of
G’, which misses the vertex v of G’ ~ (G. Since G is 4-valent it has
no 4-polyhedral subgraphs and thus only one 4-dimensional face misses
v, and any realization of G’ must be a pyramid over a realization of
G. Since G has only one realization, G’ is completely unambiguous.

5. Remarks.

1. It is not known whether all graphs satisfying Theorem 1 also
satisfy (iii).

2., The function ¢ (d, n) has been determined for d < 8 in which
case we have

o, ) = (% [E‘ 1]) ; ( —n[f;]).

This equality also holds if n < d + 3 or » > [d/2]}, see [3].

3. The graph consisting of C, minus a circuit of length three
was first used by Griinbaum and Motzkin [5], as an example of a
graph which satisfies (i) and (ii) for d = 4 but is not 4-polyhedral.

4. It would be of interest to determine the maximum number
C(d), such that given any C(d) vertices of a d-polyhedral graph there
is a subgraph homeomorphic to C,,, whose principal vertices include
these given vertices. Clearly C(2) =3 and it may easily be shown
that C(d) < d for d > 2. Theorem 1 implies C(d) = 1.
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