
PACIFIC JOURNAL OF MATHEMATICS
Vol. 23, No. 3, 1967

DIOPHANTINE SYSTEMS

A. A. AUCOIN

We concern ourselves in this paper with integral solutions
of three Diophantine systems, generalizations of

xJryJrZ = u + v + w, xyz = uvw

and of xy + xz + yz = uv + uw + vw, xyz = ww. The solu-
tions are given in terms of parameters and are integral for
an integral choice of the parameters. Throughout the paper
the integer n will be greater than 1.

Heron [3] in the first century B. C. considered the problem of
finding two rectangles such that the area of the first is three times
the area of the second and the perimeter of the second is three times
of perimeter of the first. He also considered a second problem which
results in the Diophantine system x + y = u + v,xy = £uv. Planude
[3] discussed the system x + y = u + v, xy = buv, and Cantor [3] gave
general solutions to this problem. Tannery [3] generalized the two
problems of Heron. Moessner [7] and [8] gave particular solutions,
while Dickson [4] and Gloden [6] gave parametric solutions of the
system

x + y+z — u + v + w,

xyz = uvw ,

Bini [1] considered a system equivalent to (1) and Buquet [2] extended
this system to 2n unknowns.

All of the above systems are special cases of the system

cP(x) = dP(y),

where A(a, β) = Σ?=i(α<αi - W λ -P(α) = Π?=i«*, a*, 6* are integers,
and c and d are nonzero integers. We make the following definitions:

Ap(a, β) = A(a, β) - (apap - bpβp),

Pp(a) = P(a)/ap, π^a, β) = cbpPp(a) - dapPp{β), p is a fixed integer,
1 <: p <; n, and the a's and /3's are arbitrary integers.

We agree that solutions in which some unknown vanishes, or those
for which a^ = 6^, (ί = 1, , n) are trivial solutions.

THEOREM. 1. Any nontrivial integral solution of (2) is pro-
portional to a solution given by
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Xi = πL(α, β)a, , i Φ p ,

, 3 v Vi = πx(α:, β)βi , i ^ p ,

dP(£)A(α, β) ,

:, β) .

Proof. Since the solution is nontrivial there is an integer p,
p <̂  n, such that α ^ ^ δP3/p. If for i Φ p we set

, 4 ^ 7Γi(

2/i = π^a, β)βi ,

then (2) becomes

apxp - bpyp = - π^a, β)Ap(a, β) ,

cPp{a)πf-\a, β)xp - dPp{β)πf-\a, β)yp - 0 .

The solution of this system is

( 5 } xP = dPp(β)Ap(a, β) ,

yp = cPp(a)Ap(a, β) .

From (4) and (5) it follows that (3) is a solution of (2).
Suppose now that xζ = Xi9 ^ == μ^υ is a non trivial integral solution

of (2). Then A(λ, //) = 0, cP(λ) = dP(μ), and α ^ ^ bpμp. If in (3)
we choose a{ = \ u βt = μ{ we get

y t = πι(X9μ)μi , (i = 1 , •••, w) ,

which is proportional to the solution â  = λ̂ , #< = JM{, since π^λ, /J) is
integral and ^(λ, μ) = cP(X)/Xpμp (bpμp - ap\) Φ 0.

Dickson [5] has given solutions of the system

xy + xz + yz = uv + %w + vw ,
( 6 )

#2/3 = uvw .

He [4] also indicates that this system may be solved by the same
method he used to solve (1). Our second theorem generalizes (6).

We wish to solve the system

_ btPjy)! = 0 ^

( 7 ) i=ιL Xi Vi J

where a i ? δ«, c, cZ, P(a), Pp(a) are the same as in Theorem 1. We set

9 B(x) = ± 'atP^x), C(y) - Σ %Ppi(y) ,
ajx,
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where Σ ' indicates that the pth term is omitted from the summations,
τr2(αr, β) = cPp(a)C(β) - dPp(β)B(a), p is a fixed integer, 1 ^ p ^ n,
and the α's and /3's are arbitrary integers.

We agree that solutions in which some unknown vanishes or any
solution for which aiP{x)lxi = b,iP(y)/yi, (ΐ = 1, , ri), are trivial
solutions.

THEOREM1 2. Any nontrivial integral solution of (7) is propor-
tional to a solution given by

Xi = π2(a, βfa , i Φ p ,

Vi = π2(α, £)& , i Φ p ,

^ = dPP(£)

yp - cPp(α) (αpPp(α) - bpPp(β)) .

Proof. Since the solution is nontrivial there is an integer p,
1 ^ p ^ n, such that apP(x)/xp Φ bpP(y)/yp. If for i Φ p we set

y{ = π2(α,

then (7) becomes

τrΓ2(α, β)B{a)xp - πΓ\a, β)C(β)yp = πΓ\a, β) (bpPp(β) - apPp(a)) ,

cτtr\0L, β)Pp(a)xp - dτtr\a, β)PP(β)yP = 0 .

The solution of this system is

*v = dPp(β) (apPp(a) - bpPp(β)) ,

yp = cPp(a) (apPp(a) - bpPp{β)) .

It follows from (9) and (10) that (8) is a solution of (7).
Suppose now that χi ~\i1yi — μi is a nontrivial integral solution

of (7). Then Xpβ(X) + apPp(X) = μpC(μ) + bpPp(μ), cP(X) - dP(μ), and
apP(λ)/λp Φ bpP{μ)lμp. If in (8) we choose ai = χi9 β{ = μi we obtain

(i = 1, •••, n) ,

^ = ττ2(λ, μ)μt , (ΐ = 1, . . . , n ) ,

which is proportional to the solution x{ = \i9 y{ = μ. since π2(X,μ) is
integral and

^± ϊ^^ hJM\ 0
Xpμp I Xp μp

1 This theorem also solves the problems of Heron and Planude.
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The method of the two preceding theorems may be used to obtain
solutions of the system

(11) *=i j=*+i L a;,- y3-

cP(x) = dP(y) ,

where c, d, P(α) are defined above and the aij9 biό are integers. We
define

D(a, β) = ± au
3=2

E(a, β) =

F(a, β) = Σ Σ (αii«iPl
i 2 i l

±
j=2

, ^) = Σ binβ{P%(a)Pn(β) ,
i=l

, β) = Σ Σ ( c ^ P ^ α ) ^ / ? ) - btjβtP%(a)Pni(β)) ,
3=2ΐ=l

τr4(α, /5) = cdPn{a)Pn{β)I(a, β) .

THEOREM 3. Aw?/ nonzero integral solution of (11) which does
not satisfy

(12) jθiΛ.1 = o ,
Xj J

is proportional to a solution given by

1 3

cm?/ non-zero integral solution which does not satisfy

(14) £ Γ-^ 1 - -^^-1 - 0 ,
L ^ λ J
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is proportional to a solution given by

Xt = π 4 ( α , β)<Xi , i φ n ,

iΛ ~ 2/* π 4 (α, iβ)/3< , i Φ n ,
(15)

xn = dPn(β) (dPn(β)H(a, β) - cPn(a)G(a, β)) ,
yn = ePn(a) (dPn(β)H(a, β) - cPn(a)G(a, β)) .

Proof. If we multiply the first of the equations in (11) by
P1(x)P1(y) and for i Φ 1 set

IΛ ax %i = ^s(a, β)a( ,
(lb)

the system becomes

πf-\a, β)D{a, β)x, - π*Γ\a, β)E(a, β)Vl = - π2Γ2(a, β)F(a, β) ,

C7cr\af β)P1(a)xι - dπt~\a, β)P1(β)y1 = 0 ,

which has as solution

Xl =

From (16) and (17) it follows that (13) is a solution of (11).
Suppose now that x{ — Xiy yt = μt is any nonzero integral solution

of (11) which does not satisfy (12). If we choose at = λ<, βi = μi

then (13) becomes

Xi = πz{\, μ)Xi , (i = 1 , • • - , % ) ,

which is proportional to the solution aj4 = λ4,2/i = jW4 since π3(λ, /̂ ) is
integral and

πfr, μ) = cP(X)P1(λ)P1(^) J, Γ A ^ _ ^ Λ I

We may now write (11) as

(18)

If we multiply the first equation in (18) by Pn(x)Pn(y) and for
i φ n set

x. = πΛa, β)a{,(19)
2/ ττ(α
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the system becomes

-i- πf-\a, β)G(a, β) - ±-π*Γ\a, β)H(a, /S) = - 7rJ-2(a,
«• Vn

X , ) G ) r ^ , £ ) w ( α ) = 0

which has solution

»• = dP.GS) (dPn(β)H(a, β) - cPn(a)G(a, β)) ,

1/n = cPn(a) (dPn(β)H(a, β) - cPn(a)G(a, β)) .

It follows from (19) and (20) that (15) is a solution of (18) and hence
of (11).

Suppose now that xt = Xi9Vi = μ* is any nonzero integral solu-
tion of (18) which does not satisfy (14). If in (15) we choose a{ = Xif

β. — μi we get

Xi = τ τ 4 ( λ , μ)Xi , (i = 1 , •••, n) ,

^ = τr4(λ, μ)μζ , (i = 1, - . - , n ) ,

which is proportional to the solution x{ = λ ί y τ/i = /î  since ττ4(λ, /i) is
integral and

ττ4(λ, μ) = cdPl(X)Pl(μ) g \ ^ ^ ~ ^f1 J * 0 .

The following example shows that not all systems of type (11)
can be solved by the method of this paper. The system

3 4 Γ π ,γ h 1/ ~λ

2_j I

w h e r e α 1 2 = 3, α 1 3 = - 2, α 1 4 = 3, α 2 3 = 4, α 2 4 = 4, α 3 4 = 3, 612 = 6, 613 = -- 2,
bu — 3, 623 = 8, b24 = 2, b3i — 3, c — 2, d — 1, h a s t h e so lut ion

χλ = Z, x2

 = o, xs = 4 , X 4 = Δ , i/] = 4 , τ/2 = &i Vz — 4 , y 4 = Δ j

which also satisfies

and

^ Γ al3xx _ 61.7i/1 1 =

ί4^i_ _ 6 ^ ^ 1 = Q ^
x 4 yA J
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