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NONCOMMUTATIVE RINGS WHOSE CYCLIC MODULES
HAVE CYCLIC INJECTIVE HULLS

B. L. OSOFSKY

A ring R is called hypercyclic if every cyclic i?-module
has cyclic injective hulL If R is hypercyclic and RIJ artinian,
then R is a ring direct sum of matrix rings over local hyper-
cyclic rings. The structure of local hypercyclic rings is studied.

In [l] and [2] Caldwell has characterized rings R (with 1) such
that

( i ) JB is commutative, and
(ii) Every cyclic i?-module has cyclic injective hull. In particu-

lar, every such ring has the property
(iii) R/J is artinian, where / is the Jacobson radical of R.
In § 1, the commutativity condition (i) is dropped, and it is shown

that rings satisfying (ii) and (iii) are direct sums of matrix rings
over local rings satisfying (ii). In §2 local rings satisfying (ii) are
studied. These are, with one possible exception, almost commutative
in the sense that xR — Rx for all xeR. For such rings, CaldwelΓs
description in the commutative case goes through. The possible ex-
ception would imply the existence of a simple radical ring (without
1 of course) which is not nil and whose right ideals and left ideals
are linearly ordered. This is why the word "possible" is inserted.

In this paper, R will denote a ring with 1, and all modules will
be unital right iϋ-modules. If MR is a module, E(MR) will denote
the injective hull of M. MR is an essential extension of NR will be
denoted MΊΞ2N or N^rM. Following CaldwelPs terminology in [1]
and [2], R will be called hypercyclic if R satisfies (ii), that is, E(R/I)
is cyclic for every right ideal I. The socle of M will be denoted
S(M), and Rn will denote the ring of n x n matrices over R. R is
called regular if every finitely generated right ideal is generated by
an idempotent.

1* Hypercyclic rings with chain conditions on R/J* In this
section we study hypercyclic rings such that R/J is artinian. Such
rings will be called restricted hypercyclic. We do not actually use
the full force of R/J artinian; it is equivalent to assume that R is
hypercyclic and R/I has ascending chain condition on direct summands
for all right ideals I. Thus if R is hypercyclic, the ascending chain
condition on (R/J)B will imply R is restricted hypercyclic also. We
start by quoting several known results.
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LEMMA 1.1. Let M be a finitely generated R-module. Then
MJ= M~M= 0.

Proof. See Jacobson [6], Theorem 10. I suspect the name Naka-
yama usually associated with this lemma comes from [11], where
Nakayama reformulates the statement of Jacobson's theorem by
throwing out extraneous hypotheses.

PROPOSITION 1.2. Let R = I, 0 0 In, where {I, 11 ̂  j ^ n)
are isomorphic right ideals. Let R' = Homi2(/1, IJ. Then R ̂  (R')n.

Proof. See Jacobson [8], p. 52.

PROPOSITION 1.3. Let RR be injective. Then R/J is regular, and
for each set {ε̂  11 ̂  i :g n} of orthogonal idempotents in R/J such
that Σ?=i e» = 1 + e/", there exists {ei | 1 ̂  i ^ n) orthogonal idem-
potents in R with e< + J = ε̂  and Σ*=i βi = l

Proo/. See Faith and Utumi [5].

PROPOSITION 1.4. Let e = e\f = f2eR. Then eR^fR<=> eR/eJ &
fR/fJ.

Proof. See [8], p. 53.

PROPOSITION 1.5. Let F = Σ?=i #*-B b e a free i2-module with free
basis {Xi 11 ̂  i ^ ^}. Then JlfΛ —> Homβ (F, M) is a category isomor-
phism between the category of right iϋ-modules and the category of
right iVmodules with inverse NRn —• N <g)Rn F.

Proof. See Morita [10], Theorem 3.4.

PROPOSITION 1.6. Let R be restricted hypercyclic. Then R ' 2

Proof. See Caldwell [1], Theorem 3.5. R/J = Σ ? = 1 0 Si9 Si
simple, and every simple i?-module is isomorphic to some St. Hence
E(R/J) = Σ Θ E(Si) is faithful, and E(Si) - a;^ for some xt. Let
A = {r e R I ^ r e S{}. Then A g' i? since E(Si)'^ S{ and Π?=1 A S'i?.
Then E{R/J)'C\UDi^R/J so E(R/J) {C[UD{)J = 0. We conclude
(n?-iA)e7=0, so n?BiA

We now come to a basic lemma on restricted hypercyclic rings,
extending a result in Faith [3], who proved it in the case that R
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was perfect and hypercyclic.

LEMMA 1.7. Let R be a hypercyclic ring such that every homo-
morphic image of R has ascending chain condition on direct sum-
mands. Then RR is injectίve and R is restricted hypercyclic.

Proof. Since R is hypercyclic, E(R) ρ& R/I for some right ideal I.
Let / embed R in R/I, /(I) = x + I. Since / is one-to-one, xR Π / =
0, so E(R) = E(xR) 0 E(I) 0 M. Since xR ^ R, E(xR) ^ E(R) 0 E(I) 0
M so E(R) ~ E(R) 0 E(I) 0 M0 E(I) 0 M ~ E(R) 0 E(I) 0 I φ
E(I) 0 1 0 #(/) 0 M ~ ~ #(#) 0 Σ?=i W ) Θ Jtfli. Since Λ//
has ascending chain condition on direct summands, E(I) 0 Λf = 0, so
/ = 0 and RR is injective. Since R/J is regular by 1.3, the chain
condition on R/J implies R/J artinian.

LEMMA 1.8. Let R/J be artinian, I a right ideal of R, R/I —
Σ?=i θ ^ Then m ^ the composition length of R/J. Moreover, if
Mi/MiJ is simple for each i, the number of MJMiJ isomorphic to a
given simple module M ^ the number of factor modules ^ M in a
composition series for R/J.

Proof. ΣΓ~i θ MJMiJ ~ (R/I)/(R/I)J ~RII+J~ (R/J)/(I + J/J).
The lemma then follows from the Jordan-Holder-Schreier theorem.
See Jacobson [7], p. 141.

COROLLARY 1.9. Let R be restricted hypercyclic, e = e2 e R,
length eR/eJ = m. Then any independent set of submodules of a
quotient of eR has at most m elements.

Proof. Let {Mi 11 ^ i <S k) be an independent family of sub-
modules of eR/el. Then R/el^ (1 - e)R® Σ?=i θ Mi9 so E(R/eI)
contains a direct sum of (length R/J — m + k) terms. Hence k ^ m
by 1.8.

COROLLARY 1.10. Let R be restricted hypercyclic, e = e2eR,
eR/eJ simple. Then the submodules of eR are linearly ordered.

Proof. Let A,BQ eR. By 1.9, A/A f] B = 0 or B/A n B = 0, so

COROLLARY 1.11. Let R be restricted hypercyclic. Then RR is
injective.

Proof. Apply 1.8 and 1.7.



334 B. L. OSOFSKY

LEMMA 1.12. Let R be restricted hypercyclic, M a simple R-
module. Then E(M) ̂  eR for some e = e2 e R.

Proof. By 1.11, RR is injective. Let R/J = ΣίU e<#, fe 11 ^
i <^ m} orthogonal primitive idempotents. By 1.3, there exist {̂  11 ^
i <£ m} orthogonal idempotents of i? such that β4 + J = e< and 1 =
ΣΓ=i β*. By 1.6, e{R Π S(i2) ^ 0. Since e^/ej is indecomposable, so
is e,R = JE^Λ Π S(12)). Hence e,i? n S(JB) = S< is simple. By 1.4,
eiR/eiJ^βjR/ejJ^Si^Sj. Hence the correspondence Si<-+E(Si)/E(Si)J
is one-to-one between isomorphism classes of simple modules contain-
ing a representative S< S S(Λ) and isomorphism classes of modules of
the form e^/e^. Since every simple jβ-module is isomorphic to some
βiR/βiJ and the set of isomorphism classes of simples is finite, every
isomorphism class of simples contains some S{. If M^ SiQ, E(M) **
eί0R.

LEMMA 1.13. Let R be hypercyclic, RjJ^ An for some division
ring A. Then R ρ& (R')n, where R'IR'J(Rf) & A, so Rf is local.

Proof. Let R/J — ΣΓ=i &iIt/J, {^i 11 ̂  i ^ ^} primitive orthogonal
idempotents. Then R = Σf=1 e{R, {e{ \ 1 <£ i ^ m) orthogonal idempotents
with et + J = βi by 1.11 and 1.3. By 1.4, e{R ^ eάR for all i and j
since all simple An modules are isomorphic. By 1.2, R ^ (RomR(eiR,
βiR))n. But R' = Hom^ίe^J?, e^) ^ e^e^ and R'/R'J(R') ^ eiRe^e^ ^
HomΛ / J(ε i4n, ε ^ J ^ A.

LEMMA 1.14. Let R = Σ?=i Θ -B* ^β a r^nd direct sum. Then
R is hypercyclic <=> each Ri is.

Proof. If βi is the identity of Rif then {e{ \ 1 ^ i < n} are or-
thogonal central idempotents of JB. Let / be an ideal of R. Then

j , and one easily verifies that E(R/I) ^ R/K <

LEMMA 1.15. Let R be restricted hypercyclic. Then R is a
ring direct sum of matrix rings over local rings.

Proof. Let R/J = Σ<U φ (4i)Wi, 44 a division ring, nx ^ ^ 2 ̂  ^
»̂> (Λ*)nf = ^*i2/^ where s< is a central idempotent of R/J. Let ε̂  —

βtf + J, {βi 11 ̂  i ^ m} orthogonal idempotents of R such that XΓ=1 e, =
1. By Lemmas 1.13 and 1.14, we need only show each e{ is central.
Assume not. Then there exist i Φ j such that e^βj Φ 0. Let e{reά Φ
O,iφj. Consider
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M = R/(Σn+i.&R + eάJ + βiTβ.-J) ^ eάR/eά

This contains a direct sum of at least % + 1 copies of the unique
simple {Aά)n. module S. Then E(M)SΣ*Uΐ1E(s) **R/1 f o r s o m e I
Since E(S)/E(S)J is simple by the proof of 1.12, lemma 1.8 shows
E(S)/E(S)J is the simple (Δt)nι module for some £ with w, > %. Now
E(R/J) ** R/K for some K, and by 1.12, since R/J is a finite direct
sum of simple modules, E(R/J) is protective. Hence R ^ E(R/J) φ ϋΓ,
where the length of E(R/J)/E(R/J)J = length R/J. By 1.8, If = 0,
so S(i?) ^ R/J. But then the number of composition factors of S(R) ?&
S = the number of times E(S)/E(S)J appears as a composition factor
of R/J — the number of composition factors of R/J ^ S. Thus nx —
τij, a contradiction.

Lemmas 1.14 and 1.15 reduce the study of restricted hypercyclic
rings to hypercyclic matrix rings over local rings R\ We will show
that, for R' local, (R')n is hypercyclic *=>R' is hypercyclic.

LEMMA 1.16. Let R be hypercyclic, R/J a simple R-module.
Let F = ΣΓ θ Ru K^ F. Let {N^l^i Sfybe a family of nonzero
independent submodules of F/K. Then k ^ n.

Proof. Let xl9 , xn+1 be any n + 1 elements of F, xt = (fic<lf ,
xin). We will show that {a?{ 11 ^ ΐ ^ ^ + 1} is not independent modulo
K. If some x{ e K, this is immediate, so we may assume XiίK for
all i. By 1.10, the right ideals of R are linearly ordered. Hence
any finite subset of R, {rj, has a maximum element, that is an rio

such that riQR^2riR for all ΐ . Clearly we may permute the xt and
the order of the summands Ri in F without losing generality. Hence
we may assume xn — max {xiά \ 1 ^ i ^ n + 1, 1 ^ j ^ ^}. Let α?ft —
x nrH, 2 ^ i ^ ^ + 1, and consider the elements x{ — x{ru. These all
have zeros in the first component. Then some xid — xurxi — max {xiS —
xlάru \2<^i^n + l,2<.j<^n}, say i — i = 2. Then there exist
elements r2 ί, 3 ^ i ^ n + 1 such that {(#* — a^Tii) — (a?2 — ̂ 1̂ 12)̂ 2* I 3 ^
i ^ n + 1} all have zeros in the first two components. Continuing in
this manner, and permuting so the largest coefficient is in the k, k
position, we get n + 1 — k elements of the form xm — χf=1 x^^ which
have zeros in the first k positions. When k — n., we get xn+ι —
*Σi*=iχi8i» ~ 0, and since xn+1 g K, this gives a nontrivial dependence
of {Xi 11 ^ i ^ n + 1} modulo iΓ.

LEMMA 1.17. Let R' be a local ring. Then Rf is hypercyclic
<=>(R')n is hypercyclic for some n.
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Proof. => Let R' be hypercyclic, e — e2 e (R')n = R, e a primitive
idempotent. Identify R' with eRe. Then ReR, ^ Σ?= 1 θ HI Since
the category isomorphism of 1.5 takes R' —> Ή.omR,(Re, Rf) F* eR, every
quotient of eR has injective hull a quotient of βi2. Let / be a right
ideal of R. Then

is exact, so

is exact. Since R(^RReR, ^ iϋe^, RII§t)RRe is an iϋ'-quotient of iϋe.
By 1.16, R/I(g)BRe is an essential extension of at most n cyclic Rf-
modules. By the category isomorphism, R/I is an essential extension
of a sum of at most n quotients of eR. Hence its injective hull is
a direct sum of at most n quotients of eR, and thus a quotient of R.

<=. Let R = {R')n be hypercyclic, e a primitive idempotent, i g
β(22')». Then #(β/A) = (1 - e)R 0 E(eR/A), so E(eR/A)/E(eR/A)J is
simple, and E(eR/A) is a quotient of eiϋ. By the category isomor-
phism 1.5, every quotient of Rr has injective hull also a quotient of
R'.

Putting 1.17, 1.15 and 1.14 together we get

THEOREM 1.18. R is α restricted hypercyclic ring *=>R is α ring
direct sum of matrix rings over local hypercyclic rings.

2. Local hypercyclic rings* By Theorem 1.18, hypercyclic rings
R such that R/J is semi-simple Artin are ring direct sums of matrix
rings over local hypercyclic rings. In this section we study local
hypercyclic rings. These turn out to be, with one possible exception,
the rings studied by Caldwell in [2], with R commutative replaced
by xR = Rx for all xeR.

By 1.11, a local hypercyclic ring is right self injective; by 1.10
its right ideals are linearly ordered.

We have the well-known

PROPOSITION 2.1. Let MR contain a copy of the injective hull of
every simple ϋί-module. Then every right ideal of R is the annihilator
of some subset of M.

PROPOSITION 2.2. Let RR be injective. Then any finitely gener-
ated left ideal is the annihilator of some right ideal, and the right
socle of R S the left socle of R.

Let XQR. Define Xr = {reR\Xr = 0}, X1 = {reR\rX= 0}.
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COROLLARY 2.3. Let R be a local hypercyclic ring. Then the
left ideals of R are linearly ordered.

Proof. Let xu x2 e R. Then x{ £ x\ or x\ £ x{, so by 2.2, x\ι ~
Rxi £ x\ι — Rx% or Rxγ 2 iϋa;2. Now let Λ, J2 be two left ideals, I± <g 72.
Let x e /t — /2. For y e I2, ify g ita since a? ί J2. Hence ify £ j?# so

L E M M A 2.4. Lei x,zeR,0φxze S(R). Then (Rx)r = 2J,

(2/)' = Rx, (zR)1 = Ja;.

Proof. Since O ^ ^ e S , #2/ = 0, xziϋ =£ 0. By the linear ordering
on right ideals, zJ^(Rx)r ξ^zR. Since zR/zJ is simple, zJ — (Rx)r.
Since left ideals are linearly ordered by 2.3, Jx = (zR)1 by symmetry.
By 2.2, principal left ideals are annihilators so Rx = (zJ)1. By 2.1,
2J? is an annihilator so (Jx)r — zR.

We note that given x Φ 0 or 2 ̂  0, by the linear ordering on
right and left ideals, we can always find the other such that 0 Φ
xz e S(R).

COROLLARY 2.5. Let R be a local hypercyclic ring. Then every
right ideal and every left ideal is an annihilator ideal.

Proof. Since RR is injective and contains a copy of the unique
simple iϋ-module, 2.1 states every right ideal is a right annihilator.

Now let Γ be a left ideal, and let Z = C[Rx^PRx. Then Z =
(ΣiRxzi'W)1 s i n c e (xr)1 = R x . I f / ' Φ Z, l e t y e Z - Γ. T h e n R y 3 Γ ,
and Rz^Γ => RzΏ,Ry. Hence ify/I' is a simple left module. By
Nakayama's lemma, Jy Φ Ry. Hence Jy £ I ' . Since RylJy is also
simple, Jy — Γ. By 2.4, /' is an annihilator left ideal.

LEMMA 2.6. Let I be a right ideal of the local hypercyclic ring
R, R^I^S(R). Then R/I is not injective.

Proof. Since I Φ R,IQJ. Let x e I, x £ S(R). Since the left
ideals of R are linearly ordered and S(R) is a two sided ideal, there
exists y e R such that 0 Φ yx e S(R). Then xJ = (Ry)r by 2.4. Since
x$S(R),y is not a unit, so yeJ. We now proceed as in Caldwell
[2]; the map /: yR—>R/I given by f(yr) = r + / is well defined since
2/r = xJQl. R/I injective implies there exists meR such that my +
1=1 + 1. Hence 1 — my e /, and since y e J, (1 — my)(l — my)"1 —
1 G 7, a contradiction.

LEMMA 2.7. Le£ iϋ be local hypercyclic. Then every right (left)
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ideal is of the form xR or xJ (Rx or Jx).

Proof. Let /be a right ideal. Since the injective hull of R/I
is cyclic, by 2.6 R/I embeds either in R or in R/S(R). Assume /
embeds R/l in R. Let 0 Φ f(x + /) e S(R). Then xjQl^xR, so
I = xJ. If g embeds R/I in R/S(R), let g(l) = m + £(#). Let 0 ^
my 6 S(R). Then #(y) = 0 so y e I. Let x e I. Then mx e S(22). If
ma; = 0, x e yJ — mr. If mx Φ 0, mr = ccJ = y/, so by the linear
ordering #ϋί = ̂ iϋ. Hence xeyR, and I = :z/iϋ.

Since every left ideal I is an annihilator by 2.5, it is of the form
(xR)1 or (xJ)1 for some x. If x Φ 0, select y such that O ^ p e S(iϋ).
Then I = Jy or ify by 2.4.

PROPOSITION 2.8. Let R be local hypercyclic, y e J. Either y is
nilpotent or 0 Φ Γϊ7=oy

nR = z'R, where yz'R = z'lϋ.

Proo/. (See Caldwell [2] Theorem 2.20) Since i2'3 S(i2), ywiϊ 3
or yw = 0. Thus I = Π?=o2/Wi2 = 0 <=>?/" = 0 for some n.

Let ?/TO e yn+1R. Then for some reR,yn = yn+ιr, so #u(l — yr) =
0, and since yreJ,l — yr is invertible. Hence y" — 0. Thus i/ not
nilpotent implies yR Z) y2i2 Z) is a strictly descending chain of right
ideals. Let {yιR)1 = J^ . Then 7 = (UΓ=o ̂ ) r , where LK~=o Jz* = K is
the union of a strictly ascending chain of left ideals if y is not
nilpotent. Then K cannot be finitely generated so K — Jz for some
zeR by 2.7, and I = i£ r = s'jβ for some z'. Since y{ynR)QynR for
all n,ylQl. Now z'e/, so s' = yr for some reϋJ. Assume r g / .
Then there is an n such that r g y^β, so rR 3 y"ff. Let rs = yn.
Then z's = yrs = yw+1 e /. If y is not nilpotent, this cannot occur, so
rel and z'eyJ. Hence y/ = I.

COROLLARY 2.9. Let yR = i2y /or ί/e/. Then y is nilpotent.

Proof. Assume not. Then 0 Φ 1= f|Γ=o VnR = ΠΓ=o Ryn. As in
the proof of 2.8, (flΓ-o Ryn)v = ΠΓ=o Λl/W. By 2.8, for some z', I =
z'i2. Then I = z'JBy, so there exists reR with z'ry = z', z'(ry — 1) =
0. Since y e J, ry — 1 is invertible, so s' = 0, a contradiction.

THEOREM 2.10. Let R be local hypercyclic. Then J is nil <=> yR =
Ry for all y eR.

Proof. <=. This is just 2.9. =>. Assume J is nil, and let 0 Φ
y,reR,yr£ Ry. Then Ryr 5 Ry9 so y = xyr for some xeJ. Then
y = xyr = x2yr2 = = #wyrw = 0, a contradiction. Hence yRQRy.
By symmetry, RyξΞ=yR.

Thus if / is nil, every one sided ideal of R is two sided, and all
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of CaldwelΓs arguments in [2] may be carried over to this case almost
verbatim. The reader is referred to Caldwell for further discussion
of this case.

Whether a local hypercyclic ring can have nonnil radical is un-
known. We show that it implies the existence of a very elusive type
of ring, namely a simple radical ring (without 1 of course), which
has linear ordering on both right and left ideals.

LEMMA 2.11. Let R be a hypercyclic local ring, J not nil.
Then J2 = J and for all yeJ, JyJ Φ J=>lzeJ, zR= Rz and y e zR.

Proof. If J2 Φ /, by the linear ordering on one sided ideals, for
any xeJ — J\ J — xR = Rx. Hence x is nilpotent by 2.9, so Jn =
(xR)n — xnR — 0 for some n, a contradiction. Hence J = J 2 . Let
y e J. Then (JyJ)J — JyJ = J(JyJ)f so JyJ is not a finitely generated
right or left ideal. Hence JyJ = zJ — Jzf for some z, z' eR by 2.7.
Let v denote the natural map from R onto R/JyJ. Then v{z)R —
S(v(R)R), Rv(z') = S(Rv(R)) since the right and left ideals of v(R) are
linearly ordered and v(z)R and Rv(z') are simple. Moreover, v(z')RS
v(z)R. Since S(Rv(R)) is a two sided ideal of v(R), S(Rv(R)) = Rv(z')S-
v(z)R = S(v(R)R). By symmetry, S(v(R)R)<^S(Rv(R)), so !&(«') =
v(z)R = v(z')R — Rv(z) since it is a simple jR-module on both right
and left. Taking v~ι of both sides we get z'R = Rz' = zR = Rz. If
JyJ φ J, S(v(R)B) Φ R/J, SO zeJ.

Moreover zR 5 JyJ =>zR^ jyJ for all j eJ=> zRΏ, jyR for all
j e J by the linear ordering => zR 2 </?/#. Similarly zR = RzΏ, RyR.
Hence yezR.

THEOREM 2.12. Let R be a local hypercyclic ring, J not nil.
Then there exists a nilpotent ideal zRQj such that zR is a maximal
proper two sided ideal of J (so J/zR is a simple radical ring.)

Proof. Let / be the union of all the nil two-sided ideals of R.
Then J is a nil two-sided ideal since ideals are linearly ordered.
Moreover, IΦ 0 since S is a nilpotent two-sided ideal, and IΦ J
since J is not nil.

Let K = JIJ. Then JK = KJ - K, so as in 2.11, K = zJ = Jz
where zR = Rz = v^SiR/K)) and xeRz for all x e I. Since

and K^I,zR is nil. Hence zR = Rz = I. If sΛ = 0, then I% =
(zR)n = 2njR = 0, so / is nilpotent.

Now let y eJ — I. If J^/J ^ J, by 2.11, y belongs to some nil-
potent ideal of R and hence to /. Thus JyJ — J, and J/zR is a
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simple ring. By [8], p. 10, J is a radical ring, and hence so is J/zR.
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