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FIXED POINTS FOR ITERATES

BENJAMIN HALPERN

Let f: X— X be a continuous map of a compact polyhedron
X into itself and H a homology theory with rational coeffi-
cients., In the first section a variety of theorems are proved
connecting the existence or nonexistence of fixed points for
certain iterates of f with a variety of other information such
as: conditions on the Betti numbers of X, f being a homomor-
phism, certain induced homomorphisms f;: H(X)— Hy(X)
being isomorphisms, factors of the Lefschetz numbers A(f"),
the gross behavior of f with respect to the components of X,
and certain other iterates of f being fixed point free. One of
the theorems proven is that if H;(X)=0 for odd ¢ then there
exists an € X and an %, 1 <7 <J5; dim H(X), such that
f™x) = 2. Another theorem is that if f is fixed point free
for 1 = n < p/2 and f?* = identity then p divides the Euler
characteristic of X.

The resuls of §1 are applied to the problem of coincidence in § 2.
In § 3 most of the results of the first two sections are shown to carry
over to set-valued functions. Next it is shown that the behavior of
f in any neighborhood of the fixed points of f, f2 ---, % where
q = %, dim H,(X), determines all the Lefschetz numbers A(f"), n > 0,
and sheds a certain amount of light on f*. The Euler characteristic
of a compact polyhedron X is determined by the Lefschetz numbers
{4(f™)}z-, whenever f: X — X induces an isomorphism f*. This fact
is proven in the last section.

All the analysis centers around an index K(f) discovered by J. L.
Kelley and E. Spanier to whom I am indebted for invaluable help.!
I am also grateful to V. Singh for several discussions.

1. Point-valued maps. In the following we will consider a
compact polyhedron X and a continuous map f from X into X,
f: X— X. Let H be a homology theory with rational coefficients. 2,
will stand for the n-Betti number of X, 5, = dim H,X. If L is a finite
dimensional vector space over the rationals Ra and ¢g: L — L is a linear
transformation, then P(g) will denote the characteristic polynomial of
g. If L =0 we set P(g) = 1. The fundamental tool in all of what
follows is the characteristic K(f),[4], defined by

K(f) = IL: P(f3)/11: P(S 540 -
K(f) can be expanded uniquely into a canonical formal Laurent series
1 Actually, K(f) is the zeta function well known to algebraic geometors.
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Kf)y= 1+aN"t+aN2+ --0)

where ¥ = S(—1)"8, = the Euler characteristic of X. The coefficients
a; = a;(f) are the canonical coefficients of K(f),[4]. Similarly (K(f))*
can be expanded uniquely into a canonical formal Laurent series.

(B(F)™ = NH 1+ BN 4 bA 4 «ee)

The coefficients b; = b;(f) are then the canonical coefficients of (K(f)).
It is easily seen thata, = a,=-.-=a, =0 if and only if b, =b,=-.-b, = 0.

Kelley and Spanier have shown in [4] that {a.(f)};-, and the
Lefschetz numbers {4(f™)};_, are closely connected (A(f)=2,(—1)" tr f*).
In fact the » tuplet {a,, a,, ---, a,} determines and is determined by
{4(fY, A3, -+, A(f™)} and furthermore ¢, =a,=--- = a, =0 if and
only if A(f') = A(f?) = +++- = A(f") = 0. This gives immediately the
following theorem.

THEOREM 1. Let X be a compact polyhedron and f: X— X a
continuous map from X into itself. If f*, f% -+, f" are fixed point
free then a, = a, = +--a, = 0.

We will now outline a more direct proof of Theorem 1 which
resembles the proof of the Lefschetz fixed point theorem and possibly
sheds more light on how K(f) comes to have the geometrical signi-
ficance given by Theorem 1.

Outline of second proof. If Q@ = A" X7 ,en"% ¢, # 0, is a formal
Laurent series then we define ©7Q to be the smallest 47 > 0 such that
¢+ # 0 if such 7 exists and if not we define &Q = . It is easy to
prove that if Q, R are two formal Laurent series then

(i) Z(Q-R) z min(ZQ, ZR)

(ii) Z(Q/R) z min (ZQ, ZR) .

Next we note that if M is a square matrix and P(M) = det (W] — M) =
A"+ Nt 4 e NP 4+ --. + ¢, then ¢, is made up of sums and differ-

ences of “symmetrical” m X m sub-determinants of M. By a “symmet-
rical” m x m subdeterminant M’ of M we mean a subdeterminant of
M such that the set of indices corresponding to the rows of M used
in M’ is identical to the set of indices corresponding to the columns
of M used in M’.

Now we choose a triangulation T of X sufficiently fine so that
the following argument will hold good. We let f* denote a chain map
f#C(X, T)— C(X, T) induced by a simplicial approximation to f. Let
B = (o, ---,0,) be the canonical basis for C,(X, T) made of the i-
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simplices of T, and let M be the matrix of f¥(o;) = X, M;,0,. Assume
that f*-.. f" are fixed point free. We claim that if M’ isa m x m,
m < n, symmetrical subdeterminant of M then M’ = 0. We may take
M’ to be formed from the first m rows and columns of M. Since T
is very fine and f has no fixed points, M, = 0. If M, = 0 for all
n=12,+..-m, we already have M’ = 0. Supposing not, we may
assume M,, # 0. Since T is very very fine and f and f* are fixed
point free we must have M, = M,,=0. If M,,=0,all n=1,---m,
we are done and if not we may assume that M, == 0. Continuing in
this way we either get M’ =0 or M;; =0 for ¢ <j <m. But in the
latter case M’ = 0 also. This establishes the claim.

From the above we see that &7 P(f;) = n for all +. Thus by the
elementary properties of & we have Z[II; P(f§)/Il: P(f{.)] = n.
But according to Kelley-Spanier [4] the quantity in brackets is equal
to K(f). Thus 2 K(f)=mn and a,, a,,---,a, =0 as we wished to show.

Next we will find conditions which insure that a, # 0 for some n.

LEMMA 2. If M={M;;} is an nxn matric with real coefficients
such that for each 1, 3,;M; =1 then N —1 is a factor of the
characteristic polynomial of M.

Proof. We must show that 1 is an eigenvalue of M. But this
follows from the observation that MX = X where X = (1,1, ---,1).

COROLLARY 3. If f: X— X 1is a continuous map of a compact
polyhedron X into itself then (A — 1) | P(fy").

THEOREM 4. Let f be a continuous map of a compact polyhedron
X into itself, f: X— X. If H(X) =0 for odd n then at least one
of the fumctions f*,f% ---,f* has a fized point where Y is the Euler
characteristic of X.

Proof. In this case
N+ a T+ eee +a, = K(f) = 11: P(f2) .

Since N — 1| P(f*) we have n — 1| K(f). Consequently not all the a;
can vanish and the present theorem follows from Theorem 1.

DEFINITION 5. Let Q) =c¢\" + e\t + <+ +¢,,6 7+ 0, be a
polynomial with rational coefficients. Set .&“Q = the greatest ¢ such
that ¢; = 0.

We collect a few useful properties of .57 in the following lemma.,
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LEMMA 6. Let Q@ and R be two polynomials with rational
coeffictents, L a finite dimensional vector space over the rationals,
and g: L— L a linear transformation. Then

(i) F(@QR)=F(Q) + F(R).

(ii) ~“P(9) < rankg.

(iii) If g s an isomorphism then S P(g) = dim L,

Proof. (i) is obvious. To prove (ii) consider a matrix for g rela-
tive to some basis. Then » = rank g = the largest nonzero minor of
M. If P(g)=A\"+ e+ -+« + ¢, where n = dim L then ¢; is a linear
combination of certain 7 x ¢ minors of M. Thus¢,.,=¢,po=+++=¢,=0

and consequently &“P(g) < » = rank g.
Now assume that g is an isomorphism. Then ¢, = (—1)"det M == 0.

Thus S P(g9) = n = dim L, which proves (iii).

THEOREM 7. Let f be a continuous map of a compact polyhedron
X into itself, f: X— X. Set A={i|1 ts even and f¥* is an iso-
morphism}. If

SieA dim Hl(X) > 3o rank fz*

then there exists an x€ X and an 1 < L (IliewenP(fF)) such that
f™x) = 2. (The theorem is also true with “odd” and “even” inter-

changed throughout.)
Proof. Set Q(\) = II: P(f¥) = M + e A + -+ + ¢,
and
R()") = Ha» P(fz?ﬂ) =N+ dlkr_l + e+ dr .
We make the following estimates on $“(Q) and S“(R).

LQ) = FL(L: P(f) = 2. P(f) = 2ie 4, P(fF)
=J%,..dim H(X) .
F(R) = L(IL: P(fit)) = 2. P(fif) = Zioaa rank f* .

Set N = .97(Q) and M = S“(R). It follows from the hypothesis that
N > M. Now Q, R and K(f) must satisfy

R-K(f)=Q.
Thus
O#fcy=ay+day_, +dy_,+ - + dyay_y .
Consequently not all of the numbers ay,ay_,, --+,ay_, can vanish.

Therefore by Theorem 1 there exists an n < N = .S7(Q) = S (T; evea P(fi¥))
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and an ze X such that f*(x) = #. (A dual proof with K~ replacing
K works for “odd” and “even” interchanged.)

COROLLARY 8. Under the same hypothesis as the above theorem
there exists an x€ X and an n < Y, oo dim H(X) such that f~(x) = x.
(The dual result with “odd” and “even” interchanged also holds.)

Proof. Simply note

y(Hieven P(ft*)) = Zieven yP(fa*) é Eieven deg P(.fz*) = Zieven dimHz(X) .

COROLLARY 9. Let f be a homeomorphism of a compact poly-
hedron X onto itself, f: X — X. If the Euler characteristic y of X
does mot wvanmish then some iterate of f has a fixed point. In fact
there exists an xe X and an

n é max (Zieven dim H'L(X)’ ‘Ziodd dim HI(X))
such that f*(x) = x.
Proof. Since f is a homeomorphism, each f;* is an isomorphism.
Thus A contains all even or all odd ¢. Since ) # 0 we have either

* EieA dim H@(X) = Zievendim Hz(X) > Ziodd dim Ht(X)
= Yo rank f*

or Y% with “odd” and “even” interchanged. In either case Corollary
8 implies that there exists an ¢ X and an

7 = Max(d; eee, dim H(X), ¥, 4 dim H, (X))
such that f"(x) = «.

Comment. The hypothesis “f is a homeomorphism” in the above
corollary could be weakened to “f* is an isomorphism”.
Corollary 9 has already been proven by F. B. Fuller [3].

THEOREM 10. Let f be a continuous map of a compact poly-
hedron X into itself, f: X— X. If H(X) =0 for odd i and f, f*, ---,
f™ are fized point free then

Y;rank f;; = n + 1.

Proof. Note that if P is not a monomial then 2/(P) + 1 £ S“(P).
(See second proof of Theorem 1.) H(X) =0 for odd ¢ implies that
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K(f) is a polynomial and since » — 1| K(f), K(f) is not a monomial.
Because f, /%, ---, f" are fixed point free 2 K(f) = n. Thus

n+ 1< FK()+ 1= SK() = LIPS
2L P(fi) < Sirank f3] .

If we take X; rank f* to be a measure of how nontrivial f is then
Theorem 10 can be paraphrased very roughly as “If H,(X) = 0 for
odd 7 then f has to have a certain degree of nontriviality in order
that f, f% ---, f* be fixed point free”. For example, in order for f,
f2, -+, f*71 to be fixed point free, where H;(X) = 0 for odd ¢, not
more than j of the f* can fail to be isomorphisms.

ExXAMPLE A. Consider R® to be R x R? with elements (¢, ¥) where
xeR and y e R%. Let r: R2— R? be a rotation about the origin through
an angle 7w/n where n is a fixed positive integer. Define X C R® and
f: X— X by

X ={(z,y) |either (0 <2 <n and ||y|| =1) or
2=20,1,-.-, or n and ||y = 1)}

@x+1l,ryif0=sec=sn-—1

n—omry)ifn-—-1<az=n

Sz, y) =

for all (z, y) e X.

It is easily seen that 8, =1, 8, =n and B, =0 for 7 = 0 or 2, and
that f is continuous. Due to the small rotation », any fixed point for
£y f% ++-, of f~ must be of the form (x,0). There are exactly n + 1
such points in X and f permutes these points cyclicly. Thus f, 2 ---,
f™ are fixed point free.

ExaAMPLE B. Let n be and odd integer and X consist of # copies
of a 2m(m > 0) dimensional sphere S. Let .o7: S — S be the antipodal
map and g: X — X be simply a cyelic permutation of the copies of S.
Now set f = go.o” where 7: X— X is the natural map induced on
X by .o7. Then f is a homeomorphism of X onto X and B(X) = n,
Bem(X) =mn and B(X) =0 for 7+ 0 or 2m. The action of g rules out
any fixed points for f,f%, ---,f* ' except in the case of f". But
fr= .o since m is odd. Thus £, f3 -+, 7" are fixed point free.

The above examples show that the bounds on % in Theorem 4 and
Corollary 9 cannot, in general, be reduced. In special cases the number
of iterates needed can be drastically reduced. One sort of case is
where X contains a distinguished point « such as when « is the only
cut point of X. Then for any homeomorphism f, we must have
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f(x) = . Another example is where 8, =0 for odd 7 and 8, =0 or 1
for even 4. Then the Lefschetz number A(f?) = X,(—1)" trace f** =
X.(tr f) = (tr f,)) = 1. Therefore in this case f* always has a fixed
point. Less trivial cases are covered in Theorems 18, 20 and 21. First
we need to make a definition and prove some lemmas.

DEeFINITION 11. Let {d;} be a sequence of integers and @ a poly-
nomial over the rationals. {d;} is said to factor @ if there exists a
sequence of polynomials {Q,} such that Q = /7,Q; and d;, = deg @;. In
considering whether a given sequence {d;} factors a polynomial @, one
may disregard the d; which vanish since they can always be made to
correspond to the constant polynomial 1. If Q = II;R; is a prime factori-
zation of @ then {d;} factors @ if and only if the numbers {deg R}
can be partitioned into subsets whose sums correspond to the nonzero
d;. For example consider @ = A" —1,n=1. Then a prime factorization
of Q is Q= 11,,6, where ¢, is the d** cyclotomic polynomial. deg ¢, =
@(d) where @ is Euler’s number-theoretic function, [9]. (@ is most
easily calculated by the formula: If d = II;,p! is the prime decomposi-
tion of d then o(d) = II,l;p*(p; —1.) Consider » = 10 and (a) {d;} =
{1,8,3,3) and (b){d,} = {2,8}. Then the factors d of 10 are 1,2,5 and
10 and the corresponding o(d) are 1,1,4 and 4. Thus {d;} does not
factor M° — 1 but {d;} does since 2=1+1 and 8 = 4 + 4.

LEMMA 12. Let f be a continuous map of a compact polyhedron
X into itself, f» X— X. If B, = 0 for odd % then (K(f))(\) is a poly-
nomial, {B;} factors K(f), and (K(f))Sf*) = 0.

Proof. Since B, = 0 for odd 7 we have
K(f) = II.P(f) .

Thus K(f) is a polynomial and because deg P(f¥) = dim Hy(X) = B;
we see that {8;} factors K(f). We know by the Hamilton-Cayley
theorem that (P(fF*)(f7¥) =0. Thus (K(f))(f¥) =0 for all 7+ and
consequently (K(/)(f*) = 0.

LEMMA 13. The polynomials P(f¥) have integer coefficients.
Proof. From the universal coefficient theorem, Spanier [8], we
have the following commutative diagram:
0— H(X,Z)® Ra — H(X,Ra) — H,_(X,Z)*Ra — 0
lzf{" ®1d lR“ff 3
0— H(X,Z)  Ra — H(X,Ra) — H,_(X,Z)*Ra — 0
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where Z = the integers, Ra = the rationals, and * the torsion product.
Since Ra is torsion free, H; (X,Z)*Ra = 0. Thus % reduces to

H(X,Z) ® Ra ~ H(X, Ra)
12 ¥ ®id lR“fi*
H(X,Z) ® Ra~ H(X,Ra) .
It is now apparent that an appropriate choice of generators for H,(X, Z)
gives rise to a basis for H;(X, Ra) relative to which *“Rf* has a matrix

with only integer entries. Thus P(R*f*)= P(f*) has integer coeffi-
cients.

LEMMA 14, The canonical coefficients a;, and b, are integers.

Proof. Since all characteristic polynomials are monic, so is
Q= II,P(f,,). Thus we may write Q = \(1 — Q,) where Q,(\) = ¢\ +
eANE+ - +ev . Now K may be expanded into its formal Laurent
series by the formula M1+ aA" + ---) = K(f) = IILP(f¥) - V* 32, QL.
It is now clear that the a, are just sums of products of the coeffi-
cients of IT,(fy) and @, and are consequently integers. A completely
analogous argument shows that the b; are also integers.

We now prove a slight extension of a result in Kelley-Spanier [2].

LEMMA 15, If A(f") =0 for 1=<n<N-—1 then a,=0 for
1<n<N-1and —na, = A(f") for N<n < 2N — 1.

Proof. From Kelley-Spanier [4] we have
i:'; nat = (1 + é; A= 3L AFIN)
this means that

-, =l +al, + @l + oo ol Y

where [, = A(f*). Using % we first see that a, =0 for 1 =<n <N -1
and then using this fact and Y% again we get —na, = A(f") for
N<n<2N -1,

It is already known, [2], that if f is periodic of prime period p in the
sense that f” = identity and f is fixed point free then p|y. Lemmas
14 and 15 immediately imply the following generalization of this result.

THEOREM 16, Let f: X— X be a continuous map of a compact
polyhedron X into itself. Suppose f™ is fixzed point free for
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1<n<p/2(p=2) and f** = identity. The p divides the Euler
characteristic of X. (p need not be prime.)

The following lemma lists various conditions under which we may
wholly or partially determine K(f). Both Lemma 17 and Theorem 18
may be considered refinements of Theorem 4.

LEMMA 17. Let B, = 0 for odd 1. Then

(a) Letl<j<y. If f~1s fized point free for L=<n <y, n +jJ,
then K(f) = M — M1 = =i\ — 1).

(b) If f™ is fixed point free for 1 < n <y — 2 and not all of
the f, are isomorphisms then K(f)= A\ — X = MA*' — 1),

(¢) Suppose fis a homeomorophism and 1<j<yx—1. If f* 1s
fixed point free for m =~ j, 1< n <y — 1, then either K(f) =2\ —1
or K(f) =N\ — 207 + 1,

Proof. (a) Assume hypothesis (a). Since fi(x) =« implies
fH(x) = it follows that 25 =y +1. We haveA(f")=0forl1<n=<j5-1
and for j+1<n<y%. Thus by Lemma 15 a¢,=0for 1=n<j5-1
and for j + 1 <n <y. This leaves a; to be determined. Since » — 1
is a factor of K(f)(\) we have K(f)1) =1+ a¢; = 0. Thus K(f) =
ANF — N = )\,x—johi — 1).

(b) Assume hypothesis (b). f* is trivially an isomorphism for
odd 7. Thus there is an even % such that f* is not an isomorphism.
Then det f* = 0 and consequently a, = + IT,det f;; = 0. Since A(f")=0
for 1=n<y—2 wehavea,=0for 1 <n <y—2. This leaves only
a,_, to be determined. Because N —1 is a factor of K(f)(\) we may
write K(f)1) =1+ a,_, = 0. Thus K(f) = M — A = MM — 1),

(¢) Assume hypothesis (¢). Since fi(x) = « implies f¥(x) = x it
follows that 25 = y. Reasoning as before we see that a, = 0 for
1<n<y-—1,n+j. This leaves a; and a, to be determined. a, =
+ IT; det . Using Lemma 13 we see that since f has an inverse f—
the integer det f;f has an integer inverse det f;;**. Thus det ff = +1
for all ¢+ and therefore a, = + 1. Because K(f)1) =1+ a; + a, =
1+ a;,+1=0we must have K(f) =x*—1 or K(f) =N\ — 227 + 1,

Combining Lemmas 12 and 17 we obtain the following theorem.

THEOREM 18. Let X be a compact polyhedron and f: X— X a
continuous map from X into itself. Assume further that H(X) =0
for odd 1. Then under the additional hypothesis of (a), (b) or (c) of
Lemma 17 we have respectively (a) {B8;} factors N*(\' — 1) and (see
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definition 11) f** — f**=3 = 0, (b) {8} factors \(\ — 1) and f** — f* =0
and (c) {B;} factors either \* — 1 or \* — 2 *~7 + 1 and either f** — f* =0
or f*—2f*1 + I =0 where I = the identity transformation.

Comment. Note that the condition “f is a homeomorphism” appear-
ing in part (c¢) of Lemma 17 may be weakened to “f is a homotopy
equivalence” or weakened even further to “there exists a continuous
g: X — X such that f*! = ¢g*” for both Lemma 17 and Theorem 18,

COROLLARY 19. (a) Under hypothesis (a) of Lemma 17

J if n=1j5 for some l =1
0 otherwise (n = 1).

AP = {

(b) Under hypothesis (b) of Lemma 17

A(f”)—{x_l if n=1Ux—1) for somel =1
o otherwise (n = 1).

Proof. Let k=3 for part (a) and £ =y — 1 for part (b). Then
by Lemma 15, A(f*) = —ka, =k and A(f™) =0 for 1<m <y -1,
m+#k. By Theorem 18, f** = f***  The Corollary now follows by
reducing A(f") to A(f™) withl<n' <y —1 (or with 1 <»' <y if k= y).

Theorem 18, part (a), with j = ¥ = n + 1 applies to Example A.
Thus f*"** = identity. A careful inspection of Example A will reveal
that in fact f"** is homotopic to the identity.

Consider the polynomial M* — 2\ + 1 which is one of the possibilities
in part (¢) of Theorem 18 with 5 =y — 1. In light of the discussion
following Definition 11, the prime factorization of \* — 2\ + 1 is of
interest. A*—2x+1=(\ — 1)P(\) where P(A) = M1+ A2+ oo 40 — 1,
By applying Eisenstein’s criteria to P(» + 1) it is found that P(\) is
irreducible over the rationals for y of the form y = 2™, The author
does not know of any value of ¥ for which P(\) is not irreducible.

The following two theorems sharpen the conclusions of Theorem
4 and Corollary 9 in certain special cases.

THEOREM 20. Let f: X— X be a homeomorphism of a compact
polyhedron X onto itself. Suppose H(X) =0 for odd i, m = the
number of 1 such that dim H(X) = 1, and q the greatest integer j
such that j < (m — 1)/2. Then there exists an xe X and an n,
1 <n <X, dim Hy(X) — q such that f™(x) = .

Proof. Suppose the conclusion were false, Then a, =a,= -+ =
a,_, = 0. Therefore (d%dA)K(\) = (x!/(x — ¢@))N*%. Because f is a
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homeomorphism, P(f;) =\ + 1 for each ¢ with dim H(X) = 1. Thus,
either 1 or —1 is a root of order ¢ + 1 of K. Consequently, either
1 or —1isaroot of (d9/d\7)/K(N) = (x!/(x — @)!)»*~? which is impossible.
Therefore the conclusion holds.

THEOREM 21. Let f: X— X be a homeomorphism of a compact
polyhedron X onto itself. Suppose dim H(X) =1 for at least m
odd © and m even 1, and Y #* 0. Then there exists an xc X and
an 1,1 £ n < max (¥;dim H,(X), ¥,dim H,,, (X)) — m = q such that

SM(@) = .

Proof. Suppose y >0. The case y <0 is handled similarly. Set
P = II.P(f%) and @ = II,P(f%,). Assume that f,f? .-, f?are fixed
point free. Then from QK = P it follows that

P(A) = MQ(N) + € N+ Cp AR A eee 6 Y

Because f is a homeomorphism and y > 0 we have ¢, = P(0) = +1
and P(f7)=)zx1 for each ¢ with dim H(X)=1. Consider ¥t mod 2.
Then (A — 1) is a factor of P(\) and A\*Q(\) and therefore also of
R(\) = ¢ A™ P + - -+ + ci(mod 2). Noting that degree R<m — 1 we
see that there is a contradiction unless R = 0 mod 2. But this is also
impossible because ¢, = 1 mod 2. We must therefore admit that not
all of the maps f, /2, ---, f¢ are fixed point free.

Suppose now that in addition to the hypothesis of Theorem 21
we have dim H,(X) =0 or 1 for all odd 7, m' = the number of odd <
for which dim H;(x) =1, and f, f3, -.-, f* are fixed point free. Then
in place of Y% we have

P\ = POV — 1(0 + D)™ = A — 1)°(0 4+ D)™ + R(\) Yoy
m=m,0Zrsm0<sm
degree R(\) < m .

Also R(0) = P(0) = = 1. For fixed values of », s and P(0), Y%v% along
with R(0) = P(0) determines R(\) = ¢,\™ + -+ + ¢, because they give
the value of (d"/dA")R(a) for a =1 with 0 <n <r —1,and for a = —1
with0<n<m-—r—1, and for a =0 with » = 0. Thus P is determined
up to 2(m + 1) possibilities.

Similar considerations can be made with respect to Theorem 20.

The last theorem of this section is a generalization of Theorem
18a with j =y — 1.

THEOREM 22. Let X be a compact polyhedron and f: X— X a
continuous map from X into itself. Let X, X,, ---, X, be the com-



266 B. HALPERN

ponents of X, X = X, U---UX,. Suppose further that H(X) =0 for
odd © and that f* is fixed point free for 1 <n < (X)) — 1. Then
(1) 0% = 4dentity.
(il) {B«(X)} factors W(X) — 1.
(iii) Bd(X;) = Bi(Xy) for j,l=1,---,q and all <.
(iv) {Bi(X;)} factors W&Fi — 1 = \Dle 1,
(v) for a particular numbering of the components

X)) Cc Xy, for 1 <14 < q where X, = X,
(vi) under the same numbering as in (v)

(f1 X)*: HX;) — H(X;.)) is an tsomorphism for 1 <1 = q.

Proof. Since f is continuous for each 1, f(X;) € X, for some j.
Thus f induces a map g¢:{1, ---,q}— {1, ---, ¢} by setting ¢(i) = j.
Because ¢ is a function from a finite set into itself it must have a
cycle of length %k < ¢. Renumbering if necessary we may assume
f(X)c X, for1<+<k-—1and f(X,)c X,. We may also assume
that ¥,8,(X) < 2:8:(X;) for 1 <j < k. Since B,(X) =0 for odd <
and B,(X) = ¥,;8,(X;) we have B,(X;) =0 for odd ¢ and all j. Note
that

WX) = 2,68::(X) = 2.21_,8(X;) = 21..2:6::(X);)
= 2’;'=12i132i(Xj) =+ 2?'=k+12i62i(Xj)
= 3B X)) + B X)) Z k(X)) +q— k.

Thus x(X) = ky(X,) + ¢ — k with x(X) > kx(X,) unless £ =¢q and
3iB(X;) = ¥iBu(X) for j =1,2,---,4q.

Now set » = f*| X,. Then h(X,) C X, and because f" is fixed point
free for 1 <n < y(X) — 1, k" is fixed point free for 1 <n < (X)) — 1.
Therefore by Theorem 18a, A***¥ = identity and {B;(X,)} factors
A0 1, By Theorem 4, h**Y has a fixed point. Thus f***v has
a fixed point and consequently x(X) =< kx(X,) < x(X). Therefore
x(X) = kx(X,) and so k = q and 3.;3,(X;) = 3:8,(X)) for j=1,---,q.
This shows that X, could have been any of the X;’s. We can write

identity = A**" = (f| X)* -+ (f| X)* -+ (f1 X)* --- (f| X)* .

Thus (f | X,)*: H(X,) — H(X,) is one-to-one. Therefore B,(X,) < B:(X,).
But since 3.8,;(X)) = 2.5,:(X,) we must have B,(X)) = 8,(X,) for all 7.
Since X, could have been chosen to be any of the X; we conclude
that B;(X;) = B(X,) for all j,1=1,2,---,¢ and all 4, and that
(f| X)*: HX,)— H(X;,,) is an isomorphism for 1<+¢ =<g¢g where
X, =X,

Theorem 18a applies to f: X — X and thus we have {8;(X)} factors
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A& — 1 and f*0* = identity. We have now established all the con-
clusions of the theorem.

Observe that f™(x) = x implies f"™(z) = 2 for all » = 1. Armed
with this fact we can play funny games with most of the above
theorems. For example the conclusion of Theorem 4 could be replaced
by “f* has a fixed point” or “either f« or f* has a fixed point where
a = ;4% and B = II;4.,1".

1S4y 1=igy

GENERALIZATIONS. Note that in most of the results the hypothesis
and/or the conclusion can be stated in terms of the Lefschetz numbers
A(f™). Consequently they can be used in conjuction with the results
of Atiyah and Bott [1] and O’Neill [6] concerning the degrees of fixed
points, and essential fixed points and fixed point sets.

All the results have been stated for compact polyhedra. But since
the analysis basically concerns the Lefschetz numbers 4(f") it is easily
seen that all the results of this section and the next hold whenever
the rational homology groups H,(X) are finitely generated and trivial
for n» sufficiently large, and the Lefschetz fixed point theorem holds.
In particular the results hold for compact metric ANR’s [5].

If the homology is taken with coefficients in a field & with nonzero
characteristic then A(f*) =-..=4(f") =0 need not imply a,=--.=a,=0
(Kelley and Spanier [4]). Thus Theorem 1 no longer follows from the
Lefschetz fixed point theorem. But the alternate proof is still good
for polyhedra. Consequently most of the results of this section hold
for polyhedra and homology with coefficients in an arbitrary field.

2. Applications to the problem of coincidence. Let 2,9: X— X
be two continuous maps from the compact polyhedron X into itself.
A point z is a coincident point for f and g if f(x) = g(x). In order to
apply the preceding fixed point theorems we will assume that ¢ is a
homeomorphism. Then h(x) = g(x) is equivalent to f(x) = 2 where
f=gtoh. If g7 and h commute then f*(x) = 2 would give g"(x) = h"(x).
We can still obtain such a result even when g~ and ~ may not commute.

THEOREM 23. Let X be a compact polyhedron, h: X — X a con-
tinuous map and g: X — X a homeomorphism. Assume that h* and
g* commute, h*g* = g*h*. If in addition either conditions (a) or (b)
hold then there exists an xze€ X and an n, 1 <n < q, such that
h'(x) = g"(x).

(a) Hy(X)=0 for odd © and q = ¥ = ¥, dim H,(X).

(b) & is a homeomorphism (or just h* is an isomorphism), the
Euler index x #+ 0, and ¢ = max (¥; dim H,(X), ¥, dim H,,,(X)).
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Proof. Consider case (a). As in the proof of Theorem 4 we can
conclude that the a,’s associated with K(g—'h) cannot all vanish for
1=<i<q=y. This implies (Kelley-Spanier [4]) that 4((9—'k)") # 0 for
some 7,1 <n < q. But

0 # A(97'h)") = A(((97'h)")*) = A((g™'h™)")
= A(g*"h*") = A((g~"h")*) = Mg™"h") .

Thus by the Lefschetz fixed point theorem there exists an x e X such

that g~"h"(x) = « or equivalently h"(x) = g"(x) for some n, 1 < n Zq.

This proves the theorem for case (a). Case (b) is handled in a com-

pletely analogous way refering to Corollary 9 in place of Theorem 4.
We will consider here one more interesting case.

THEOREM 24. If h,g and X are as in Theorem 23 with the addi-
ttonal hypothesis that g, = a,I where each a, = * 1 then either there
exists an even n,l < n < q, such that h*(x) = x for some xc X or
there exists an odd n, 1 < n < q, such that h*(x) = g(x) for some xe X.

Proof. Nothing that g*" = g* or I depending on whether = is even
or odd the conclusion follows much the same as in the proof of
Theorem 25.

All the results of § 1 may be similarly applied to give coincidence
theorems like Theorems 23 and 24. Note that the condition ¢} = a,I
implies that g* commutes with any homomorphism ¢: H(X) — H(X).
For an example of this last theorem consider the two dimensional
surface X in Figure 1. Define g by g(x, v, 2) = (x, —y, —z) for all
(x,y,2)e X. Intuitively it seems clear that 8, =1,8,=4,8,=1,8, =0
for 7 > 2, and that the circles a, b, ¢ and d form a basis for H,(X).
Still reasoning intuitively we conclude that g¥=1I, g = —1I and g =1.

Z y

FIGURE 1.
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Providing that all of this is indeed so we can conclude from Theorem
24 that if 2 is any homeomorphism %#: X — X then either h(zx) = g(x),
hi(x) = g(x), h*(x) = =, or h*x) = « has a solution ze X.

3. Set-valued maps. We follow the exposition of the theory of
set-valued maps in [7]. Let X and Y be topological spaces. A set-
valued function F': X — Y assigns to each point 2 € X a closed nonempty
subset F(z) of Y. If F: X— Y is a set-valued function, let F~: Y — X
be the function such that xe F~'(y) if and only if ye F(x). Then
F is upper (lower) semicontinuous provided F—* is closed (open). If
both conditions hold, F' is continuous.

All spaces we deal with will be assumed to be compact polyhedra
with a metric denoted by d. If e >0 is a real number, we shall also denote
by e: X — X the set-valued function such that e(z) = {o’|d(z, 2') < ¢}
for each € X. Let A and B be chain groups with supports in X and
Y respectively, and let ¢ > 0 be a number. A chain map ¢: A— B
is accurate with respect to a set-valued function F: X — Y provided
|p(a)| < F(la]) for each ac A. Further, ¢ is e-accurate with respect
to F provided ¢ is accurate with respect to the composite function
eFe,

Let H denote Cech homology theory with rational coefficients.

DEFINITION. A homomorphism h: H(X)— H(Y ) is an induced homo-
morphism of a set-valued function F': X — Y provided that given ¢ > 0
there is a chain map @: C(X) — C(Y) such that ¢ is e-accurate with
respect to F and ¢, = h.

If hr and h, are induced homomorphisms of upper semicontinuous
functions F': X—Y and G: Y— Z, then hsh, is an induced homomorphism
of GF. If F:X— Y is a continuous point-valued map then the Cech
homology homomorphism F', is an induced homomorphism of F.

O’Neill [7] proves the following lemma.

LEMMA. Let X be a compact polyhedron, F': X — Y a set-valued
function. Then h: H(X)— H(Y) is an induced homomorphism of F
if and only tf given € > 0 there is an arbitrarily fine triangulation
T of X and an e-accurate chain map ¢:C(X, T)— C(Y) such that

Py = h.

Now assume that X is a compact polyhedron, # is a fixed positive
integer, and F: X— X is a continuous set-valued function such that
if e X then F'(x) is either homologically trivial or consists of =
homologically trivial components. It is then shown in [7] that there
exists a homomorphism h: H(X)— H(X) “induced by F” in the sense
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that for each € > 0 there exists an arbitrarily fine triangulation 7' of
X and a chain map ¢: C(X, T)— C(X) such that o is e-accurate with
respect to F and ¢, = h. Furthermore, from the proof it can be
seen that ¢ can be chosen so that if v is a vertex of T then @(v) =
P, + T+ -++ + U, where v, v, --+,v, (repetitions allowed) are points
of X and 7, ---, ¥, are the associated 0-chains in C(X). Suppose X
has r components X, ---, X, where » > 1. Let w; be a point in X
and e; e H(X) the homology class of w,. Then for each 4%, h,e;) =
Pol6;) = 2;a,;6; where each a;; is a nonnegative integer and X;a;; = n
for each 7. Now set F'* = n~'h. Then F'*, (which possibly is not
uniquely determined by F') is also induced by F' and F'*(e;) = 2;b;e;
where b;; = 0 for all 7 and j, and 2;b,; = 1 for each 4. Thus by Lemma
2, N — 1| P(Fy).

DEFINITION 25. A homomorphism 4: H(X)— H(X) is a nice induced
homomorphism of a set-valued function F': X — X provided & is an
induced homomorphism of F and hye;) = Z;c;;e; where the e; are as
above, ¢;; = 0 for all 7 and j, and Y,¢;; = 1 for each 1.

It is easily seen that the Cech homology homomorphism of a
continuous point-valued map is nice and that the composition of nice
induced homomorphisms is also nice.

We quote one more result from [7].

LEMMA. Let X be a compact polyhedron, F: X — X an wpper semi-
continuous set-valued function. If h is an induced homology homo-
morphism of F and the Lefschetz number A(h) = XZ(—1)? traceh, is
not zero, then F has a fixed point.

We are now in a position to carry over most of §1 to certain
set-valued functions. Let v be a positive integer, F': X — X a continu-
ous set-valued function of a compact polyhedron X such that if xe X
then F(x) is either homologically trivial or consists of v homologically
trivial components. From above we know that F has a nice induced
homomorphism F*: H(X) — H(X). Now if f is replaced by F and f*
is replaced by F'* and fixed point equations of the form f"(z) = x
replaced by x e F"(x) in all the definitions, lemmas, theorems, corol-
laries and proofs of §1, then all the results remain valid and the
proofs correct with the following few exceptions. Skip Lemmas 13
and 14, Theorem 16, part (¢) of Lemma 17 and part (¢) of Theorem
18, Theorems 20, 21,22, and change “f(F') is a homeomorphism” in
Corollary 9 to “f*(F'*) is an isomorphism”. The two theorems of § 2
also remain valid with % replaced by F, h* replaced by F'*, h*(x) = g*(x)
replaced by g*(x) € F*(x), g(x) = h™(x) by g(x) € F"(x) and h™(x) = « by
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xe F'(x). The proofs remain correct also if expressions such as F'»*
are interpreted appropriately.
The following theorem is analogous to Theorem 22.

THEOREM 26. Let n be a positive integer and X is a compact
polyhedron. Suppose F: X — X is a continuous set-valued function
such that for each xe X, F(x) is homologically trivial or consists of
n homologically trivial components. Assume further that H(X) = 0
for odd 1. If X has r components X,, X,, ---, X,, and F™ 1is fized
point free for 1 < m < y(X) — 1 where y(X) = 2, dim H,,(X) then

(i) For an appropriate numbering or the components

F(X)cX,., 11 r, where X,,, = X, .

(ii) {B«(X)} factors ¥ — 1,

(iil) F**% = qdentity.

(iv) B(X;) = B«X,) for all 2,7 and k.
(v) for each j, {B(X;)} factors ¥ — 1,

Outline of proof. Define F';;(x) = (F(x)) N X; for all xe X;. For
each (7, 7) there are only two cases: (a) F;(x) = @ for all ze X, (b)
there exists an »',1 < #' < n, such that F;: X;— X, is a continuous
set-valued function such that for each xe X;, F';;(x) is homologically
trivial or consists of #»' homologically trivial components. Define
g(7) = {j | case b) applies to F;;}. Then ¢ will have a “cycle” which we
will assume is 1,2, -+, p,1 < p <7, in the sense that 7 + 1 e g(z) for
1<71=<p—1landleg(p). We will also assume that this is the shortest
cycle of g. Then reasoning as in Theorem 22 with F;,., replacing
f1X; ete., we find that 8,(X,) factors M**V —1 and p = r. By«(X;) = B:«(X})
all7,7 and k. 1,2,.-.,p = r being the shortest cycle for g implies
g@)={t+1} for 1<i¢<r—1 and g¢g(r) = {1}. Thus F(X;)cC X;,,
for 1 <4 <r where X,,, = X,. Because F'™ is fixed point free for
1=<m < y(X)—1 the alalogous theorem for set-valued functions to
Theorem 18 applies and we obtain {8;(X)} factors A** — 1 and
F*x® = identity.

4. The behavior of f near fixed points. We shall consider
here how much information is given by the behavior of f near fixed
points of f and certain of its iterates. It is apparent from the work
of O’Neill [6] that th Lefschetz number 4(f) is determined by f|V
where V is any open set containing all the fixed points of f. Thus
flU determines A(f), A(f?), +--, A(f") whenever U contains all the
fixed points for f, /%, ---, f* (for the U contains all the images of these
fixed points under the maps f, /%, ---, f"). We know that 4(f), -, 4(f")
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determine a,, -+, a,. The next question is how many a; are needed
to determine K(f). The answer is contained in the following lemma.

LEmMA 27. Let

P(\) = e\ + e A+ oo h + ey,
Q) = dNf + AN+ eee 4 dp, dy # 0,

and P(\)/Q(N) = K(\) = eA*F + e\*B~' + ... where ¢;,d;, and e; € Ra.
Then all e, are determined by e, e, +++, €,.p.

Proof. Since P = KQ we have

B
% ¢, = >,de,_; where we set ¢, = 0 for 1 < 0
i=0
and ¢, =0 for n > a .

Set ¢" = (e,, €,_1, *++, €,_5:,). Then solving % for ¢, we see that there
is a linear mapping L such that for n > «,e"” = Le*'. Consider
the set {e*, e*™, ..., e} of B + 1 vectors Ra’. There must exist
a,7,0 <7< B and ¢; c Ra such that e**/ = 37 ¢,e*"7—%, (A set of such
¢; can be found through solving the appropriate linear equations.) Now
if » = a + B, then

J
en — Ln»—a—-jeeu—j — C.Ln—a—jea«kj—i
g{ i
7 .
=2.ee" . Y
=1
The conclusion of the lemma now follows easily from v%.

It should be noted that although P and @ may not be determined
from K, a P and Q can be found (once K is known) such that P/Q = K.
To see this note that if " = (e,, €., **+, €,p), d = (do, dy, + =+, ds), d is
perpendicular to &=+, &% ... g°t% Q(\) = d\f + -++ + d; and P = QK,
then P is a polynomial and P/Q = K. If we now set P’ = P/(P, Q)
and @ = Q/(P, Q), (P, Q) = the greatest common divisor of P and Q)
then P’ and Q' are factors of original P and @ respectively.

We can now make the following coneclusions. If f|V is given
where V is an open set containing all the fixed points of f*, /2, ---, /"
then A(f), A(f?), -+, A(f") are determined. If A(f), A(f?), ---, A(f)"
are given with n = Y,8; then a,, a,, ---, a, are determined and these
latter numbers determine K(f). Knowning K(f) means that we know
a; for all ¢ and from these we can find 4(f") for all 7. We have thus
proven,

THEOREM 28. f|V determines A(f*) for all <.
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As above we may calculate for K(f) a P’ and Q" such that
K(f)=P/Q,(P',Q)=1, and P’ and @ are factors of I7,P(fy) and
II.P(fx.) respectively. Under certain ideal circumstances we may even
be able to determine P(f;*) for all <. For example, if it should be
the case that deg P’ = deg I1,P(fs),deg Q' = deg I1,P(f,,), the nonzero
B,; are distinet from each other, the nonzero B,;,, are also distinct
from each other, and the B,; and B,;,, correspond to the degrees of
the (irreducible) factors of P’ and @’ respectively, then P’ = II,P(f3),
Q' = II,P(f%,) and the P(f.)’s can be identified from the factorizations
of P’ and @ into irreducible factors. Other circumstances also lead
to whole or partial determinations of the P(f*).

One need not always know all the a;,, 1 <7< 2%;8;, in order
to calculate K(f). In the special case where a; =0 for 1 <1<
max (X,;5,;, YiBsi+y) it is not difficult to show that K(f) = A*. This
implies the following theorem.

THEOREM 29. Let f be a continuons map of a compact polyhedron
X into itself, f1 X— X. If f* is fixed point free for 1 <n <
max (¥, dim H,(X), 2, dim H,;, (X)) then the Lefschetz indices A(f™)
vanish for all m = 0.

5. Lefschetz numbers determine Euler characteristic.

THEOREM 30. Let X, and X, be compact polyhedra, and f: X,— X,
and f,: X,— X, homeomorphisms (homotopy equivalences or just that
f¥ and fF are isomorphisms will suffice). If the Lefschetz numbers
agree, A(fr) = A(f) for all n = 1, then the Euler characteristics of
X, and X, are the same, y(X,) = y(X).

Proof. We may assume y(X,) = x(X;). From the proof of Lemma
15 we have the formula

—na,(fi) = A(f1) + a(fIAf) + « o0 + an (f)AS)

n=1,t1=1,2.
Thus a,(f) = a,(f:) for all n=1. Since
K(f)0N) = VT + a(fh + --2) (i=1,2)
we see that
K(f)(\) = W02 K(f) (V) vk

Set P; = II;P(f%;) and Q; = II;P(f;.,) for © = 1,2, Then K(f;) = P;/Q;
for i = 1,2. Since each f; is an isomorphism, det(f*;) + 0 for ¢ = 1,2,
and j = 0. Thus P;(0) = 0 and Q;(0) = 0 for 7 = 1,2. From %% we
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have
P(\)Q:(N) = MWF0=2ED P V@Q (M)

If (X)) # y(X,) then we would have the impossibility that either
P(0) = 0 or @,0) =0. Thus x(X,) = x(X;) as we wished to prove,

To see how one may actually calculate (X) from {A(f")}7., where
f: X— X is a homeomorphism we make the following observations.
Note that if K(f) = P/Q where P and @ are two polynomials with
P(0)#0 and Q(0) # 0 then y(X) = degree P — degree Q = & & — & 2.
Next from the formula

K(f) = O\ + DILP(f5)/(v + DILP(f3i)

we see that for any integer ¢ = degree /I, P(f;.,) there exists monic
polynomials P and @ such that P(0) == 0, Q(0) = 0, degree @ = ¢ and
K(f)=P/Q. If Q\)=\"4+c A"+ -+ 4¢,and P(A) =N +d AP -0 +d,
then Q(0) = ¢,, P(0) = d, and K = P/Q is equivalent to >/ ,c.a,_; = d,
where we have set ¢, = a, = d, = 1.

There observations lead to the following procedure for calculating
x(X) from {A(f™)}. First calculate the a, = a,(f) from ¥% of Lemma
15. Then define " = (a,_4y Cp_gisy ***, @) € R, Next let ¢? be an
q + 1 tuple (¢;, +++,¢) = ¢ with ¢, =1,¢, % 0 and ¢?-a" =0 for n =
29,29 + 1, --+,2q9 + q (where “.” is the usual dot product in R+
if such a ¢+1 tuple exists; let ¢ = (0,0, ---,0) if no such ¢ + 1 tuple
exists,

Now set p, + 1 = the smallest nonnegative integer N such that
c¢t-a” =0 for N<n =<3q. Then y(X) = p, — q for

q = max (degree /1, P(f3i,), | x(X) ) .

Thus, if some a priori upper bound can be put on >);dim H;(X) then
the above procedure becomes a finite procedure for calculating y(X)
from a finite number of the A(f™).
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