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HOMOLOGICAL DIMENSIONS AND MACAULAY RINGS

G. LEVIN and W. V. VASCONCELOS

This paper shows some instances where properties of a
local ring are closely connected with the homological proper-
ties of a single module. Particular stress is placed on condi-
tions implying the regularity or the Cohen-Macaulay property
of the ring.

First it is proved that the regularity of the local ring R
is equivalent to the finiteness of the projective or injective
dimensions of a nonzero module mA9 where m is the maximal
ideal of R and A a finitely generated i?-module. Next it is
shown that over Gorenstein rings the finiteness of the pro-
jective or injective dimension are equivalent notions. Then,
using some change of rings, a theorem is strengthened on
embedding modules of finite length into cyclic modules over
certain Macaulay rings. Finally, to mimic the equivalent
statement for projective dimension, it is shown that the anni-
hilator of a module finitely generated and having finite in-
active dimension must be trivial if it does not contain a non-
zero divisor.

The rings considered in this paper will be assumed commutative
and noetherian and as a general proviso all unspecified modules will
be assumed finitely generated. For the notations and basic facts used
here [2] is the standing reference.

1* A homological characterization of regular local rings* A-
mong the local rings the regular ones are characterized as those having
finite global dimension (see [2]). If the maximal ideal of the local
ring R is denoted by m and k — R/m is the corresponding residue field,
it is even possible to test the regularity of R by looking at the
projective dimensions of m or k only. Theorem 1 of this section shows
that it is enough to consider any power of m, in fact any module of
the form mA.

We take for granted the basic things on minimal projective resolu-
tions of modules, just recalling that it means the following: An exact
sequence

d . xr d

• > Λ1 — — • Λo > A. • U

where the X{ are free d{Xι) c mX^. It is then said to be a minimal
projective resolution of the module A. It follows easily then that A
has finite projective dimension if there exists an integer n so that
Torf(fc, A) = 0 for all i > n.

We will prove Theorem 1 from the following lemma:
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LEMMA. Let d, i = 0,1, be a complex of R-modules such that
diC^czmCi^ for all i's and such that Hp(mC) = Hp_γ(mC) = 0 for
some integer p. Then mCp = 0.

Proof. Let Lp be the kernel of d: Cp —* Cp^. Then the kernel of
the induced map mCp —•> mCp_i is just Lp f] mCp. Hence

Hp(mC) = (Lp n mCp)/md(Cp+1) .

By assumption d(Cp+1) dLpΠ mCp but since Hp(mC) — 0, this says that
d(Cp+ι) c md(Cp+i) and thus, by the Nakayama lemma, d(Cp+1) — 0.
Since Hp_γ(mC) = 0, the same argument shows that d(Cp) = 0. So
Hp(mC) = mCp - 0.

THEOREM 1.1. Let R be a local ring with maximal ideal m and
suppose there exists an R-module A such that mA is different from
0 and has finite protective dimension. Then R is a regular local
ring.

Proof. Let {XJ, i = 0,1, be a minimal resolution of k. Then

Tor, (k, mA) = H^X® mA) .

Since the X; are all free modules, I ® mA may be regarded as a sub-
complex of X(g) A. In fact, X ® mA = m(X(g) A).

By definition of a minimal resolution, d(Xι) c mX^i for all i, and
thus c? ® 1(X; (g) A) c mΐX^ (g) A) for all i. We can then apply the
lemma with C = X ® A. Namely, since mA has finite projective
dimension, Tor f̂c, mA) = 0 for large ΐ. But

Tor, (&, mA) = H^X^mA) = H4(m(Jf ® A))

and so, m(X, ® A) = 0 for large i, a hypothesis which is substained
only if Xi — 0. The regularity of R follows then from [2].

Obviously the same procedures, using Ext now, work just as well
for finite injective dimension.

2* Modules over Gorenstein rings and a special case of a
conjecture* Let R be a local ring and A a nonzero, finitely generated
jβ-module of finite injective dimension. This dimension is then neces-
sarily equal to the codimension of R [2]. In [4] it was conjectured
that R is then, a Macaulay ring, a contention we have been able to
prove only in dimension one. This we shall do in this section, but
first we make some remarks.

Say d — codimension R = inj.dim. A. Then for an ίJ-module 2?
Extd (B, A) Φ 0 if and only if m is associated to B. In fact, if x is an
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element of m which is a nonzero divisor with respect to B, the exact
sequence

0 > B — B > BJxB > 0

gives rise to the epimorphism Extd (J3, A) -̂ ~> Extd (B, A) > 0, and
thus, by the Nakayama lemma, one has Extd (i?, A) = 0. Conversely,
if m is associated to B we can see that Extrf (B, A) Φ 0. Reasoning
along these lines we see that the length of the longest i?-sequence,
which we call the depth of B, is given by d — r where r is the largest
integer for which Ext r(B, A)Φθ. In the current fashion we shall
denote the depth of B by VτoίRB. In particular we have that the
depth of any module is at most equal to the codimension of the ring.
Now it is a long standing conjecture that this happens only when R
is a Macaulay ring. When codimension R — 0 it follows immediately
that R is Artinian. We give a proof of the case d = 1 as a conse-
quence of the following lemma.

LEMMA. Let f:R—*R' be a local homomorphism of local rings
making R' a finitely generated R-module. For any R'-module A

Prof RA = Prof R, A .

Proof. By induction on ProfR A. It is obvious that we may as-
sume RSR'. If m, the maximal ideal of R, is associated to A, i.e.
if Prof RA = 0, then there exists a Φ 0 in A with mα ~ 0 or mR'a = 0.
Since mRf is primary for the maximal ideal m' of R' we have that
(m')n £ mRf for some integer n. Thus (m')na = 0 and obviously m' is
associated to A, i.e. ProfΛ, A is also 0. If m is not associated to A
let x em, and so also an element of m', be a nonzero divisor of A.
Thus by induction ProfB A/xA = Prof^ A/xA and the conclusion follows.

THEOREM 2.1. Lβί R be a local ring and A a finitely generated
R-module of injective dimension one. Then R is a Macaulay ring.

Proof. It is not hard to see that to test the finiteness of the in-
jective dimension of a module A over a local ring R it is enough to
check the nullity of Ext* (k, A) for high π's. Thus it follows that
inj. άim.R A = inj. dim.^ A, where R and A denote the respective com-
pletions of R and A with respect to the m-adic topology. Assume thus
that R is a complete local ring. Suppose, by way of contradiction,
that Krull dimiϋ > 1 and let p be a prime ideal such that dim R/p > 1.
Let S be the integral closure of R/p. By [8] S is a finitely generated
J2/p— and so 12-module. Besides it is a local ring. Since S is in-
tegrally closed of dim > 1, Prof# S Ξ> 2, which is a contradiction by
the previous lemma.
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Before stating the next result we remark that if A is an R-
module over the local ring R and Prof A < codimension R, and

0 >L >F >A >0

is an exact sequence with F free, then Prof L = 1 + Prof A.
Gorenstein rings [4] in the local case are those rings R with finite

self-injective dimension. Thus, clearly, any module of finite protective
dimension has also finite injective dimension. The converse is proved in

THEOREM 2.2. Let R be a local Gorenstein ring. Then any
module of finite injective dimension also has finite projective
dimension.

Proof. Let A be such a module and map a free module over it

(1) 0 >L >F >A >0 .

Thus L also has finite injective dimension. If Prof A < codimension
R by the previous remark Prof L = 1 + Prof A. We can then assume
that A already has maximum Prof. Our claim is then that (1) splits,
i.e. that A is free. Taking Horn (A, ) of the above sequence we get
0 -> Horn (A, L) -> Horn (A, F) -> Horn (A, A) -> Ext1 (A, L). Since L has
finite injective dimension and Prof A = codimension R we get from
the initial remarks of this section that Ext1 (A, L) — 0 and the con-
clusion follows.

3* Change of local rings and a generalization of a theorem
of Auslander* Given a homomorphism of two rings, f:R—*S, the
S-modules can be considered, via/, as β-modules. For an S-module
A the change of rings problem consists in comparing the various homo-
logical invariants attached to A (e.g. projective dimension, injective
dimension) relative to both R and S. Usually it is the case that any
such information relative to <S is easier to relate to R than the other
way around. Here we examine a case where nevertheless a complete
answer is possible and use the method employed to generalize a theorem
of [1].

Let R be a local ring and x a nonzero divisor in m — m2. Put
S = R/(x) and let A be a finitely generated S-module.

THEOREM 3.1. inj. dim. RA = 1 + inj. dim. SA.

Proof. Since proj. dim. RS — 1, the spectral sequence [5]

Ext§ (Tor? (S, m), A) • Ext£ (m, A)
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yields the exact sequence

. ExtΓ 2 (Tor? (S, m), A) > Ext£ (S ® m, A) > Ext£ (m, A)

> ExtΓ 1 (Tor?(S, m), A) .

But Torf (Sf m) = 0 for α is not a zero divisor and thus we have the
isomorphism

( 2 ) ExtJ (m/αm, A) = Ext£ (m, A) .

Before proceeding with the proof we need a lemma to be found

in [6]:

LEMMA. If x em — m2 we have the decomposition

m/xm = m/(x) 0 (x)Jxm .

Proof. Let x, x2, , xr be a minimal generating set for m and
let £7 = xm + (a?2> > &r). Then U + (x) = m and 17 Π (x) = ccm by
the independence mod m of the x's. This shows that the inclusion
0 —> (x)/xm —> m/ίcm splits, whence the conclusion.

Replacing m/am by this direct sum decomposition in (1) and bear-
ing in mind that to test injective dimension it is enough to consider
m or k in the Ext functors, we get that the injective dimensions of
A (with respect to R and S) are both finite or both infinite. The
equality mentioned follows from the identification with the codimen-
sions.

REMARKS. By considering a similar spectral sequence we could
prove the corresponding statement for projective dimension. This is
however done, by elementary means, in Nagata's book [8].

If R is a local Gorenstein ring and

0 > R > Eo > > Ed > 0

is a minimal injective resolution of R, it is proved in [4] that Ed is
really the injective envelope of the i?-module k. This fact, coupled
with a theorem of Bourbaki, is used by Auslander in [1, Th. C] to
embed modules of finite length into cyclic modules over certain
Gorenstein rings. He proves that this can always be done over in-
tegrally closed Gorenstein rings of Krull dimension > 1. We will give
a construction which enables us to substitute Macaulay for Gorestein
in the previous statement.

We shall construct now, for any local Macaulay ring R, a finitely
generated module A with finite injective dimension and such that the
last nonzero term in a minimal resolution of A is simply E(k), the



320 G. LEVIN AND W. V. VASCONCELOS

injective envelope of k.
Let Ri = R/(x19 , xά, i = 0,1, , d, where xu , xd form a

system of parameters contained in m — m2. Let A be the injective
envelope of k over the ring Rd. Then A is finitely generated and has
finite injective dimension over R, by repeated application of Theorem
3.1. We claim that A has the other desired property which is equiv-
alent to saying that Ext£ (k, A) is one-dimensional over k. Using the
formula (1) we get

ExtS (k, A) = Ext^ (k, A) 0 Ext^ 1 (k, A) .

Letting n — d we get for arbitrary i

(fc, A) = Ext^7 (A;, A)

because inj dim R.A = d — i. This works as long as d — i > 0 and for
the remaining case it is easy to verify directly, using the injective-
ness of A over Rd and the decomposition provided by the lemma, that
Ext^d_1 (k, A) == Horn (k, A) = k, and we have what we wanted.

Now we can copy the proof of [1, Th. C] to get

THEOREM 3.2. Let R be an integrally closed Macaulay ring such
that any maximal ideal has rank > 1. Then any module M of finite
length can be embedded in a cyclic module of which it is an essential
extension.

4* The annihilator of a module of finite injective dimension*
It was established in [3] that the annihilator of a finitely generated
module over a local ring, with finite projective dimension, is either
trivial or contains a nonzero divisor. The corresponding statement
for injective dimensions is still true although the proof is considerably
more involved. The difficulty stems from the diversity of injective
modules compared with the projective ones. The purpose of this
section is to prove the following

THEOREM 4.1. Let R be a local ring and A a finitely generated
R-module. If A has finite injective dimension then its annihilator
is either trivial or contains a nonzero divisor.

Proof. We are going to show that a reduction can be made to
the dimension one case but first let us take care of a trivial situation.
Denote by / the annihilator of A. Assume / to be nontrivial and
consisting entirely of zero divisors. This means that the annihilator
J of I in R is nonzero. Suppose some prime ideal p of (0) contains
both / and J. In this case Jp Φ Rp and so Ip Φ (0) also. But Ap

is a nonzero module of finite injective dimension over Rpy a ring
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of codimension 0, i.e. Ap is an injective module and thus Rp is Artinian
by a previous remark. But then it is clear that Ap is a faithful Rp-
module being a direct sum of faithful modules. Now we make the
reduction to the dimension one case. For that we need a lemma.

LEMMA (Abhyankar-Hartshorne). Let I and J be nonzero ideals
in a commutative ring such that LJ= (0). Then the length of the
maximal R-sequence in I + J is at most one.

Proof (Kaplansky). In general we call the length mentioned above
for an arbitrary ideal K, the grade of K. In the above conditions
the lemma says that grade (I + J) ^ 1. Can assume that I n J = (0)
for otherwise, if 0 Φ xel f] J then x(I + J) = (0) thus showing grade
(I + J) = 0. Can even assume that R has a unique maximal ideal.
Let α — i + j , i e I and j e J, be a nonzero divisor; clearly i Φ 0, j Φ 0.
Also, i & R(i + j) for an equation i = r(i + j) gives (1 — r)i = rj, a
contradiction whether r is a unit or not. Finally (I Λ- J)iSR(i + j),
i.e. grade (I + J) g 1.

In order to apply this to our question let Jr be the annihilator of
J in R. Then I g /', and J. J' = (0). By the lemma, grade (/ + J') ^ 1,
in fact = 1, for otherwise I and J would be inside the same minimal
prime. Let p be a grade one prime containing J + J'; it is easily
seen that Rp has codimension one. We claim that Jp Φ (0)—thus im-
plying that Ip, which in not zero, consists entirely of zero divisors.
Otherwise Jf

v — Rp which is impossible. This is the required reduction.
We can then make a fresh start and assume that A has injective
dimension one over the local ring R, of maximal ideal m. We also
know that, by Theorem 2.1 that R has Krull dimension one. This
fact will be useful to see what is happening. There are two cases to
cope with.

Case 1. m is not associated to A.
Here the only primes associated to A are the minimal primes of

R containing I. Let

(1) 0 >A >E0 >E >0

be a minimal injective resolution of A. Eo is a direct sum of copies
of E(R/p) = the injective envelope of JB/p, for the various primes of
rank 0 containing I. E on the other hand is a direct sum of copies
of E(R/m). Let pu " ,pr be the above mentioned minimal primes.
We can then pick x in some other minimal prime (one containing J)
but not in pι pr. Map the exact sequence (1) into itself by the
multiplication induced by x and look at the kernels and cokernels
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sequence (where XN denotes t h e kernel of N > N)

0 • XA > XEO > XE > A/xA > EQ/xE0 > E/xE • 0 .

Since x is not in any of the p's it acts as a unit on any E(R/p) and
thus

XE = A/xA .

But ZE is an injective R/(x) module [4] and thus 0 Φ A/XA is a finitely
generated injected module over R/(x). But as was remarked before,
R/(x) is then an Artinian ring, which is a contradiction for x was
taken in a minimal prime.

Case 2. m is associated to A.
With the same notations of Case 1, a minimal injective resolution

of A now looks like

( 2) 0 > A > Eo φ E(k)r > E(k)s > 0

where the integers r and s are determined by r = dimfe Horn (k, A) and
s = dim*. Ext1 (fc, A). Since m is associated to A, r > 0. Let p be a
prime not represented in Eo, i.e. p is a minimal prime containing J.
From (2) we get the exact sequence

0 > Horn (R/p, A) > Horn (R/p, EQ 0 E(k)r) *

( ) > Horn (R/p, E(k)s) > 0 ,

for Ext1 (R/p, A) = 0 since Prof R/p — 1. Another way to write (3) is

0 >PA >pEoφ pE(ky > pE(kY > 0 .

But PEO = 0 for p is not contained in any of the primes of Eo. Thus
we get

0 > PA > pE(ky > E(k)s > 0

or, in other words, that PA is a nonzero module of finite length and in-
jective dimension one over the ring R/p. From the duality theory [7]
it follows that r — s.

Define ρ(C) for any iϋ-module of finite length to be

p(C) - length Horn (C, A) - length Ext1 (C, A) .

It is easy to see that if 0 —• C —> C —• C" —> 0 is an exact sequence of
modules of finite length, then ρ(C) = p(C) + ρ(C"). So since any
such module is an extension of simple modules, i.e. of fc's, we have
that ρ(C) - O o r that length Horn (C, A) = length Ext1 (C, A).

Let Ao be the largest submodule of A of finite length, i.e. the
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largest submodule of A annihilated by some power of m. Also let x
be a nonzero divisor in R such that xA0 — 0. Consider the exact
sequence

( 4 ) 0 > Ao > A > A > 0 .

By hypothesis A Φ 0 for A is not of finite length and it is clear that
m is not associated to A. The exact sequence induced by multiplica-
tions by x gives

0 • Ao > XA • XA • Ao > A/xA > A/xA • 0 .

But XA = (0) and thus length (AQ) + length (A/xA) = length (A/xA). On
the other hand the exact sequence

0 > R -^~-> R > R/(x) > 0

gives easily that Horn (R/(x), A) — Ao and Ext1 (R/(x), A) = A/xA. But
R/(x) has finite length and so p(RJ(x)) = 0 which implies length
(A/xA) — 0, a contradiction by the Nakayama lemma.
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