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INVARIANCE FOR LINEAR SYSTEMS OF
ORDINARY DIFFERENTIAL EQUATIONS

AL KELLEY

In studying the existence and smoothness of invariant
manifolds arising from nonlinear, perturbed systems of ordi-
nary differential equations, one encounters the study of certain
linear (in x), perturbation problems of the type

6 = a + e&(0, ε)

x = (A + εB(θ, ε))x

where θ and x are vectors, A and B are matrices, b and B
are multiply periodic in θ, and ε is a perturbation parameter.
Assuming A is a constant matrix consisting of square sub-
matrices on the diagonal,

A = diag(An, --,Ann),

with the maximum of the real parts of the eigenvalues of Ajj
less than the minimum of the real parts of the eigenvalues
of Akk for 1 S j < k ^ n; we construct a change of variables
which reduces B to similar diagonal form.

For perturbed systems of nonlinear ordinary differential equations
in a neighborhood of an invariant manifold, the existence and smooth-
ness of the center-stable, center, and center-unstable manifolds is
proved in § 6 of [3]. The method of proof used will also show the
existence of other invariant manifolds, but for nonlinear systems the
situation is not as simple as the associated linear problem with regard
to finding invariant manifolds. R. Venti [7] has given linearization
results for nonlinear systems of differential equations near a critical
point. The results of this paper can be regarded as a first step in
obtaining similar linearization results for nonlinear systems near an
invariant manifold.

The techniques of this paper are based on those used by Y. Sibuya
[5], [6]. Sibuya treats time-varying perturbation problems where the
perturbation parameter enters in an analytic way. In § 3 of this paper
we consider Ck(l fj k < <*>), ^-varying perturbation problems with θ
representing the many-dimensional coordinates of some invariant mani-
fold. In § 4 we give a counter-example to an analytic change of
variables procedure, and then modify the procedure appropriately.

For linear systems of ordinary differential equations of the type

x = (A + eB(t, e))x

(see (1) below with dim# = 1, θ — 1, for details), where the matrix B
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is periodic in t, the theory presented in § 3 and § 4 below applies.
However, for this periodic, time-dependent, perturbation problem, much
more can be said. See, for example, Lemmas 4, 5, 6 in Sibuya [6] or
Chapter 8 in Hale [2].

2* Notation* If G = G(g) is a smooth, vector valued function
of the vector g, then Gg represents the usual Jacobian matrix of
partial derivatives. If H — H(g) is a smooth, matrix valued function
of the vector g = (glf , gn), then Hg represents an array of all
possible first order derivatives,

The norm | | represents the euclidean norm on vectors and the opera-
tor norm on matrices; < , •> represents the usual inner product on
pairs of vectors. If p is an n-tuple of nonnegative integers, then
Bp

g = d^/d^g, dp*gn where | p | = p, + + pn. (The "norm" on p
is not euclidean which we justify by not considering p to be a vector.)

3* Invariance for linear systems* Consider the real, C1 system
of ordinary differential equations

θ = a + έb(θ, ε)

x = (A + eB(θ, e))x

where θ,x, a,b are real vectors; a is a constant vector; ε is a real
perturbation parameter; b is defined and C1 on

NB - {(θ, ε) I θ arbitrary, | ε | < 3}

b and biθ>ε) are uniformly bounded on Nδ; A is a real, constant, square
matrix partitioned as follows:

A = (Ajk) with Ajk — 0 for j Φ k, equivalently

A = diag (A1U A221 , Ann);

the sub-matrices Aάj{j = 1, , tι) on the diagonal are square but not
necessarily of the same dimension; the sub-matrices on the diagonal
have the property that the maximum of the real parts of the eigen-
values of Ajj is less than the minimum of the real parts of the
eigenvalues of Akk when j < k: symbolically

(2) An<A22< •-. <Ann

where the order relation < reflects the ordering of the real parts of
the eigenvalues of the sub-matrices; B is a real, C\ square matrix
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defined on Nξ; B and Bi$tt) are uniformly bounded on N8.

THEOREM 1. For system (1) there exists a unique C1 change of
variables

(3) x = (I+εP(θ,ε))y

such that

(4) V = (A + 6Q(θ,e))y

where I is the identity matrix; P and Q are real, C1 matrices defined
on NBl for 0 < δλ <£ δ sufficiently small; P, P{θ,ε), Q, Q{θ,ε) we uniformly
bounded on NBl; with P and Q partitioned into sub-matrices similar
to A,

Pjj(θ,ε)^O ( i = l , . • • , ! * )

if system (1) has multiple period ω in θ, then the change of variables
(3) and the transformed system (4) also have multiple period ω in θ.

Proof. Assuming the change of variables exists, we differentiate
both sides of (3),

x = spy + (J + εP)y ,

and from (1), (3), (4) we have

(A + εB)(I + εP)y = εPy + (I + εP)(A + εQ)y ,

which leads to the matrix equation

(6) P= AP- PA + B - Q + εBP - εPQ .

Let ψ = ψ{t, θ,ε) be the unique solution of the ^-equation in (1) with
initial condition θ at t = 0. This solution exists and is C1 on

NB = {(ί, θ, ε) I - oo < t < + oo, {θ, ε) e N8}.

Rather than expressing P on the left side of (6) as Pθ{a + εb (θ, ε)},
we consider

P - -^P(Ήt, θ, ε), ε)

in words, we interpret P as the "derivative along the solution curve".
(See the proof of Theorem 1 in [4] for a similar example of this
notion.) From (5) and (6)
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(7a) Q3Ί = BJJ + ε ± B^j (j = l,- ,n)

Pjk — AjjPjk — PjkAkk + Bjk

(7b)
+ ε Σ BάιPlk - εPjkQkk (j, k = 1, , n; j Φ k) .

1=1

Conversely, we observe that a C1 solution of (7) which is uniformly
bounded on some N^ will yield the change of variables (3) and the
transformed system (4). To solve (7) by iteration define P° = 0 and
define Q\H\ Pv iteratively as follows. (Super-scripts designate steps
of the iteration, not powers of the matrices.)

Q)t = Bu + e±BiιPϊi
1=1

(8a) Q)k Ξ 0

(1 Sj,kS n; j Φ k)(v = 0,1, 2, •)

H" = BP^P^Q"-1, so that in particular

(8b) H!-k = Σ BiiPiΓ1 - P^Qlϊ1

Z l

(8c) P]k = AjfPU - P]kAkk + Bjk

(1 £j,k £n;j Φ k)(v = 1,2, >").

The unique bounded solution P]k of the differential equation in (8c) is
given by

(9) P]k{θ, e) = Γ β-A"'{B»(&(σ, θ, e), ε) + εH;k(ψ(σ, θ, ε), ε)}eA«*°dσ
J±oo

where the lower limit of integration is chosen + oo for Akk < Aj3 and
- oo for A5j < Akk with < the order relation in (2). If we assume
that ΈLV is a known C 1 function of (θ, ε) on some Nδl with H\ H{

u

θ,ε)

uniformly bounded on Nh, and if we assume that the infinite integral
in (9) converges, then by replacing θ in (9) by ψ(t, θ, ε) we easily check
that Pjk(ψ(t, θ,ε),ε) satisfies (8c). Beginning with P° = 0 we want to
show that (8) and (9) determine Q%H%P\v = 1,2, •••) iteratively as
C 1 functions of (0, ε) defined on some Nh with Q%H% P\ (Q\ H", P"){θ,e)
uniformly bounded on Nδl. We will need estimates on the rates of
growth for eA^{j = l , . . . , t ι ) , ψβ(t, θ, ε), ψ£(t, θ, ε).

Associated with each AoΊ is its real canonical form Ajjy

(10) λu = JjjAjjJji (j = 1, , n) ,

with the "off-diagonalizable" terms of Aj5 arbitrarily small. The
ordering (2) means there exists real numbers
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such that

(12a) μ}
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Mi ̂  fit < μ2 £ fit <. < μ« ^ fin
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(j = 1, , n)

holds for all vectors p (restricted for each j to the appropriate dimen-
sion (dim Ajj = dim p x dim p)). See f 1] page 341 for details concerning
the real canonical form of a matrix. From (12a) we conclude for

(12b)
eμj* <g I eΛjjt I <; 0μjt (0 5Ξ ί < + oo)

eμ'* ^ I e^' ( I ̂  e?'* (— °o < ί g 0) .

From (1) for (ί, 0, ε) e Nt

ψθ(tf θi s) = εbθ(ψ(t, θ, ε), ε)ψθ(t, θ, ε)

ψε(tj θ, ε) = b(ψ(t, θ, ε), ε) + εbo(ψ(t, θ, ε), ε)ψ£(

+ εbε(ir(t, θ, ε), ε)

ψe{0, θ,ε) = I (identity), f .(0, M ) = d

which yields

, θ, ε)

(13)
\fs(0, θ,ε)\ = 0 ,

where i ^ is a sufficiently large positive constant; more specifically we
may take

Z, = (1 + δ) max { sup 16(0, e) |, sup | biθyε)(θ, ε) |} .
(θ,ε)eNδ (θ,ε)eNδ

From (13) and the Hale inequality (see Lemma 2 in [3])

holds for all (ί, θ, ε) e Nδ.

In what follows K2,KZ, (a finite number of iί 's) will designate
sufficiently large positive constants. If j < k, we have from (9), (10),
(12)

IP?* £>-A5ύa

e M

Bjk(ψ(σ, 0, ε), e) I + I 6 I I H;k(ψ(σ, θ, e), ε) [}

(15)
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where K2 is chosen sufficiently large so that

A similar inequality holds for the case j > k. From (11), (15) we
conclude that (8), (9) determine Qv, Hu, Pv iteratively as continuous
functions of (0, ε) defined and uniformly bounded on Nh.

Suppose we have shown P""1 to be C1 on some Nδl (δt yet to be
determined) with P*-1, P^ 1, uniformly bounded on Nh. Then Qv~\
Hu given by (8a, b) will also be C1 on Nδl with Qv~\ Hu, (Q*-1, i?%,£ )

uniformly bounded on Nh. Let θ = (θ19 , θm) so that θι represents
the Zth-component of θ and m = dim θ. If 3/30, commutes with integ-
ration, then differentiating the right side of (9) we obtain

A Γ e-An*[Bjk(f, ε) + εHjfk(ψf e)]eA^σdσ

If d/dε commutes the integration, then differentiating the right side
of (9) we obtain

9 ε)

Define

|| Ho = s u p I I
(18) (ί,«)6ίrai

| | | | sup
0,ε)eNg1

For the case j < k we have from (14), (16), (17)
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e \ \\ H* WWW dσ

(19)

i IσI + | | B I I , + lo +

uniformly in (0, ε) e iVv Similar inequalities hold for the case j > fc.
If we restrict dt so that

(20)
μk - μ, - hj£x > 0 (1 ^ i < ft ^ n)

βk - μs + ^JK; < 0 (l^k <j ^n)

then inequality (19) shows that djdθ^l = 1, , m), d/de in fact do
commute with integration and that (8), (9) determine Qv,H\Pv{v = 1,
2, •) iteratively as C1 functions of (θ, a) defined on JV ,̂ dx restricted
by (20), with Q\H%P%(Q\H\P>){θ,ε) uniformly bounded on Nh for
each v fixed.

We now consider the problem of convergence. With dλ further
restricted, if necessary, we will show that (Q\H\P*)—>{Q,H,P) in
the Cι topology on Nδl as v—> + °°. From (8a)

(21)

From (8b)

= 0,l, )

-1-1 - H* = B(P" - P"-1) - P"(Q" - Q"-1) - (P» - P

ϊ ^ + 1 - H" Ho ̂  {|| B ||β + || P " II, + IIQ*-11|.}{|| P 1 ' - P

(22) + H Q - - Q - Ί I . }

II ff+1 - H* ik ^ 2{|| B |k + || P" II, + || Q'~ι \\M\\P* ~

+ II Q" - Q'-ΊliK (y

From (9) for the case j < k

\Pίί1-Ph\

g (° JK,β-ϊ> I ε
J-cx>

, ε)}eΛ^dσ

A similar inequality holds for the case j > k so that

(23) | | P 1 1 + 1 - P Ί I . ^ ί t J K , | | J ϊ 1 ' + ι - f Γ I Ί l β

Combining (21), (22), (23) we obtain
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(24) <; δ&WB II, + II P" II. + II Q - 1 ||0}{l + W || P* - P - 1 1 | .

( y = l , 2 , - . . ) .

From (8), (9) we observe that Q°, P1 are defined on N} and that on iV5

the inequality

(25) \Q\θ,ε)\^\B(θ,ε)\

holds. Define

(26) K, = 2 sup I £(0, ε) I + 3 sup | P\θ, e) \ .
W,ε)eNs ίθ,t)eN$

Define Vh as a subset of the positive integers,

(27) Vh = {v\\\B II, + || P» H, + || Q- 1 1|,

From (24), (26), (27)

(28) | |P*+ ι - P-H, ̂  δ&JUl + S J Q | | P * - P

Now restrict ^ further, if necessary, so that

a A < I
(29)

Δ

then from (21), (25), (26), (28), (29) it follows that

I I P Ί I o ^ H P M I o (v = i , 2 , . . . )

IIQ v -Ίlo^l |B | |o + l|PΊIo (» = i ,2 , •••)

II5 Ho + II P v Ho + II β1"-1 Ho ̂  ίΓβ (v = l, 2, . .)

so that by (27)

(30) F θ l = {all positive integers}

and

(Q\H»,P>) >(Q,H,P)

in the C° topology on N8l as v—+ +oo.

In order to show that our sequence converges in the C 1 topology
we will need C° estimates on the rate of convergence of (Hu+1 — i P ) ,
and we will restrict dλ further, if necessary. From (9), (14)
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d JDu + l & fry

W," ~W,"

+ +

PH

IT '*

A i / > « ) ( t , 5) _

(31) (v = l , 2 , •••).

Combining (21), (22), (31)

|| P-+ 1 - P * II, ̂  δ&M B IK + I I P " IK + || Q ^ 1 II,}
(32) -{1 + K3) II P" - P"-1 |K + K, II 2?"+ 1 - H" %

(y = l , 2 , . . ) .

From (21), (22), (26), (27), (28), (30)

|| Ϊ P + 1 - jgr» Ho S K8II P^ - P - 1 Ho ^ 2-"+ ιίΓβ H P 1 Ho

(v = l , 2 , - . . ) ,

and combining (32), (33)

|| P-+ 1 - P» |K ̂  ί . ^ ί H 5 |K + !| P" |K + II Q*-1 IK}

(34) -{I + K3} I I P " - P " - 1 |K + 2-"+1K7K8 {{P11|0

(y = l , 2 , . . . ) .

Define

ίΓ9 = 2 | | B |K + 2<JΓ, + 1) | | P 1 IK + (2K3 + %)KW

Kw = 2K7Ks\\Pί\\<1.

Although below it may be necessary to restrict δx further, ίC9 and Kl0

are computed using δ1 which satisfies (29) and therefore K9 and JRΓ10

are fixed constants for the remainder of the proof.
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Define Vix as a subset of the positive integers

(36) v,\ = {v\\\B \\t + || P * II, + || Q>-1 \\, ^ K9}.

Now restrict 3t further, if necessary, so that

(37) 231K7KQ{1 + Kz) < 4 - .
4

From (34), (35), (36), (37)

(38) || P * + 1 - Pu \l ^ — || Pv - P 1 ' - 1 ||L + f—VίΓ10 , v e
4 \ 2 /

From (38) by induction (as long as 1,2, * ,ve Vh)

/ 1 \ v ( / Λ \2v-l / 1 \2^-2

IIP- - P II. a ( i ) IIP"!!. + {(}) + ( } )
(39)

(40)

and from (21), (25), (39)

IIQ*-1 II, ̂  IIQ*-1 - Q"-2 Ik + + II Q ι - Q" Hi + II Qι Hi
"-1 - P*- 2 |k + + || P ι - P° Ik] + || B Ik

Hence from (35), (36), (40), (41)

Vix = {all positive integers}

and from (21), (22), (39)

(Q% H\ P") > (Qf H, P)

in the C1 topology on N8l as v—* + oo. The assertation concerning
multiple periodicity follows from standard arguments. This completes
the proof of Theorem 1.

Using the proof method developed for Theorem 1, we can prove

THEOREM 2. For system (1) where b(θ, e) and B(θ, ε) are
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Ck(l ^ k < oo) with uniformly bounded derivatives on some N&, the
change of variables (3) and the transformed system (4) are also Ck

with uniformly bounded derivatives on some NSl provided 0 < δx ̂  δ
is sufficiently small.

4* The analytic case* In this section we first construct a formal
power series change of variables and then give a counterexample to
show that in general the power series does not converge. The pro-
cedure is then modified in Theorem 3.

Consider the real analytic system of ordinary differential equations

θ = a + eb(θ, ε)
( 4 2 ) x = {A + eB(θ, e))x

which is the same as (1) except that b, B are defined and analytic on

N« = {{θ, έ)\\^(θ)\ < δ,\ε\ < δ]

and biθ,ε), B{θ>ε) are uniformly bounded on JV?, where ^ = imaginary
part, ^{θ) = (^"(θj), , κJ^{θm)). If we look for an analytic change
of variables

x = (I+ eP(θ, ε))y

such that

y = (A + eQ(θ, e))y ,

where P and Q are defined and analytic on some region Nίlf P and Q
satisfying (5); then we must solve (7a, b). Because (42) is analytic,
it is natural to write (see the left side of 7b)

Pjk = Σ { α ^

where θ = (θu , θm), a = (αlf

than (7a, b) we try to solve

(43a) Q3Ί = B3j +
1=1

m β
Σ a ι -^Tr-Ljk — AjjPjk — PjkAkk + Bjk

11 θθ

εbtφ, e)}

•••Λ.)• Then,

(i = l,

rather

( 4 3 b ) Σ B n P l k - εPjkQkk - ε±bt JL-Pjh
1=1 1=1 όθi

(jyk = 1, -*,n\3 Φ k) .

Since B is analytic, it has a power series expansion

9=0
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(The super-scripts on B designate matrix coefficients in the expansion,
not powers of the matrix B; this remark will hold below relative to
P, Q, etc.) If we assume P and Q have power series expansions

Q{θ, ε) = Σ ε'Q'W) ,

then in (43) we can solve for the coefficients of P and Q recursively.
Equating corresponding powers of ε in (43b) we have

(44) Σ ax JL-P;k - AjjPh - P]kAkk + Z/*

where Z/ = Zg

3k{θ) is some known matrix function of θ; Z9 depends
only on the coefficients of P and Q of degree less than g. The unique
bounded solution of (44) in given by

(45) P;k(θ) =[° e-Λ»σZ9

άk(θ + aσ)eΛ^σdσ

where the lower limit of integration is chosen + oo for Akk < Ajd and
— co for Ajj < Akk with < the order relation in (2).

Thus from (43a) and (45) we can construct the formal power series for
P and Q recursively. If dim θ > 1, the following counter example shows
that in general the formal power series for P and Q need not converge.

Consider the real analytic, four dimensional system of differential
equations

θ = a + εb
(46)

* = (A + εB(θ))x

where θ = (θl9 θ2), a = (au α2), b = (1, 0), x = (xu x2)

0 \ (0 Bl2(θ)

x j ' B-[O o
with λ], ̂  λ2. From (43a, b)

(47a) Qn = Bn + ε{BnPn + B12P2ι} = εPu

(47b) Q22 = B22 + ε{B21Pi2 + BnPΆ} = 0

(47c) + ε { S u P 1 2 + Bι%P22) - εP12Q22 -

— (λi — λ 2 ) P 1 2 + S 1 2 — e——P12

oθι

Oϋ γ
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Σ ^ι-τrτ-P2i ~ (λ2 — λ x)P 2 1 + B21

1=1 dθi

(47d) + ε{BΆPn + B22P21} - εP21Qn - εJ-P2l

~ (λ;2 — λ.j/21 ~ (^-^21/ ~̂ΓT~-̂ 21
O(7χ

From (47d), (45) we have P21 = 0; from (47a, b) Q Ξ 0. Thus we have
only P12 to compute in (47c).

Suppose B12 has the Fourier series representation

If ψ* — (^rn α/r2), α/r = ψ(ί, 6̂ ,6) is the unique solution of the 0-equation in
(46) with initial condition θ at t = 0, then

τK(ί, ί, ε) - θx + (α, + ε)t

ψ2(t, θ, ε) = θ2 + α2ί .

From (47c)

PMr{t, θ, ε)) - (λ, - λ£)P1 2(t(ί, «, e))

and therefore, when ε is real,

P*(θf e) = Σ [^ - λ, + ̂ ^(α, + ε) + % } ] - \ / ^ + ^

But since

[λ2 — λj + ̂ {̂ (α,. + ε) + v2a2}] = 0

when

ε = vΓl-iίλs - λx) - v2a2] - αx ,

we conclude that in general P12(0, ε) can not be analytic in ε.
Rather than (42) we consider the real system of ordinary differ-

ential equations

θ = a + εb{θ, ε)
( x = (A 4- εB(θ, ε))x

where θ, a, b are real vectors; a is a constant vector; έ is a real
perturbation parameter; 6 is defined and Ck(l ^ k < oo) on
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with m = dim/9, Rm = m-dimensional euclidean space; b and all its
derivatives of order less than or equal to k with respect to the com-
ponents of (θ, έ) are uniformly bounded on N}; A is the real, constant
matrix given in (1); ε is a complex perturbation parameter; B is real
analytic in ε and Ck in (θ, ε) on

Ni = {(θ,ε)\θeRm,\ε\<δ}

and has a power series expansion on N£,

9=0

B and all its derivatives of order less than or equal to k with respect
to the components of θ are uniformly bounded on N*, and these
derivatives of B are equal to the term by term derivatives of the
power series for B.

THEOREM 3. For system (48) there exists a unique change of
variables

(49) x = (I+ εP(θ, έ, e))y

such that

(50) y = (A + εQ(θ, έ, e))y

where I is the identity matrix; P and Q are real analytic in ε and
Ck in (θ,έ, ε) on some

Ni, = {{θ, ε,ε)\θeR™,-31<ε<δu\ε\< δ,}

with 0 < <?! ̂  δ sufficiently small; P and Q have power series ex-
pansions on Nilf

(51) Z°

9=0

P and Q and all their derivatives of order less than or equal to k
with respect to the components of (#, έ) are uniformly bounded on
N!iy and these derivatives of P and Q are equal to the term by term
derivatives of the power series for P and Q, respectfully; with P and
Q partitioned into sub-matrices similar to A,

(52) 33 ' _' ~ . ' '

if system (48) has multiple period ω in Θ, βien P and Q also have
multiple period ω in θ.
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Proof. Following the proof method of Theorem 1, we obtain from
(49), (50), (52)

QiS = Bis + e Σ BnPu (j = 1, • • •, n)
1 = 1

(53) Pjk = AssPik - PjkAkk + Bjk

+ e Σ BjiPn ~ εPjkQkk (j,k = l, ••-, n; j Φ k) .
1=1

Assuming P and Q have power series representations (51) with (as of
yet) undetermined coefficients, we obtain upon equating coefficients of
ε9 in (53)

(54a) Qh = B°j3 + Wh

(54b) PU = A3ΊPfk - PfkAkk + B°.k + Zfk

where W9 = Wg(θ, έ) and Z9 = Z9(θ, ε) are matrices which depend on
the coefficients of P and Q of degree less then g. To solve (54b)
define

Pfk(θ, e) - ί° e-Λn°{B°jk(1r(σ, θ, έ))
(55) J±~

+ ZΛ(^(σ,ί,e),ε)}e^*'d(7

where ^ = ψ(t, θ, έ) is the unique solution to the ^-equation in (48)
with initial condition θ at t — 0. Using (54), (55) we compute the
coefficients of P and Q recursively. By restricting 8X sufficiently, one
easily shows that P°,Qg(g = 0,1,2, •••) have, with respect to the
components of (0, έ), uniformly bounded derivatives of order less than or
equal to k. To show that the power series for P and Q converge and
that the term-by-term derivatives up to order k of the power series
also converge, one uses the proof method of Theorem 1. The assertion
concerning multiple periodicity follows from a standard argument.
This completes the proof of Theorem 3.
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