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INVARIANT MEASURES AND C E S A R O SUMMABILITY

HOWARD WEINER

It is known that if T is a one-to-one, measurable, invertible
and nonsingular transformation on the unit interval with a
(T-finite invariant measure, then its induced transformation TΊ
onLi functions / is such that lim^o* 1/n Σl=i Tίf(x) exists. In
this note, a counterexample is constructed which shows that the
converse is false.

Ornstein [4] constructed a linear, piecewise afRne transformation
on the unit interval which has no σ-finite invariant measure. Chacon
[1] accomplished the same objective by constructing a transformation
T whose induced transformation on Lt functions /, denoted here by
Tu was such that

liminf — Σ T?f{x) = 0 a.e., and

lim sup-!- £ Tff(x) = °o a.e. ,

since it is clear that T cannot have a σ-finite invariant measure if the
sequence {1/n Σϊ=i Tff(x)} does not have a limit. (See also Jacobs
[3].) The question arises as to whether the converse holds: if
lim^oo 1/n Σ*=* T*f(%) exists, then T has a σ-finite invariant measure.
It is the purpose of this paper to show that this statement is false
by constructing a linear, piecewise affine transformation T on the
interval / = (0,101/100] such that its induced transformation Tί on Lx

functions / satisfies

(2) \im^-±T1

kf(x) = 0 a.e.

Section 2 gives the construction of T, § 3 contains the proof that
T has no σ-finite invariant measure, and § 4 shows that the induced
transformation, Tlf satisfies (2).

The author is indebted to D. Ornstein for suggesting the method
of construction of ϊ7, which parallels his construction in [1], (See
also [3].)

2 Construction of 2\ The transformation of T will be defined
inductively step-by-step, and completely constructed in a denumerable
number of steps. At each step, the domain of T will be extended to
a subinterval of (1, 101/100], and T will not be altered where once
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defined.
At the first step, let T take (0, 1/2] onto (1/2, 1] in an order-

preserving, affine way. Break up the interval (1, 1 + (100)~V2] into
106 disjoint subintervals each of equal length 10~8/2. Denote (0, 1/2]
by Iu (1/2, 1] by 72, and number the 106 subintervals just defined left to
right by I8, , J4, - • •, / lo6+2. Let T take I2 onto J3, J3 onto J4, , / l f 6 + 1

onto /10β+2, in an order-preserving, affine way.

The domain of T will now be extended to some part of /1&6+2

using the method of [1]: split It into two subintervals of equal length
In = (0, 1/4] and J12 - (1/4, 1/2]: split J2 - (1/2,1] into J21 - (1/2, 3/4]
and J22 = (3/4,1], Similarly define In and Ij2 for 3 ^ j £ 106 + 2. It
is clear that T already takes In onto Ij+ί>1 for 1 ^ j <£ 106 + 1. Now
split up all intervals J i 2, 1 ^ j ^ 106 + 2 into 103 subintervals of equal
length. By an obvious left-to-right numbering scheme, Ij2 will be the
union of consecutive disjoint subintervals / i > 2 j l, J i)2>2, , 7y,2,io3 called
the right part of Ij9 Iόι is called the left part of Ijm It is clear that
T already takes Ij>2fl onto Ij+U2>ι for 1 ^ j ^ 106 + 1,1 ^ l^ 103 in an
order-preserving, affine way.

The domain of T will now be extended to the subinterval

1O3 = Aθ 6 + 2,1 U ^ U *• lG

as follows. Let T take / l o β + M onto Ilf2)ί and I1Q6+2}2>1 onto IιM+1 for
1 <̂  i ^ 103 — 1 in an order-preserving, affine way. Now relabel all
intervals from left to right Iu •• ,/^1. This completes step one.

At the end of step n — 1, relabelling the intervals in an obvious
way, T takes interval I5 onto Ij+1 for 1 ^ j ^ Mn in an order-preserving,
affine way. T is not yet defined on IM% and T will now be defined
on part of IMn. Split IM% into 106% subintervals of equal length, and
order them from left to right as IM% + 1, , IN%, where Nn= Mn + 106W.
Now let T take Iά onto J i + 1 , Λίw ^ j ^ Nn in an order-preserving, affine
way. The domain of T will now be extended to some part of INn

using the method of [1],
For 1 ^ j ^ Nnf split /y into two disjoint intervals of equal length,

written Iάι and I i 2 , numbering from left to right. Divide the right
interval Ij2 into 103W disjoint subintervals of equal length, and denote
them, from left to right, by Iίt2fl, 1 ^ j S Nn and 1 ^ I ^ 103Λ. It is
clear that T already takes IjΛ onto Ij+1Λ and ly^^ onto Ii+U2fι for
1 ^ i ^ N"n - 1 and 1 ^ ί ^ 103%. The domain of Γ will now be extended

to INn - /^t2flo3» = INn>i U (̂  U ^,2,iJ. Let Γ take / ^ ^ onto I1>2>1 and
/̂ n,2,z onto /lf2>ι+i in an order-preserving affine way for 1 <Ξ; I ^ 103% — 1.
This completes the definition of T at the nth step. Now relabel all
intervals from left to right as Iu I2, , IM%+1 to prepare for the
n + 1st step.
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3* In variance properties of T.

DEFINITION, ([l], [3]). Two sets, E, F, are said to be finitely
T-equivalent if they allow finite disjoint decompositions E = ΣJ = 1 Ek

and F = Σ L i ^ , such that for appropriate rkJ T
rkEk = Fk.

THEOREM. T has no σ-finite invariant measure.

Proof. We let m0 denote Lebesgue measure. It suffices to show
that T has the following property (See [l], [3] pp. 58-60, which this
treatment follows):

For any integer n and any set Mai, such that mo(M) > 9/10
there is a set of n mutually disjoint and T-equivalent subsets Mu ,
Mn contained in M such that mo{Mλ) > 1/8.

To show that this property holds, it suffices to choose Af c(0, 1]
such that mo(M) > 9/10. At step r, suppose U^C(0,1] where the
union is taken only over those subintervals containing a subset of M.
Renumber the subintervals Ju J2, , Jp, where T or its positive powers
takes Jz onto Jι+1,1 = 1, 2, , P - 1. Suppose E = {I: Jι C U5=ί IJ}-
By the construction, mJAJieE Jι) — 1/2.

Let L = max {I: I e E). Assume r > n. Then for L < s ̂  P, J is
in the right part of the scheme and hence

( 3 ) mQ(Js) ^ 10~6r ~3r < 1/lOOnL, since L - 103r. From this point
on the proof is formally identical with that in [3], p. 60. This obser-
vation completes the proof.

4* Convergence of Cesaro sums*

DEFINITION. The transformation on L1 functions / induced by T,
denoted by T19 is defined for x0 e (0,101/100] as

TJ(x)=f(T(x1))R(T,xQ,x1),

where T(#i) = xQ and R(T, x0, xγ) denotes the suitable Radon-Nikodym
derivative of T defined almost everywhere which insures that

0 f101/100

TJ(x)dx = f(x)dx .
Jo

S 101/100 _ _ _ f 101/100

o

T1 is well defined. It is clear how to define powers of ϊ\. This
may be expressed as T?f(xQ) = f(Tn(x1))R(Tn, x0, xx), where Tn{x,) = x0

and R(Tn, xQ, xλ) denotes the Radon-Nikodym derivative which insures
that

0 p101/100

Tί

nf(x)dx = f(x)dx .
Jo

S 101/100 p101/100

0
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Note that R(Tn

y x0, xγ) is easy to compute. If Tn(x0) = xx and
xQeIι and ̂ 6 / m , where Ix and Im are intervals defined together in
the same step in the definition of T such that m Φ I, then

( 4 ) R{T\ x0, Xι) = mo(/,)/mo(/m) - length (/^/length (Im)

due to the piecewise affine character of T.
In order to show that for feLly

( 5 ) Mm — Σ Γί/(a?) = 0 a.e. xel

is suffices to show (5) only for / = 1. This is so because if (5) holds
for / = 1, by the Chacon-Ornstein theorem [2], for any g e Lu

lim ΣTifc0(#)/ΣTιkf(x) exists a.e. x e I,

and hence

lim — Σ T?g{x) = 0 a.e. xel.

Thus it suffices to prove the following.

THEOREM. For / = 1

l im — Σ Tffix) = 0 a . e . xel.

Proof. The proof is divided into two cases; (a) # e (0,1] and
(b) xe (1,101/100].

Case (a). Recall that Mn is the number of subintervals on which
T or its range was defined at step n. Note that the point x = 1 is
in the ϋ^-th interval at step n, where Rn = Mn - Σ*=i 106fe

Define /.(I) = 1/Λ. Σfc Γi/(1). Then Λ(l) is clearly the Cesaro
sum of highest index (Rn) which can be defined at step n at the point
x = 1 among the sums l/j>Σf=i T}f(l). Also, for a?e(0,1],-B» is the
maximum index p such that 1/p Σί=i T[f(x) may be defined at step n.

Claim 1. /.(I) ^ 106W x 0(103W).

Proof. Proceeding by induction, we first obtain an upper bound
for /i(l). The point x — 1 is in interval IMι — 106 which is of length
1/4 x 10~3 and the intervals that map into /x at step 1 by T or its
positive powers are each of one of the following types:

Type 1. IUI2 each of length 1/4, and hence each contributing 103
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to the sum Σf=i 27/(1) by (4);

Type 2. I3, , Jlflβ+2, each of length 1/4 x 10-8, and so by (4) each
contributing 10~5 to the above sum;

l y p e ό. i 1 0 β + 3 >-ί 1 0 β + 4 >i 2 X 1 0 β + δ J^ 2 X 1 0 β + β >i3X 1 0 β + 7 f ίgX l oβ+ 8» * * >^(iO3^i)io6+2(1 O3_i)+ 1>

^(1Ό3_1)106+2(103_1)+2, each of length 1/4 x 10~3, and hence each contributing
1 to the sum; and

l y p e 4 . i i O 6 + 5 , , ^2X1 06+ 4> Λ x l o β + 7 > -*3X106+6> , ^{1Q^1)^1o6+2[1o^1)+z9 * * ' 9

ΛoSχ(ioβ)+2(io3-i)+s> each of length 1/4 x 10~u, and hence contributing 10~8

to the sum.
Multiplying the contribution of each type of interval by a number

at least as large as the number of each such interval, adding these
four terms, and dividing by a number smaller than the total number
of summands Rn yields the following upper bound

(6) /,(!)< 2 x 103 + 10* x 10-5 + 106 x 103 x 10~8 + 2 x 103 x 1

109

or /,(!) < 6 x 10-6

10«n

Bn-ί

(b)

(a)

(0

(d)

FIGURE 1.

Consider the above diagram representing the four types of domain
of definition on which T and its positive powers are defined at step
n. The domain (a) is the set of left parts of (0,1] together with the
left parts of the subintervals of (1,101/100] added to the domain before
step n. Domain (b) is the set of left parts of the subinterval of
(1,101/100] added to the domain of definition of T at step n. Domain
(c) is the right part of the subinterval added to the domain of T at
step n. Domain (d) is the right part of (0,1] together with the right
part of the subintervals of (1,101/100] added to the domain before
step n. The numbers on the diagram refer to the respective number
of subintervals into which the left parts right parts, of (0,1] and
appropriate subintervals of (1,101/100] are divided at the nth step.

Using an obvious notation,

Σ 27/(1) = Σ
(d)

27/(1)
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where

(8) Σ 27/(1) = Λ-Λl)!?.-! x 103\
(a)

since the length ratio of left part intervals to the corresponding right
part intervals is 103W;

(9) Σ 27/(1) = 10-671 x Γ x - i χ 2 f t x 10^=l3' x 106"
a) 200

= - L x ioa5-" ,
200

where lO"6" x 2— x 1/200 is the length of a (b) interval, 2~w x 10~Σ?=l3J

is the length of the (d) interval containing the point 1, and 106?ι is
the number of (b) intervals;

(10) Σ 27/(1) - - x Γ x 10-β" x 10-3% x ΓlO**βl3i

(c) 200 L x

x 106π x 103% - — x

since each subinterval of (c) has length ((100) x 2n+1 x ioβΛ+8Λ)-1, the

subinterval containing the point 1 has length (10 j=1 x 2n)~1 and there
are a total of 106%+3% subintervals in (c);

(11) Σ 27/(1) < Λ-iΛ-iί l) x 103*
(d)

since there are 103% sets of intervals on which T and its positive
powers were defined at the n — 1st step in (d).

Clearly

(12) Rn < 106π+3n ,

Hence from (6) — (12) inclusive,

2/^,(1) x Rn_t x 10s* + 2 x (HJO) x
(13) Λd) < 1 ( r + > . V 2 0 0 /

By the induction hypothesis, / ^ ( l ) = 10"6""1 x
Using this in (13), / f t(l) < 10~β?ιx 0(103%), completing the induction

argument.
Now consider x e (0,1] such that in addition, x is in the right

part of the scheme. In the diagram below, at step n, the second
subinterval in the right part of the scheme which is also a sub-
interval of (0,1] is denoted by Q. This interval is IrQί where r0 =
Mn_, + 106" + 1 > Wn. Let xQ e Q.
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(b)

(a)

(d)

(c)

FIGURE 2.

Claim. Suppose r is such that Mn > r > Mn_u and x e (0,1] and
also in the right part of the scheme at step n. Then under these
conditions,

(14) max -L ± Tlf{%) = —
x,r r *=i rQ

This is clear since the largest Radon-Nikodym derivatives in the above
Cesaro sum come about as a result of T and its positive powers taking
points from the left part of the scheme to its right part.

Claim 2. At step n,

(15) — Σ T}f(x0)
T ι

Σ 2Y/(«o) = Σ + Σ + Σ T}f(χb),
l=ι (a) lb) (c)

Proof. From the above diagram,

(16)

where

(17) Σ 27/(3.) - lCT x ilί._1 x /n_α(l) ,
(a)

(18) Σ T}f(xQ) = (200)-1 x 2~n x 10-6" x (10^=l8' x 2") x 1(Γ < 10%8" ,
(b) \ /Σ
(b)

and,

(19) Σ Tlf(x0) = M^ x Λ_,(l) .

Hence from (15) - (19),

— Σ τif(χ0) < ϋίi x J f«- t x /«- i (

106

(103 M) x x /._,( 10" 3*

io6
Jn-1\L)

This establishes the claim.
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Now a.e. x e (0,1] is in the right part of the scheme for infinitely-
many steps n since at each step, every subinterval is divided into two
equal subintervals, one of which becomes a member of the left part
of the scheme, and the other, the right part. Further, higher powers
of T}f(x) can only be defined at a given stage n if x is in the right
part of the scheme. These remarks plus Claims 1 and 2 above estab-
lish that

lim J _ 2 27/(1) • 0 for a.e. x e (0,1] ,

which is case (a).
For case (b), let xe (1,101/100]. The procedure to be followed

parallels that in case (a).

Define fjl + (100)-1 x Σ2~Λ = - £ - Σ T}f.(l + (100)-1 x Σ2~Λ ,
V 1=1 / Mrk 1=1 \ 3=1 /

where k ^ r + 1 and Mrjc = Mk - Σi=r+i 106i. That is, Mr]c is the
highest power of T that may be defined at step k with domain on a
part of the rth subinterval (1 + (100)-1 x 2~r, 1 + (100)-1 x 2~r+1] which
is taken from (1,101/100].

Claim 3. flk(l + (lOO)"1 x ΣJ-iZ^) = lO"6" x OίlO3""1)-0-> 0
for fixed r as k —> oo.

Claim 4. Let

xe(l + (100)-1 x Σ 2 " y ) , 1 + (100)-1 x Σ 2 ^ ' l .
V j=l ' 3 = 1 -1

Suppose that at step k > r,x is in the right part of the scheme.
Then for

M > Nk_l9 -±r Σ Tlf(x) < fukjl + (00)-1 x Σ 2-Λ .
M i=i V J=I /

The proof of Claim 3 follows as for Claim 1, and that for Claim
4 as for Claim 2. The proofs use the fact that 106ίl > 103*1 as n in-
creases. The details are omitted.

Since a.e. α?e(l, 101/100] is in the right part of the scheme for
infinitely many steps n, and since higher powers of Tlf(x), for fixed
x, are defined when x is in the right part of the scheme at some step,
Claims 3 and 4 yield the result for case (b).
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