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FIXED POINTS FOR ITERATES

BENJAMIN HALPERN

Let /: X—> X be a continuous map of a compact polyhedron
X into itself and H a homology theory with rational coeffi-
cients. In the first section a variety of theorems are proved
connecting the existence or nonexistence of fixed points for
certain iterates of / with a variety of other information such
as: conditions on the Betti numbers of X, / being a homomor-
phism, certain induced homomorphisms f*: Hi(X)-> Hi(X)
being isomorphisms, factors of the Lefschetz numbers Λ(fn),
the gross behavior of / with respect to the components of X,
and certain other iterates of / being fixed point free. One of
the theorems proven is that if Hi(X) = 0 for odd i then there
exists an xeX and an n, 1 ^ n ^ Σi dim Hi(X), such that
fn(x) = x. Another theorem is that if fn is fixed point free
for 1 ^ n ^ p/2 and / p * = identity then p divides the Euler
characteristic of X.

The resuls of § 1 are applied to the problem of coincidence in § 2.
In § 3 most of the results of the first two sections are shown to carry
over to set-valued functions. Next it is shown that the behavior of
/ in any neighborhood of the fixed points of /,/ 2 , •••,/*, where
q — Σi dimίZ^X), determines all the Lefschetz numbers Λ(fn), n > 0,
and sheds a certain amount of light on /*. The Euler characteristic
of a compact polyhedron X is determined by the Lefschetz numbers
{Λ{fn)}Z=ι whenever f:X—*X induces an isomorphism /*. This fact
is proven in the last section.

All the analysis centers around an index K(f) discovered by J. L.
Kelley and E. Spanier to whom I am indebted for invaluable help.1

I am also grateful to V. Singh for several discussions.

!• Point-valued maps. In the following we will consider a
compact polyhedron X and a continuous map / from X into X,
f: X-+X. Let H be a homology theory with rational coefficients. βn

will stand for the %-Betti number of X, βn = dim HnX. If L is a finite
dimensional vector space over the rationals Rα and g: L—> L is a linear
transformation, then P(g) will denote the characteristic polynomial of
g. If L = 0 we set P(g) — 1. The fundamental tool in all of what
follows is the characteristic K(f), [4], defined by

K(f) = IL P(/£)/IL P(ffi+ί)

K(f) can be expanded uniquely into a canonical formal Laurent series
1 Actually, K(f) is the zeta function well known to algebraic geometors.
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256 B. HALPERN

K(f) = λ*(l + a.X'1 + α2λ-2 + •)

where χ = Σ( — l)nβn = the Euler characteristic of X. The coefficients
α = α^/) are the canonical coefficients of K(f), [4]. Similarly
can be expanded uniquely into a canonical formal Laurent series.

(K(f)yι = λ~*(l + δ.λ"1 + &2λ-2 + . . . ) .

The coefficients b{ = 6^/) are then the canonical coefficients of (K(f))~\
It is easily seen that aλ = a2 — = an = 0 if and only if b1 = 62 = bn = 0.

Kelley and Spanier have shown in [4] that {αw(/)}~=i and the
Lefschetz numbers {A(fn)}ζ=1 are closely connected (A(f) = Σi( — l)i tr//*).
In fact the % tuplet {αx, α2, « ,αΛ} determines and is determined by
{4/ 1), Λ(f2), , ̂ (Z71)} and furthermore a, = a2 = - αn = 0 if and
only if Λ{fι) = A(f2) = . . = 4/T O) = 0. This gives immediately the
following theorem.

THEOREM 1. Let X be a compact polyhedron and f:X—>X a
continuous map from X into itself. If f\ / 2 , •••,/* are fixed point
free then av — α2 = an = 0.

We will now outline a more direct proof of Theorem 1 which
resembles the proof of the Lefschetz fixed point theorem and possibly
sheds more light on how K(f) comes to have the geometrical signi-
ficance given by Theorem 1.

Outline of second proof. If Q = Xn ΣΓ=o cΛ~S co =£ 0, is a formal
Laurent series then we define SfQ to be the smallest i > 0 such that
ci+ί Φ 0 if such i exists and if not we define QfQ = CXD. It is easy to
prove that if Q, i2 are two formal Laurent series then

) ^ min

(ii) &(Q/R) ^ min

Next we note that if ikί is a square matrix and P(M) = det (XI — M) =
λw + cλ™-1 + c2λ

%~2 + + cn then cTO is made up of sums and differ-
ences of "symmetrical" m x m sub-determinants of ikί. By a "symmet-
rical" m x m subdeterminant ikί' of ikί we mean a subdeterminant of
ikί such that the set of indices corresponding to the rows of M used
in ikί' is identical to the set of indices corresponding to the columns
of ikί used in ikί'.

Now we choose a triangulation T of X sufficiently fine so that
the following argument will hold good. We let /* denote a chain map
/*: C(X, T) —• C(X, T) induced by a simplicial approximation to /. Let
B = (σu •• ,cτg) be the canonical basis for Ci(X, T) made of the ΐ-
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simplices of T, and let M be the matrix of f!(σs) = ΣkMjkσk. Assume
that f1 fn are fixed point free. We claim that if Mf i s a m x m ,
m <^n, symmetrical subdeterminant of M then M' — 0. We may take
M' to be formed from the first m rows and columns of M. Since T
is very fine and / has no fixed points, Mn = 0. If Mln = 0 for all
n = 1, 2, m, we already have Mr = 0. Supposing not, we may
assume M12 Φ 0. Since T is very very fine and / and / 2 are fixed
point free we must have M21 = M22 = 0. If Λfϊn = 0, all n = 1, m,
we are done and if not we may assume that M"23 ̂  0. Continuing in
this way we either get Mr — 0 or Mi5 — 0 for i <. j ^ m. But in the
latter case M' = 0 also. This establishes the claim.

From the above we see that £&P(fi) Ξ> n for all i. Thus by the
elementary properties of & we have ^ [ I L P(f*i)/ILi P(fii+i)] έ w.
But according to Kelley-Spanier [4] the quantity in brackets is equal
to K(f). Thus £&K(f) ^ n and αx, α2, , an = 0 as we wished to show.

Next we will find conditions which insure that an Φ 0 for some n.

LEMMA 2. If M— {Mi:j} is an nxn matrix with real coefficients
such that for each i, ^3-M{j — 1 then λ — 1 is a factor of the
characteristic polynomial of M.

Proof. We must show that 1 is an eigenvalue of M. But this
follows from the observation that MX = X where X = (1,1, , 1).

COROLLARY 3. If f: X—> X is a continuous map of a compact
polyhedron X into itself then (λ — 1) | P(/o*).

THEOREM 4. Let f be a continuous map of a compact polyhedron
X into itself, f: X—»X // Hn(X) — 0 for odd n then at least one
of the functions f1,/2, ,/ x has a fixed point where χ is the Euler
characteristic of X.

Proof. In this case

λ* + α ^ - 1 + ... +aχ = K(f) - IL P(/«) .

Since λ — 11 P(/o*) we have λ — 11 K(f). Consequently not all the a{

can vanish and the present theorem follows from Theorem 1.

DEFINITION 5. Let Q(λ) = cox
n + c^-1 + + cni c0 Φ 0, be a

polynomial with rational coefficients. Set S^Q = the greatest i such
that Ci Φ 0.

We collect a few useful properties of 6^ in the following lemma.
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LEMMA 6. Let Q and R be two polynomials with rational
coefficients, L a finite dimensional vector space over the rationals,
and g: L —• L a linear transformation. Then

(ii)
(iii) // g is an isomorphism then S^P{g) = dim L.

Proof, (i) is obvious. To prove (ii) consider a matrix for g rela-
tive to some basis. Then r = rank g = the largest nonzero minor of
M. If P(g) — Xnjr Ciλ""1 + + cn where n = dim L then c» is a linear
combination of certain i x i minors of M. Thus c r + ι = c r + 2 = = cn = 0
and consequently S^P(g) <̂  r = rank g.

Now assume that g is an isomorphism. Then cn = (—1)% det M ̂  0.
Thus S^P(g) — n = dim L, which proves (iii).

THEOREM 7. Le£ f be a continuous map of a compact polyhedron
X into itself, f: X—> X. Set A = {i\i is even and f? is an iso-
morphism}. If

ΣieA dim Hi(X) > Σiodά rank/;*

then there exists an xeX and an n ^ ^(ILeven-P(/;*)) such that
fn(x) = x. (The theorem is also true with "odd" and "even" inter-
changed throughout.)

Proof. Set Q(λ) = IL P(/«) = ^ + ^λ9"1 + + eq.

and

-R(λ) = Ui P(Λ?+i) = λ- + dΛ'-1 + + dr.

We make the following estimates on S^(Q) and

= ΣieAάimHi(X).

1) £ Σioddmnkff .

Set N = S"(Q) and M = Sf(R). It follows from the hypothesis that
N> M. Now Q, R and K(f) must satisfy

R K(f) = Q.

Thus

0 Φ cN = α^ + cίiα^.i + d2a^_2 + + dMaN_M .

Consequently not all of the numbers aNi aN_u , aN_M can vanish.
Therefore by Theorem 1 there exists an n ^ N =
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and an x e X such that fn{x) — x. (A dual proof with K~ι replacing
K works for "odd" and "even" interchanged.)

COROLLARY 8. Under the same hypothesis as the above theorem
there exists an xe X and an n <L Σίeyen dim Hi(X) such that fn(x) = x.
(The dual result with "odd" and "even" interchanged also holds.)

Proof. Simply note

^(ΓLeven P(fi*)) = ̂  even ^ P ( / V ) ^ ^ even dβg P(ff) = Σiem

COROLLARY 9. Let f be a homeomorphism of a compact poly-
hedron X onto itself, f: X —> X. If the Euler characteristic χ of X
does not vanish then some iterate of f has a fixed point. In fact
there exists an xe X and an

n ^ max (Σieven dim H^X), Σiodd dim H^X))

such that fn(x) = x.

Proof. Since / is a homeomorphism, each f? is an isomorphism.
Thus A contains all even or all odd i. Since χ Φ 0 we have either

iX ΣieA dimHi(X) = Σieγeaάim H^X) > Σioύάdim H,{X)

or <& with "odd" and "even" interchanged. In either case Corollary
8 implies that there exists a n x e l and an

n ^ max(Σiem dim H^X), Σiodύ dim H^X))

such that fn(x) = x.

Comment. The hypothesis "/ is a homeomorphism" in the above
corollary could be weakened to "/* is an isomorphism".

Corollary 9 has already been proven by F. B. Fuller [3].

THEOREM 10. Let f be α continuous map of a compact poly-
hedron X into itself, f: X— X. If H^X) = 0 for odd i and f,f2,--,
fn are fixed point free then

Σi rank f£}>n + l .

Proof. Note that if P is not a monomial then Sf(P) + 1 ̂  ^(P).
(See second proof of Theorem 1.) Hi(X) = 0 for odd i implies that
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K(f) is a polynomial and since λ — 11 K(f), K(f) is not a monomial.
Because /, f\ , fn are fixed point free ^K(f) ^ n. Thus

n

If we take J£t rank // to be a measure of how nontrivial / is then
Theorem 10 can be paraphrased very roughly as "If H^X) = 0 for
odd i then / has to have a certain degree of nontriviality in order
that /, /2, , fn be fixed point free". For example, in order for /,
f2, ••',/x~i~1 to be fixed point free, where Hi(X) = 0 for odd i, not
more than j of the ft can fail to be isomorphisms.

EXAMPLE A. Consider R3 to be R x R2 with elements (x, y) where
x e R and y e R2. Let r: R2 —> R2 be a rotation about the origin through
an angle π/n where n is a fixed positive integer. Define I c R 3 and
f:X-+ Xby

-X" = {(̂ > 2/) I either (0 <; x ^ n and || # || = 1) or

a = 0 , 1 , . . - , or ra and Ili/H ^ 1)}

[{x + 1, ry) if 0<*x^n- 1

l((n cφfc r̂ /) it tι — 1 < x ^ n

for all (a?, 2/) € X.
It is easily seen that βQ = 1, β2 = w and ft = 0 for ΐ =̂ 0 or 2, and

that / is continuous. Due to the small rotation r, any fixed point for
f,f2y— , of fn must be of the form (x, 0). There are exactly n + 1
such points in X and / permutes these points cyclicly. Thus /, /2, ,
/% are fixed point free.

EXAMPLE B. Let n be and odd integer and X consist of n copies
of a 2m(m > 0) dimensional sphere S. Let s^\ S —• S be the antipodal
map and g: X-+X be simply a cyclic permutation of the copies of S.
Now set / = g ° jzf where j y : X—* X is the natural map induced on
X by j ^ \ Then / is a homeomorphism of X onto X and ft(X) = n,
β2m(X) = w and ft(JSΓ) = 0 for i ^ 0 or 2m. The action of g rules out
any fixed points for /,/2, , pn~ι except in the case of / \ But
fn = j^f since n is odd. Thus /,/ 2, •• ,/2%"1 are fixed point free.

The above examples show that the bounds on n in Theorem 4 and
Corollary 9 cannot, in general, be reduced. In special cases the number
of iterates needed can be drastically reduced. One sort of case is
where X contains a distinguished point x such as when x is the only
cut point of X. Then for any homeomorphism /, we must have
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f(x) = x. Another example is where A = 0 for odd i and βt = 0 or 1
for even i. Then the Lefschetz number Λ(f2) = Σ^ — iy trace /<** =
Σi(tτf*iY ^ (tr/o)2 = 1. Therefore in this case / 2 always has a fixed
point. Less trivial cases are covered in Theorems 18, 20 and 21. First
we need to make a definition and prove some lemmas.

DEFINITION 11. Let {d̂ } be a sequence of integers and Q a poly-
nomial over the rationals. {dj is said to factor Q if there exists a
sequence of polynomials {QJ such that Q = 7 7 ^ and dt = deg Qim In
considering whether a given sequence {dj factors a polynomial Q, one
may disregard the d{ which vanish since they can always be made to
correspond to the constant polynomial 1. If Q = HiRi is a prime factori-
zation of Q then {dj factors Q if and only if the numbers {degiϋ;}
can be partitioned into subsets whose sums correspond to the nonzero
di. For example consider Q = Xn — 1, w ̂  1. Then a prime factorization
of Q is Q — Πdlnφd where ψd is the dth cyclotomic polynomial, deg ψd —
φ{d) where φ is Euler's number-theoretic function, [9]. (φ is most
easily calculated by the formula: If d = Πφl1 is the prime decomposi-
tion of d then φ(d) = Hilip

ι^-\pi — 1.) Consider n = 10 and (a) {d̂ } =
{1, 3, 3, 3} and (b)[dj = {2, 8}. Then the factors d of 10 are 1, 2, 5 and
10 and the corresponding φ(d) are 1,1, 4 and 4. Thus {dj does not
factor λ10 - 1 but {dj does since 2 = 1 + 1 and 8 = 4 + 4.

LEMMA 12. Let f be a continuous map of a compact polyhedron
X into itself, f: X—> X. If β{ = 0 for odd i then (K(f))(X) is a poly-
nomial, {β,} factors K(f), and (K(f))(f*) = 0.

Proof. Since & = 0 for odd i we have

K{f) = Π.Pifi) .

Thus K(f) is a polynomial and because degP(/f) = dim H^X) = β{

we see that {&} factors K(f). We know by the Hamilton-Cayley
theorem that (P(ft))(f*) = 0. Thus {K(f)){f?) = 0 for all i and
consequently (K(f))(f*) = 0.

LEMMA 13. TT̂ e polynomials P{f?) have integer coefficients.

Proof. From the universal coefficient theorem, Spanier [8], we
have the following commutative diagram:

0 > HάX, Z) <g) R α > i J , ( X , R α ) > ̂ ^ ( X , Z ) * R α > 0

| z Λ * Θ « i | R α / ?

Γ, Z) ® R α > Hi(X, R α ) > ̂ ^ ( X , Z ) * R α > 0



262 B. HALPERN

where Z = the integers, Rα = the rationale, and * the torsion product.
Since Rα is torsion free, H^X, Z)*Rα = 0. Thus <& reduces to

, Z) <g) Rα ~ i?,(X, Rα)

J R β Λ*
fli(JSΓ, Z) <g) Rα ̂  fΓiίJSΓ, Rα) .

It is now apparent that an appropriate choice of generators for Hι(X, Z)
gives rise to a basis for Hi(Xy Rα) relative to which αR/;* has a matrix
with only integer entries. Thus P(Raf*) = P(f*) has integer coeffi-
cients.

LEMMA 14. The canonical coefficients ai and b{ are integers.

Proof. Since all characteristic polynomials are monic, so is
Q = ΠiP(f£+1). Thus we may write Q = λ*(l - Qx) where Qx(λ) = cΛ"1 +
c2λ~2 + + fyλ"^. Now UL may be expanded into its formal Laurent
series by the formula λx(l + α^" 1 + •) = K(f) = /7ίP(/2*) λ-̂  Σr=o Qί.
It is now clear that the a{ are just sums of products of the coeffi-
cients of Πi(f£) and Qx and are consequently integers. A completely
analogous argument shows that the bι are also integers.

We now prove a slight extension of a result in Kelley-Spanier [2].

L E M M A 15. / / Λ(fn) = 0 for l ^ n ^ N - 1 then an = 0 for

l ^ n ^ N - 1 and - nan = A(fn) for N ^ n ^ 2N - 1.

Proof. From Kelley-Spanier [4] we have

Σ n α . λ - 1 = (1 + Σα*λ*)(- Σ Λί/Oλ'"-1)
n=i Λ=i i=i

this means that

-wαn = ln + α^^.i + α2iw_2 + + α^A -&

where Z4 = Λ{fι). Using -fe we first see that an = 0 for 1 <̂  w ̂  iV — 1
and then using this fact and ^ again we get — nan = ̂ ί(/n) for
JV ^ n ^ 2ΛΓ - 1.

It is already known, [2], that if / is periodic of prime period p in the
sense that fp = identity and / is fixed point free then p | χ. Lemmas
14 and 15 immediately imply the following generalization of this result.

THEOREM 16. Let f: X—+ X be a continuous map of a compact
polyhedron X into itself. Suppose fn is fixed point free for
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1 ^ n ^ p/2 (p ̂  2) and fp* = identity. The p divides the Euler
characteristic of X. (p need not be prime.)

The following lemma lists various conditions under which we may
wholly or partially determine K{f). Both Lemma 17 and Theorem 18
may be considered refinements of Theorem 4.

LEMMA 17. Let & = 0 for odd i. Then

(a) Let 1 ̂  j ^χ. If fn is fixed point free for 1 <£ n g χ, n ^ j ,
then K(f) = λ* - λ*-' = λ*-^(λ' - 1).

(b) If fn is fixed point free for 1 ̂  n ^ χ — 2 and not all of
the fi are isomorphisms then K(f)~ Xx — X = λpv,*-1 — 1).

(c) Suppose f is a homeomorophism and l<*j^χ — l. If fn is
fixed point free for n Φ j , 1 rg n ^ χ — 1, then either K(f) = λx — 1
or K(f) = λ* - 2λ' + 1.

Proof, (a) Assume hypothesis (a). Since /'(&) = x implies
Γj{x) = x it follows that 2i ̂  χ + 1. We have A(fn) = 0ΐoxl^n^j-l
and for j" + 1 ̂  ^ ^ χ. Thus by Lemma 15 an = 0 for 1 <; ^ g *̂ — 1
and for j + 1 tί n ^ χ. This leaves αy to be determined. Since λ — 1
is a factor of K(f)(X) we have iΓ(/)(l) = 1 + ̂  = 0. Thus

(b) Assume hypothesis (b). // is trivially an isomorphism for
odd i. Thus there is an even i such that ft is not an isomorphism.
Then det /<* = 0 and consequently αχ = ± /7Λdet/2t - 0. Since A(fn) = 0
for I <^n t^X — 2 we have αw = 0 f or 1 ̂  w ̂  χ — 2. This leaves only
αχ_i to be determined. Because λ — 1 is a factor of K(f)(λ) we may
write K(f)(l) = 1 + α ^ - 0. Thus K{f) = λκ - λ = λ(λ*~ι - 1).

(c) Assume hypothesis (c). Since fj(x) = » implies f2j(x) = x it
follows that 2j ^ χ. Reasoning as before we see that an = 0 for
l ^ w ^ χ — l , n ^ i . This leaves α ; and αχ to be determined. αχ =
± /Zίdet/s*. Using Lemma 13 we see that since/ has an inverse f~ι

the integer det/2* has an integer inverse det/ϊ 1*. Thus det/2* = ± 1
for all i and therefore aχ = ± 1. Because iί(/)(l) = 1 + a3 + aχ =
1 + αy ± 1 = 0 we must have ίΓ(/) = λχ - 1 or iΓ(/) = λκ - 2X*~j -f 1.

Combining Lemmas 12 and 17 we obtain the following theorem.

THEOREM 18. Let X be a compact polyhedron and f:X—+X a
continuous map from X into itself. Assume further that H^X) = 0
for odd i. Then under the additional hypothesis of (a), (b) or (c) of
Lemma 17 we have respectively (a) {/5J factors X%~j(Xj — 1) and (see
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definition 11) /** - /**-' = 0, (b) {&} factors λ ^ - 1 - 1) and /* x - /* = 0
and (c) {A} factors either λx - 1 or λx - 2Xx~j + 1 and either /** - /* = 0

o r y*χ _ 2/*χ~y + / = 0 where I — the identity transformation.

Comment. Note that the condition " / is a homeomorphism" appear-
ing in part (c) of Lemma 17 may be weakened to " / is a homotopy
equivalence" or weakened even further to "there exists a continuous
g: X—>X such that f*~ι = g*" for both Lemma 17 and Theorem 18.

COROLLARY 19. (a) Under hypothesis (a) of Lemma 17

(j if n = Ij for some I ;> 1
Λ(fn) =

(0 otherwise (n ̂  1).

(b) Under hypothesis (b) of Lemma 17

fχ - 1 if n = l(χ - 1) for some I ^A(fn) =
(0 otherwise (n !Ξ> 1).

Proof. Let fc = i for part (a) and k = χ — 1 for part (b). Then
by Lemma 15, Λ(/*) - -kak = k and Λ(/m) = 0 for 1 ̂  m ^ χ - 1,
mΦk. By Theorem 18, / * x = f**~k. The Corollary now follows by
reducing Λ(fn) to A(fn') with 1 ̂  w' ̂  χ - 1 (or with 1 ̂  w' ̂  χ if fc = χ).

Theorem 18, part (a), with j = χ = n + 1 applies to Example A.
Thus /*™+1 = identity. A careful inspection of Example A will reveal
that in fact fn+1 is homotopic to the identity.

Consider the polynomial λx — 2λ + 1 which is one of the possibilities
in part (c) of Theorem 18 with j — χ — 1. In light of the discussion
following Definition 11, the prime factorization of λx — 2λ + 1 is of
interest. λ x - 2 λ + 1 = (λ - l)P(λ) where P(λ) = λ*-^ λ*~2 + +λ - 1.
By applying Eisenstein's criteria to P(λ + 1) it is found that P(X) is
irreducible over the rationale for χ of the form χ = 2m. The author
does not know of any value of χ for which P(λ) is not irreducible.

The following two theorems sharpen the conclusions of Theorem
4 and Corollary 9 in certain special cases.

THEOREM 20. Let f: X—> X be a homeomorphism of a compact
polyhedron X onto itself. Suppose Hi(X) — 0 for odd i, m — the
number of i such that dim H{(X) — 1, and q the greatest integer j
such that j ^ (m — l)/2. Then there exists an x e X and an n,
l^n^Σi dim H2i(X) - q such that fn(x) = x.

Proof. Suppose the conclusion were false. Then a1 = a2= =
αχ_g = 0. Therefore (dq/dX9)K(X) = (χ!/(χ - <?)!)λχ-*. Because / is a
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homeomorphism, P(f) = λ ± 1 for each i with dim H^X) = 1. Thus,
either 1 or —1 is a root of order q + 1 of K. Consequently, either
1 or —1 is a root of (dq/dXq)/K(X) — (χ!/(χ — q)\)Xx~q which is impossible.
Therefore the conclusion holds.

THEOREM 21. Let f:X—>Xbe a homeomorphism of a compact
polyhedron X onto itself. Suppose dim Hi(X) = 1 for at least m
odd i and m even i, and χ Φ 0. Then there exists an xe X and
an n,l <ί n g max (2^ dim H2i(X), Σ{ dim iJ2ί+1(X)) — m ~ q such that
fn(x) = x.

Proof. Suppose χ > 0. The case χ < 0 is handled similarly. Set
P - ΠiPifS) and Q = /7,P(/2?+1). Assume that /, /2, , /* are fixed
point free. Then from QK = P it follows that

P(λ) - λ*Q(λ) + c Λ "1 + ^-2λ
w"2 + + c0 ^ .

Because / is a homeomorphism and χ > 0 we have cQ = P(0) = ± 1
and P(/;*) = λ ± 1 for each i with dim iϊ^X) = 1. Consider ft mod 2.
Then (λ - l)m is a factor of P(λ) and XXQ(X) and therefore also of
E(χ) — cm_1X

m~1 + + c0(mod 2). Noting that degree R ^ m — 1 we
see that there is a contradiction unless R = 0 mod 2. But this is also
impossible because c0 = 1 mod 2. We must therefore admit that not
all of the maps /, /2, , fq are fixed point free.

Suppose now that in addition to the hypothesis of Theorem 21
we have dim Hi(X) = 0 or 1 for all odd i, mf = the number of odd i
for which dim H{(x) = 1, and /, /2, , fq~ι are fixed point free. Then
in place of fe we have

P(λ) - P(λ)(λ - l)r(λ + l)m~r - λ*(λ - l)s(λ + l)m'~s + JR(λ) T^i^

m ^ m', O ^ r ^ m , O ^ s ^ m '

degree R(X) ^ m .

Also R(0) = P(0) = ± 1. For fixed values of r, s and P(0), ^ ^ along
with R(0) = P(0) determines i2(λ) = cmλm + + c0 because they give
the value of (dn/dXn)R(a) ΐor a = 1 with 0 <; w ^ r — 1, and for a = - 1
with O ^ w ^ m — r — 1, and for α = 0 with n — 0. Thus Pi s determined
up to 2(m + 1) possibilities.

Similar considerations can be made with respect to Theorem 20.
The last theorem of this section is a generalization of Theorem

18a with j — χ — 1.

THEOREM 22. Let X be a compact polyhedron and f;X—>X a
continuous map from X into itself. Let X19 X2, , Xq be the com-
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ponents of X, X = XJJ UXq. Suppose further that H{(X) = 0 for
odd i and that fn is fixed point free for 1 ^ n ^ %(X) — l Then

( i ) /*<*>* = identity.
(ii) {A(X)} /αcίors λ*(X) - 1.
(iii) & ( X y ) = βiiXJ for j , I = !,.-., q and all i.
(iv) {βi(Xj)} factors λ*2^ - 1 = λ*(X)/« - 1.

(v) for a particular numbering of the components

f(Xi) c Xi+1 for l ^ i ^ q where Xq+1 = X,

(vi) under the same numbering as in (v)

(/1 Xi)*: H(Xi) • H(Xi+1) is an isomorphism for 1 <S i <S q .

Proof. Since / is continuous for each i1f(Xi)aXj for some j .
Thus / induces a map g: {1, , q} —> {1, , q) by setting g(i) = j .
Because ^ is a function from a finite set into itself it must have a
cycle of length k rg q. Renumbering if necessary we may assume
f(Xi) c Xi+1 for 1 ^ i ^ k — 1 and /(-3Γfc) c Xlβ We may also assume
that Σiβ^X^ ^ ΣiβxiXj) for 1 ^ i ^ k. Since /5,(X) - 0 for odd i
and /S^X) = ΣjβtiXj) we have A(X,) = 0 for odd i and all j . Note
that

χ(X) = ΣS

o + Σu+MXί) ^ ftχ(-aΓi) + (z -

Thus χ(X) ^ A χίXO + q - k with χ(X) > ^ ( X J unless A = g and
Σβ^Xi) = ^ ^ ( X J for j = 1, 2, , q.

Now set h = fk\ Xx. Then h{Xλ) c Xx and because fn is fixed point
free for l^n ^ χ(X) — l,hn is fixed point free for 1 ^ n ^ χ(Xi) — 1.
Therefore by Theorem 18a, h*%lZi) = identity and {/ (̂XJ} factors

λx(2Ί) _ i# B y Theorem 4, /^(χi} has a fixed point. Thus / f c χ ( χi } has
a fixed point and consequently χ(X) ^ A:χ(Xi) ^ χ(X). Therefore
χ(X) = ^(X,) and so k = q and Σβ^Xs) = Σβ^X,) for i = 1, . , ff.
This shows that Xx could have been any of the X/s. We can write

identity = Λ*w = (/ | Xg)* (/ | X,)* (/ | X,)* (/ | X,)* .

Thus (/ I JQ*: HiX,) — H(X2) is one-to-one. Therefore β^X,) ^ /3,(X2).
But since ΣS^X,) - Σiβ2i(X2) we must have / S ^ ) = /9,(X2) for all i.
Since JEΊ could have been chosen to be any of the Xό we conclude
that βiiXj) = βi(Xι) for all j , I = 1, 2, .. , q and all i, and that
(/ I Xi)*: H(Xi) —» ίf(Xί+1) is an isomorphism for 1 ^ i ^ ^ where

X?+i — Xi

Theorem 18a applies to / : X—> X and thus we have {/Ŝ X)} factors
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λx(X) — 1 and /*(X)* = identity. We have now established all the con-
clusions of the theorem.

Observe that fm(x) = x implies fnm(x) = x for all n ^1. Armed
with this fact we can play funny games with most of the above
theorems. For example the conclusion of Theorem 4 could be replaced
by "/ x ! has a fixed point" or "either fa or fβ has a fixed point where
α = ΠioMί and β = Πieγeni".

GENERALIZATIONS. Note that in most of the results the hypothesis
and/or the conclusion can be stated in terms of the Lefschetz numbers
Λ{fn). Consequently they can be used in conduction with the results
of Atiyah and Bott [1] and O'Neill [6] concerning the degrees of fixed
points, and essential fixed points and fixed point sets.

All the results have been stated for compact polyhedra. But since
the analysis basically concerns the Lefschetz numbers Λ{fn) it is easily
seen that all the results of this section and the next hold whenever
the rational homology groups Hn(X) are finitely generated and trivial
for n sufficiently large, and the Lefschetz fixed point theorem holds.
In particular the results hold for compact metric ANR's [5].

If the homology is taken with coefficients in a field J?~~ with nonzero
characteristic then Λ(fι) — =A(fn) = 0 need not imply aL = =0^ = 0
(Kelley and Spanier [4]). Thus Theorem 1 no longer follows from the
Lefschetz fixed point theorem. But the alternate proof is still good
for polyhedra. Consequently most of the results of this section hold
for polyhedra and homology with coefficients in an arbitrary field.

2* Applications to the problem of coincidence* Let h,g:X-^X
be two continuous maps from the compact polyhedron X into itself.
A point x is a coincident point for / and g if f(x) = g(x). In order to
apply the preceding fixed point theorems we will assume that g is a
homeomorphism. Then h(x) =• g{x) is equivalent to f(x) = x where
f=g-1o k. If g~ι and h commute then fn(x) = x would give gn(x) = hn(x).
We can still obtain such a result even when g~ι and h may not commute.

THEOREM 23. Let X be a compact polyhedron, h:X—+X a con-
tinuous map and g: X—> X a homeomorphism. Assume that h* and
g* commute, h*g* = g*h*. If in addition either conditions (a) or (b)
hold then there exists an x e X and an n, 1 ^ n ^ q, such that
hn(x) = gn(x).

(a) Hi(X) - 0 for odd i and q = χ = Σ, dim H2i(X).
(b) h is a homeomorphism (or just h* is an isomorphism), the

Euler index χ^0, and q = max (2^ dim H2i(X), Σ{ dim iϊ2ί+1(X)).
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Proof. Consider case (a). As in the proof of Theorem 4 we can
conclude that the α/s associated with K(g~ιh) cannot all vanish for
1 ^ i ύ Q = χ. This implies (Kelley-Spanier [4]) that Λdg^h)*) Φ 0 for
some n, 1 ̂  n ^ q. But

0 hY) = Λ{((g-Xh)*)*) =
= Λ{g*~nh*n) = A((g-nhψ) = A(g~nhn) .

Thus by the Lef schetz fixed point theorem there exists an a e l such
that g~nkn(x) = x or equivalently hn(x) = gn(x) for some π, 1 :g w ̂  #.
This proves the theorem for case (a). Case (b) is handled in a com-
pletely analogous way refering to Corollary 9 in place of Theorem 4.

We will consider here one more interesting case.

THEOREM 24. If h, g and X are as in Theorem 23 with the addi-
tional hypothesis that gι = aj. where each a{ = ± 1 then either there
exists an even n, 1 ̂  n ^ q, such that hn{x) = x for some xe X or
there exists an odd n, 1 ̂  n ^ q, such that hn(x) = g(x) for some xe X.

Proof. Nothing that ^ ^ ^ ^ ^ ^ o r l depending on whether n is even
or odd the conclusion follows much the same as in the proof of
Theorem 25.

All the results of § 1 may be similarly applied to give coincidence
theorems like Theorems 23 and 24. Note that the condition gf — aj
implies that g* commutes with any homomorphism φ: H(X) —> H(X).
For an example of this last theorem consider the two dimensional
surface X in Figure 1. Define g by g(x,y,z) = (a?, —y,—z) for all
(a?, y, z) e X. Intuitively it seems clear that β0 = 1, βt = 4, β2 = 1, β{ = 0
for i > 2, and that the circles α, 6, c and d form a basis for HX{X).
Still reasoning intuitively we conclude that ^o*^ I, 9Ϊ — —I and g% — I.

* • X

FIGURE 1.
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Providing that all of this is indeed so we can conclude from Theorem
24 that if h is any homeomorphism h: X—>X then either h(x) = g(x),
h\x) = g(x), h\x) = x, or h\x) = a; has a solution xe X.

3* Set-valued maps* We follow the exposition of the theory of
set-valued maps in [7]. Let X and Y be topological spaces. A set-
valued function F: X—> Y assigns to each point xe Xa closed nonempty
subset F(x) of Y. If F: X~-> Y is a set-valued function, let F"1: Y-+X
be the function such that x e F~ι{y) if and only if y e F(x). Then
F is upper (lower) semicontinuous provided F~ι is closed (open). If
both conditions hold, F is continuous.

All spaces we deal with will be assumed to be compact polyhedra
with a metric denoted by d. If ε>0 is a real number, we shall also denote
by ε:X —> X the set-valued function such that e(x) = {xr \ d(x, xf) ^ ε}
for each xe X. Let A and B be chain groups with supports in X and
Y respectively, and let ε > 0 be a number. A chain map φ\ A —> B
is accurate with respect to a set-valued function F: X—> Y provided
\φ(a)\ c F(\a\) for each α e i . Further, φ is ε-accurate with respect
to F provided φ is accurate with respect to the composite function
εFε.

Let H denote Cech homology theory with rational coefficients.

DEFINITION. A homomorphism h:H(X)—>H(Y) is an induced homo-
morphism of a set-valued function F: X—> Y provided that given ε > 0
there is a chain map φ: C(X) —> C(Y) such that φ is ε-accurate with
respect to F and φ* = h.

If hF and hG are induced homomorphisms of upper semicontinuous
functions F: X—+Y and G: Y—>Z, then hGhF is an induced homomorphism
of GF. If F: X—> F is a continuous point-valued map then the Cech
homology homomorphism F* is an induced homomorphism of F.

O'Neill [7] proves the following lemma.

LEMMA. Let X be a compact polyhedron, F: X—> Y a set-valued
function. Then h: H(X) —> H(Y) is an induced homomorphism of F
if and only if given ε > 0 there is an arbitrarily fine triangulation
T of X and an ε-accurate chain map φ:C(X, T)—>C(Y) such that
φ* = h.

Now assume that X is a compact polyhedron, n is a fixed positive
integer, and F:X-^X is a continuous set-valued function such that
if x e X then F(x) is either homologically trivial or consists of n
homologically trivial components. It is then shown in [7] that there
exists a homomorphism h: H(X) —> H(X) "induced by F" in the sense



270 B. HALPERN

that for each ε > 0 there exists an arbitrarily fine triangulation T of
X and a chain map φ: C(X, T) —• C(X) such that φ is ε-accurate with
respect to F and φ* = /&. Furthermore, from the proof it can be
seen that φ can be chosen so that if v is a vertex of T then <p(v) =
/yi + v2 + + vn where vu v2, , vn (repetitions allowed) are points
of X and vt, , vn are the associated 0-chains in C(X). Suppose X
has r components Xlf , Xr where r ^> 1. Let w{ be a point in Xι
and β< G HQ(X) the homology class of wζ. Then for each i, ho(βi) —
φ*Aed — Σόaiόej where each ai5 is a nonnegative integer and Σsai5 = n
for each i. Now set F* = w1^. Then i*7*, (which possibly is not
uniquely determined by F) is also induced by F and F*(βi) = Σjbiόe5

where &fi Ξ> 0 for all i and i, and -̂6 -̂ = 1 for each ί. Thus by Lemma
2, λ - 11 P(Ff).

DEFINITION 25. A homomorphism h: H(X)—*H{X) is a nice induced
homomorphism of a set-valued function F:X—>X provided h is an
induced homomorphism of F and / (̂e;) = Σj c^ej where the e{ are as
above, ci3 ^ 0 for all i and j , and ^ c ^ = 1 for each ί.

It is easily seen that the Cech homology homomorphism of a
continuous point-valued map is nice and that the composition of nice
induced homomorphisms is also nice.

We quote one more result from [7].

LEMMA. Let Xbe a compact polyhedron, F: X-+X an upper semi-
continuous set-valued function. If h is an induced homology homo-
morphism of F and the Lefschetz number A(h) = Σ( — l)q trace hq is
not zero, then F has a fixed point.

We are now in a position to carry over most of § 1 to certain,
set-valued functions. Let 7 be a positive integer, F: X—> X a continu-
ous set-valued function of a compact polyhedron X such that if x e X
then F(x) is either homologically trivial or consists of 7 homologically
trivial components. From above we know that F has a nice induced
homomorphism F*: ίl(X)—>H(X). Now if / is replaced by F and /*
is replaced by F* and fixed point equations of the form fn(x) — x
replaced by x e Fn(x) in all the definitions, lemmas, theorems, corol-
laries and proofs of § 1, then all the results remain valid and the
proofs correct with the following few exceptions. Skip Lemmas 13
and 14, Theorem 16, part (c) of Lemma 17 and part (c) of Theorem
18, Theorems 20, 21, 22, and change "f(F) is a homeomorphism" in
Corollary 9 to "f*(F*) is an isomorphism". The two theorems of § 2
also remain valid with h replaced by F> /&* replaced by F*, hn(x) — gn(x)
replaced by gn(x) e Fn{x), g(x) = hn(x) by g(x) e Fn(x) and hn(x) = x by
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x e Fn(x). The proofs remain correct also if expressions such as Fn*
are interpreted appropriately.

The following theorem is analogous to Theorem 22.

THEOREM 26. Let n be a positive integer and X is a compact
polyhedron. Suppose F:X—*X is a continuous set-valued function
such that for each xe X, F(x) is homologically trivial or consists of
n homologically trivial components. Assume further that H^X) — 0
for odd i. If X has r components X19 X2, « ,Xr, and Fm is fixed
point free for 1 ̂  m <£ χ(X) — 1 where χ(X) = Σt dim H2i{X) then

(i ) For an appropriate numbering or the components

FiX,) c Xi+U 1 £ i ^ r, where Xr+1 = X, .

(ii) {βi(X)} factors λ*(jr) - 1.

(iii) F**{Σ) = identity.
(iv) A(JSΓy) = &(J5Γfc) for all i, j and k.
(v) for each j , {βi(Xj)} factors λκ(X^ - 1.

Outline of proof. Define Fiά{χ) = (.F(αO) Π X; for all x e X{. For
each (i,j) there are only two cases: (a) Fi3 (x) = 0 for all xeXiy(b)
there exists an n'", 1 ̂  wf ^ w, such that i<V X^—>Xy is a continuous
set-valued function such that for each xe Xi9 Fiά(x) is homologically
trivial or consists of n' homologically trivial components. Define
g(i) = {j I case b) applies to Fi5). Then g will have a "cycle" which we
will assume is 1, 2, , p, 1 ̂  p ^ r, in the sense that i + 1 e ̂ (ί) for
1 ^ i ^ ί̂  — 1 and 1 £ 9(v)* We will also assume that this is the shortest
cycle of g. Then reasoning as in Theorem 22 with Fiti+1 replacing
/1 X{ etc., we find that β^X,) factors λ*(χi} - 1 and p - r. βi(Xs) = &(£*)
all ί,i and k. 1, 2, , p = r being the shortest cycle for # implies
^(i) = {i + 1} for 1 ̂  i ^ r - 1 and g(r) = {1}. Thus F(X,) c Xi+ί

for 1 ̂  i ^ r where Xr+1 = X1# Because i^m is fixed point free for
1 ίg m ^ %(X) — 1 the alalogous theorem for set-valued functions to
Theorem 18 applies and we obtain {/Ŝ X)} factors λx(X) — 1 and

= identity.

4* The behavior of / near fixed points* We shall consider
here how much information is given by the behavior of / near fixed
points of / and certain of its iterates. It is apparent from the work
of O'Neill [6] that th Lefschetz number A(f) is determined by f\ V
where V is any open set containing all the fixed points of /. Thus
f\U determines Δ(f), Λ(f2), , Λ{fn) whenever U contains all the
fixed points for /, f\ , fn (for the U contains all the images of these
fixed points under the maps /, /2, , f n ) . We know that Λ(f), , A(fn)



272 B. HALPERN

determine alf •• ,α Λ . The next question is how many a{ are needed
to determine K(f). The answer is contained in the following lemma.

LEMMA 27. Let

P(X) =

Q(λ) =

: C o λ α + Cjλ
1 + dp

« 1 - ] - . . .

v,̂ -1 + •
+
+

P(λ)/Q(λ) = if(λ) = βoλ
α-^ + e^"-?-1 + w&ere c ί f d<, and ef e Rα.

α ϊ ϊ e Λ are determined by eQ, eu •' ,ea+β.

Proof. Since P = KQ we have

β

& cn = Σ ^ΐ^^-i where we set ez = 0 for I < 0

and cn = 0 for %- > α .

Set e% = (eΛ, en_lf , β^^^+i). Then solving ^ for βΛ we see that there
is a linear mapping L such that for n > α, en = Le n - 1 . Consider
the set {βα, βα+1, , βa+/j} of jS + 1 vectors βα^. There must exist
α, j\0 ^ j ^β and ^ e Rα such that eα + i = Σί=i c ίe

α + y" ί. (A set of such
c* can be found through solving the appropriate linear equations.) Now
if n t: oc + β, then

The conclusion of the lemma now follows easily from ^ .

It should be noted that although P and Q may not be determined
from K, a P and Q can be found (once K is known) such that P/Q — K.
To see this note that if en = (en, en_u , eΛ_^), J = (d0, d^ , d^), ώ is
perpendicular to e*+\ ea+\ , eα+ί3, Q(λ) = doλ^ + + dβ and P = QίΓ,
then P is_a polynomial and P/Q - JBΓ. If we now set P ' - P/(P, Q)
and Q' = Q/(P, Q), ((P, Q) = the greatest common divisor of P and Q)
then P ' and Qf are factors of original P and Q respectively.

We can now make the following conclusions. If /1 V is given
where V is an open set containing all the fixed points of f\ f2, , fn

then A(f), Λ(P), , Λ(f*) are determined. If Δ(f), Λ(f2), , A(f)n

are given with n = Σ{βi then α l f αa, , αn are determined and these
latter numbers determine K(f). Knowning K(f) means that we know
a{ for all i and from these we can find A(f{) for all i. We have thus
proven.

T H E O R E M 28. f \ V determines A{fι) for all i.
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As above we may calculate for K(f) a Pr and Q' such that
K(f) = P'/Q', (P', Q') = 1, and P' and Q' are factors of Π.Pif^) and
Π%P(f£+i) respectively. Under certain ideal circumstances we may even
be able to determine P{f*) for all i. For example, if it should be
the case that deg P' = deg /7,P(/2f), deg Q' = deg /7<P(/a?+1), the nonzero
/32ί are distinct from each other, the nonzero βii+ι are also distinct
from each other, and the βzi and β2i+1 correspond to the degrees of
the (irreducible) factors of Pf and Qf respectively, then P' — ΠtPif^),
Q' = ΠiP(f£+1) and the P(fi)'s can be identified from the factorizations
of P' and Q' into irreducible factors. Other circumstances also lead
to whole or partial determinations of the P(f*).

One need not always know all the a{, 1 ̂  i ^ Σ3 βj, in order
to calculate K(f). In the special case where a{ = 0 for 1 ̂  i <Ξ
max (̂ iff2i, ^iAi+i) it is not difficult to show that K(f) = λχ. This
implies the following theorem.

THEOREM 29. Let fbe a continuous map of a compact polyhedron
X into itself, f:X—>X. If fn is fixed point free for 1 <L n ?£
max (î i dimlϊ2i(X), J^dim H2ί+1(X)) then the Lefschetz indices A(fm)
vanish for all m ^ 0.

5* Lefschetz numbers determine Euler characteristic*

THEOREM 30. Let Xt and Xz be compact polyhedra, and ft: Xι—*Xι

and f2: X2—>X2 homeomorphisms (homotopy equivalences or just that
f* and /a* are isomorphisms will suffice). If the Lefschetz numbers
agree, Δ(f*) = A(f*) for all n^tl, then the Euler characteristics of
Xx and X2 are the same, χ(-Xi) = χ(X2).

Proof. We may assume χ(Xx) ^ χ(X2). From the proof of Lemma
15 we have the formula

-nan(fi) = A(f?) + aάfMfΓ1) + + a

n ^ 1, i = 1,2 .

Thus an(f) = an(f2) for all n^l. Since

K(fζ)(\) - λ**<>(l + (hifi)^ + •) (* = 1, 2)

we see that

Set P< - ΠjP(f;%) and Q, = ΠjPψ2j+1) for i = 1,2. Then K(f<) =
for i = 1,2. Since each /& is an isomorphism, detί/^ ) ̂  0 for i = 1,2,
and i ^ 0. Thus P^O) ^ 0 and Q,(0) Φ 0 for i = 1, 2. From ̂ ^ we
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have

If χ(XO Φ χ(X2) then we would have the impossibility that either
= 0 or Q2(0) = 0. Thus χ{Xx) = χ(X2) as we wished to prove.

To see how one may actually calculate χ(X) from {Λ(fn)}~=1 where
f:X—+X is a homeomorphism we make the following observations.
Note that if K(f) = P/Q where P and ζ) are two polynomials with
P(0) Φ 0 and Q(0) ^ 0 then χ(X) = degree P - degree Q =
Next from the formula

K{f) = (λβ

we see that for any integer g ^ degree /7;P(/2*+i) there exists monic
polynomials P and Q such that P(0) =£ 0, Q(0) =£ 0, degree Q = g and
K(f) = P/Q. If Q(λ) = λ* + c1λ

ff'~1+ +c f f andP(λ) -λ2> + d 1λ p- 1+ + d p

then Q(0) = cff, P(0) = dp and iΓ = P/Q is equivalent to Σf=o^αw_ ί - dw

where we have set cQ — aQ — d0 — 1.
There observations lead to the following procedure for calculating

χ(X) from {A(f")}. First calculate the an — an(f) from ^ of Lemma
15. Then define qan = (αw_g, αn_ff+1, •••,««)€ Rα+1. Next let cQ be an
q + 1 tuple (cff, , c0) = c with c0 = 1, cq Φ 0 and c9 απ = 0 for n =
2g, 2g + 1, « ,2g + g (where "•" is the usual dot product in Rq+1)
if such a g + 1 tuple exists; let cq = (0, 0, , 0) if no such g + 1 tuple
exists.

Now set pq + 1 — the smallest nonnegative integer N such that
cq-an = 0 for N ^ ^ ^ 3g. Then χ(X) = p g - g for

g ^ max (degree ntP(f£+l)9 I χ(X) I) .

Thus, if some a priori upper bound can be put on Σ< dim H^X) then
the above procedure becomes a finite procedure for calculating χ(X)
from a finite number of the Λ(fn).
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