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POLYNOMIALS IN LINEAR RELATIONS

M. J. KASCIC, JR.

We point out an error in a paper on linear relations by
R. Arens. We also re-establish, in a weakened form, a
result of Arens on the polynomials in a closed linear relation
which was placed in jeopardy by this error.

The error in question is in the proposition [1,3.52], restated
below as 3.1. It was detected by Professor P. R. Masani, who also
constructed a counter example. We take the liberty of presenting
his example below.

The theorem on closed linear relations, viz. [1, 3. 8], which depended
on this proposition 3.1 was to be a generalization of the theorem of
A. E. Taylor [7, 6.1] who proved that if T is a closed operator with
a nonempty resolvent in a Banach space, then each polynomial in T
is also a closed operator.

Our weakened form, viz. Theorem 3.16 below, of Arens' purely
algebraic proposition involves topological linear space concepts, and
is still a generalization of Taylor's theorem [7,6.1],

2. Linear relations* Let Xl9 X29 and X3 be linear spaces. A
relation between X1 and X2 is a subset of X1 0 X2. A linear relation
between X1 and X2 is a linear subspace of X1 0 X2 These concepts
generalize the notions of function and linear operator respectively. If
T is a relation, the definitions of the domain and range of T, D(T)
and R(T) respectively, are obvious.

If S and T are relations between Xι and X29

S + T = {(xl9 x2 + x3): (x19 x2) e S and (xl9 x3) e T)

is a relation between X1 and X2. If £ is a relation between Xι and
X29 and T is a relation between X2 and XZ9 To S = {(x19 x3): (xί9 x2) e S

and (x29 x3) e T for some x2 e X2} is a relation between Xx and Xz. For
any relation T9 T~ι = {(p9 q): (q9 p) e T}. If T is linear, T~ι is also.
If S and T are linear, S + T and So T are also. If λ is an element
of the field, we may consider λ as the linear relation between X{ and
Xi9 namely {(x9 Xx):xeXJ. We write XT for λo T.

If X{ and Yiyi = l929 form a dual pair, i.e., there exists a
canonical bilinear form <,>: X^0 Yt —>F (where F is the field) such
that ζx9 yoy = 0 for every xeX{ implies y0 = 0 and <a?0> 2/!> — 0 for
every 1/6^ implies x0 = 09 and Γ is a relation between Xλ and X2,
we may define the adjoint of T, T* = {(y2, yj: for every
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(xl9 x2) e T, <x, y,y = <x2i

which is a relation between Y2 and Ylm Again if T is linear, T* is
also. We can also consider Xx φ X2 and Y1 0 Y2 to form a dual pair
with ζ(xly x2), (y, y2)y = ζxu y,y + ζx2, y2y. Thus we may speak of Γ 1

for T a relation. From [1,3.3] it is obvious that T** = T11. A
relation is called regularly closed if and only if T — T11 — T**.

If X and Y form a dual pair over C, we consider X as a class
of linear functionals on Y. An obvious topology of importance on X
is that of pointwise convergence on Y. This topology is denoted
σ(X, Y). It can be shown that the dual of (X, σ(X, Y)) is Y. The
interested reader is referred to Schaefer [6], page 122 et seq. A
locally convex vector topology on X, β, such that the dual of (X, Ω)
is Y is called a consistent topology for the dual pair <(X, Yy. It
was shown by Mackey [5] that there exists a finest such topology.
Arens [2] identified it with the topology of uniform convergence on
absolutely convex σ(Y, X) compact sets. This topology is denoted
τ(X, Y). Thus a locally convex vector topology on X is consistent
if and only if it is coarser than τ(X, Y) and finer than σ(X1 Y).

It was first shown by Banach [3] that if T is a linear subspace,
and thus in particular, a linear relation, it is regularly closed if and
only if it is closed in the Cartesian product of any two consistent
topologies. Thus the question of closed linear relations can be attacked
from either viewpoint. Granted that the algebraic approach does not
depend on the field, we will see that the topological approach can lead
to stronger results in special cases.

3* Closed products of linear relations* In the course of
investigating when the product S°T of two closed linear relations is
closed, Arens [1, 3. 52] states the following proposition.

PROPOSITION 3.1. Let Xt and Y{1 i = 1, 2, 3 be dual pairs. Let
T be a linear relation between X1 and X2 and S a linear relation
between X2 and X3. If D(S*) = X3 or #(T*) = Xl9 then (So Γ)* -
Γ*oS*. The following counterexample is due to Masani:

3.11. Let Xi = Yi = Hubert space i = 1, 2, 3, with its own
natural duality. Let M be a closed subspace of X such that the
dimension of M = oo. Let PM be the projection onto M and 2\ =
PM1°PM* Let St be any closed one-to-one operator such that DiSJlM
and RiSi) is not closed. Si may even be chosen to be continuous.
We shall first establish that &<> T, is not closed. Let z e ^
and zn a sequence such that zn—>z and zneR(S1). Let yn = Sτ\zn).
Certainly the sequence yn does not converge (since z ί R{S^j). However,
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yn e D(St) £ NiTJ. Since T, = Tr\ (0, yΛ) e Tx. Since (yn, zn) e Slf we
have (0, zn) e S1 o Tu Now since z g #(&) £ #(& o 2\), zgRiS^ Tx).
Thus (0, z) g S : o TΊ. However (0, zn) -* (0, z) and (0, sΛ) e & o Tx. Thus
S^ ϊ\ is not closed.

Now let S=Tf and T = Sf. Then DiTJ = D(S*) = X But
T*oS* = Sf*oTf* = Sto Tγ which we have shown to be not closed.
But (SoT)* is necessarily closed since all adjoints are; hence
(SoT)* Φ Γ*oS*.

The reader should note that the above counter example also dis-
proves Arens [1, 3. 7] on the closedness of S°T.

As Masani has suggested, there is a weakened form of 3.1 which
is true and we present it next (3.12). We remark that 3.12 cannot
be used in place of 3.1 in [1] to validate the proposed generalization
[7,6.1].

PROPOSITION 3.12. If Γ g ί φ I ^ S g ^ φ XB and either
R(T*) - Y, and D(S) £ R(T) or D(S*) - Γ3 and R(T) £ D(S), then

Proof. First note that if one hypothesis is sufficient for the
intended result, the other is also. This is an easy consequence of
the fact that (So T)* = Γ*oS* if and only if

Thus let us suppose R(T*) = Y, and D(S) £ R(T). It is trivial that
Γ * o S * g (So T)*. Thus we are reduced to showing that

(SoT)* £ T*oS* .

Let (y3, yt) e (So T)*. Certainly (y29yi)eT* for some i/2eΓ2 since
J?(T*) = F1# If we can show (ya,y2)eS*, we are finished. To do
this we must show for every (x2, xz) e S, <α?2, τ/2> = <a?8, ?/3)>. Since
JD(JS) £i2(Γ), for each (a?2, α?8) € S, there exists ^ e l , such that
(a?!, #2) e T. Thus <^, ̂ )> = <ίc2, y2y since (?/2, yJeT*. Next note that
(ajlf x3) e So T and thus <^, y,y = <a;3,2/8>. Thus <#2, ̂ /2> = <^3, ̂ /3> as
was to be shown.

This proposition can be used to establish the closedness of some,
but not very many, products.

PROPOSITION 3.13. If S is a closed relation between X1 and X2,
T a closed relation between X2 and X3, and either R(T) = Xz and
ί?(S*)ei?(T*) or D(S) = X1 and Λ(Γ*) £ Z>(S*), then ToS is a
closed relation between Xι and X3.
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Proof. Certainly S * ° Γ £ {To ST. Hence (ToS)** g (S*oT*)*.
If we can show that ( S * ° Γ ψ £ T**oS** = T°S, we are finished,
for then (Tog)** £ Tog. But direct application of 3.12, substituting
S* for S and T* for T, asserts that (S*oΓ*)* £ T**oS**.

This proposition is true for any field, the proof given above being
valid in such generality.

However, we now shift to the employment of properly topological
methods to obtain a result for topological linear spaces which is
stronger than 3.13.

PROPOSITION 3.14. Let X{ and Y{ be dual pairs over C. If S
is a closed relation between Xλ and X2, T £ X2 0 X3 and either R(T)
is a closed subspace of X3 and D(S*) ξ^R(T*) or D(S*) is a closed
subspace of Y2 and JR(T*) £ D(S*) then Γ°S is closed.

Proof. We shall only consider the first set of hypotheses. The
other set is handled as in 3.12. Suppose (dy, cy) is a net in ToS and
(dy, cy) — (d, c) in σ(X, Y) φ σ(X, Y). We wish to show (d, c) e To S.
Since iZ(Γ) is closed, there exists b e X2 such that (b,c)eT. If
(d, 6) e S, we are finished. Since S is closed, (d, 6)eS if and only if
for every (x,y)eS*, <d, ?/> = <δ, a?>. Since (dy, cy)eTo S there exists
δγ e X2 such that (dy, δy) e S and (δγ, c7) e T. Since JD(S*) £ iJ(Γ*),
there exists w such that (w,x)eT*. Thus ζdy, yy = (by, xy. But
ζby, x} = (cy, wy. Thus since tdy,yy-+ζd,yy and <cy, ΐ(/>-+<(c, w>,
<d, 2/> = <c, ̂ )>. However <δ, a;> = <c, ̂  since (6, c) e Γand ( ^ a j e Γ * ,
Hence ζd, yy = <(b, xy as was to be shown.

PROPOSITION 3.15. Let X{ and Y* be dual pairs over C. If S
is a closed relation between Xι and X2 and Γ £ X2 φ X3 such that
jβ(T) is closed and T~ι is singlevalued and continuous from

(R(T), σ(X, Y) I Bm) -> (X, σ(X, Γ)) ,

then ToS is closed.

Proof. First note that the hypotheses on Γ necessarily imply
that T is closed. Let (dy cy) be a net in T ° S such that (dγ, c7) —> (d, c)
in σ(X, Γ ) 0 σ ( I , Γ). Since c v ^ c in σ(X, Γ), Γ-̂ Cγ) -> Γ-1^). Since
T is closed, (T-^c), c) e T and since S is closed, (d, T-^c)) e S. Hence
(d, c)eΓoS.

We now use 3.15 to prove a generalization of Taylor's theorem
concerning polynomials in linear operators.

THEOREM 3.16. Let X and Y be a dual pair over C. If T is
a closed linear relation on X such that for some λeC, R(T — λ) is



POLYNOMIALS IN LINEAR RELATIONS 295

a closed subspace of X and (T — λ)"1 is singlevalued and continuous
from (i?(T), σ(X, Y)\mτ)) to (X, σ(X, Y)), then for every polynomial
P, P(T) is a closed linear relation on X.

Proof. We will use induction and the fact that if S is closed,
S + oc is closed for every aeC. Thus we may assume that for every
polynomial Q of degree <n,Q(T) is closed. Let P(z) be an (n + 1)
degree polynomial. Then there exists a polynomial Q of degree n such
that for some aeC, P(z) — a = (z — λ)oQ(z), zeC. Hence by [1, 2. 3],
P(T) - a = (T - λ) o Q(T). Now apply 3.15 with T replaced by T - X
and S by Q(T). Then P(T) - a is closed and hence P(T) is closed.

4* Further investigation* In our doctoral dissertation [4], we
have treated this theorem and related topics in greater detail.
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