INVARIANT MEASURES AND CESÀRO SUMMABILITY

Howard Weiner

It is known that if T is a one-to-one, measurable, invertible and nonsingular transformation on the unit interval with a σ-finite invariant measure, then its induced transformation T_{1} on L_{1} functions f is such that $\lim _{n \rightarrow \infty} 1 / n \sum_{k=1}^{n} T_{1}^{k} f(x)$ exists. In this note, a counterexample is constructed which shows that the converse is false.

Ornstein [4] constructed a linear, piecewise affine transformation on the unit interval which has no σ-finite invariant measure. Chacon [1] accomplished the same objective by constructing a transformation T whose induced transformation on L_{1} functions f, denoted here by T_{1}, was such that

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} T_{1}^{k} f(x)=0 \text { a.e., and } \\
& \limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} T_{1}^{k} f(x)=\infty \text { a.e. } \tag{1}
\end{align*}
$$

since it is clear that T cannot have a σ-finite invariant measure if the sequence $\left\{1 / n \sum_{k=1}^{n} T_{1}^{k} f(x)\right\}$ does not have a limit. (See also Jacobs [3].) The question arises as to whether the converse holds: if $\lim _{n \rightarrow \infty} 1 / n \sum_{k=1}^{n} T_{1}^{k} f(x)$ exists, then T has a σ-finite invariant measure. It is the purpose of this paper to show that this statement is false by constructing a linear, piecewise affine transformation T on the interval $I=(0,101 / 100]$ such that its induced transformation T_{1} on L_{1} functions f satisfies

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} T_{1}^{k} f(x)=0 \text { а.e. } \tag{2}
\end{equation*}
$$

Section 2 gives the construction of T, § 3 contains the proof that T has no σ-finite invariant measure, and $\S 4$ shows that the induced transformation, T_{1}, satisfies (2).

The author is indebted to D. Ornstein for suggesting the method of construction of T, which parallels his construction in [1]. (See also [3].)
2. Construction of T. The transformation of T will be defined inductively step-by-step, and completely constructed in a denumerable number of steps. At each step, the domain of T will be extended to a subinterval of $(1,101 / 100]$, and T will not be altered where once
defined.
At the first step, let T take $(0,1 / 2]$ onto $(1 / 2,1]$ in an orderpreserving, affine way. Break up the interval $\left(1,1+(100)^{-1} / 2\right]$ into 10^{6} disjoint subintervals each of equal length $10^{-8} / 2$. Denote $(0,1 / 2]$ by $I_{1},(1 / 2,1]$ by I_{2}, and number the 10^{6} subintervals just defined left to right by $I_{3}, \cdots, I_{4}, \cdots, I_{10^{6}+2}$. Let T take I_{2} onto I_{3}, I_{3} onto $I_{4}, \cdots, I_{166_{+1}}$ onto $I_{16^{6}+2}$, in an order-preserving, affine way.

The domain of T will now be extended to some part of $I_{16{ }^{6}+2}$ using the method of [1]: split I_{1} into two subintervals of equal length $I_{11}=(0,1 / 4]$ and $I_{12}=(1 / 4,1 / 2]:$ split $I_{2}=(1 / 2,1]$ into $I_{21}=(1 / 2,3 / 4]$ and $I_{22}=(3 / 4,1]$. Similarly define $I_{j 1}$ and $I_{j 2}$ for $3 \leqq j \leqq 10^{6}+2$. It is clear that T already takes $I_{j 1}$ onto $I_{j+1,1}$ for $1 \leqq j \leqq 10^{6}+1$. Now split up all intervals $I_{j 2}, 1 \leqq j \leqq 10^{6}+2$ into 10^{3} subintervals of equal length. By an obvious left-to-right numbering scheme, $I_{j 2}$ will be the union of consecutive disjoint subintervals $I_{j, 2,1}, I_{j, 2,2}, \cdots, I_{j, 2,10^{3}}$ called the right part of I_{j}. $\quad I_{j 1}$ is called the left part of I_{j}. It is clear that T already takes $I_{j, 2, l}$ onto $I_{j+1,2, l}$ for $1 \leqq j \leqq 10^{6}+1,1 \leqq l \leqq 10^{3}$ in an order-preserving, affine way.

The domain of T will now be extended to the subinterval

$$
I_{166^{6}+2}-I_{16^{6}+2,2,10^{3}}=I_{10^{6}+2,1} \cup\left(\bigcup_{l=1}^{1{ }^{13}-1} I_{16^{6}+2,2, l}\right),
$$

as follows. Let T take $I_{10^{6}+2,1}$ onto $I_{1,2,1}$ and $I_{10^{6}+2,2, l}$ onto $I_{1,2, l+1}$ for $1 \leqq l \leqq 10^{3}-1$ in an order-preserving, affine way. Now relabel all intervals from left to right $I_{1}, \cdots, I_{M_{1}}$. This completes step one.

At the end of step $n-1$, relabelling the intervals in an obvious way, T takes interval I_{j} onto I_{j+1} for $1 \leqq j \leqq M_{n}$ in an order-preserving, affine way. T is not yet defined on $I_{M_{n}}$ and T will now be defined on part of $I_{M_{n}}$. Split $I_{M_{n}}$ into $10^{6^{n}}$ subintervals of equal length, and order them from left to right as $I_{M_{n}}+1, \cdots, I_{N_{n}}$, where $N_{n}=M_{n}+10^{6^{n}}$. Now let T take I_{j} onto $I_{j+1}, M_{n} \leqq j \leqq N_{n}$ in an order-preserving, affine way. The domain of T will now be extended to some part of $I_{N_{n}}$ using the method of [1].

For $1 \leqq j \leqq N_{n}$, split I_{j} into two disjoint intervals of equal length, written $I_{j 1}$ and $I_{j 2}$, numbering from left to right. Divide the right interval $I_{j 2}$ into $10^{3 n}$ disjoint subintervals of equal length, and denote them, from left to right, by $I_{j, 2, l}, 1 \leqq j \leqq N_{n}$ and $1 \leqq l \leqq 10^{3 n}$. It is clear that T already takes $I_{j, 1}$ onto $I_{j+1,1}$ and $I_{j, 2, l}$ onto $I_{j+1,2, i}$ for $1 \leqq j \leqq N_{n}-1$ and $1 \leqq l \leqq 10^{3^{n}}$. The domain of T will now be extended to $I_{N_{n}}-I_{N_{n, 2,10^{3^{n}}}}=I_{N_{n}, 1} \cup\left(\bigcup_{l=1}^{10^{3 n}-1} I_{N_{n}, 2, l}\right)$. Let T take $I_{N_{n}, 1}$ onto $I_{1,2,1}$ and $I_{N_{n}, 2, l}$ onto $I_{1,2, l+1}$ in an order-preserving affine way for $1 \leqq l \leqq 10^{3^{n}}-1$. This completes the definition of T at the $n^{\text {th }}$ step. Now relabel all intervals from left to right as $I_{1}, I_{2}, \cdots, I_{M_{n+1}}$ to prepare for the $n+1^{\text {st }}$ step.
3. Invariance properties of T.

Definition. ([1], [3]). Two sets, E, F, are said to be finitely T-equivalent if they allow finite disjoint decompositions $E=\sum_{k=1}^{n} E_{k}$ and $F=\sum_{k=1}^{n} F_{k}$, such that for appropriate $r_{k}, T^{r_{k}} E_{k}=F_{k}$.

Theorem. T has no σ-finite invariant measure.
Proof. We let m_{0} denote Lebesgue measure. It suffices to show that T has the following property (See [1], [3] pp. 58-60, which this treatment follows):

For any integer n and any set $M \subset I$, such that $m_{0}(M)>9 / 10$ there is a set of n mutually disjoint and T-equivalent subsets M_{1}, \cdots, M_{n} contained in M such that $m_{0}\left(M_{1}\right)>1 / 8$.

To show that this property holds, it suffices to choose $M \subset(0,1]$ such that $m_{0}(M)>9 / 10$. At step r, suppose $\cup I \subset(0,1]$ where the union is taken only over those subintervals containing a subset of M. Renumber the subintervals $J_{1}, J_{2}, \cdots, J_{p}$, where T or its positive powers takes J_{l} onto $J_{l+1}, l=1,2, \cdots, P-1$. Suppose $E=\left\{l: J_{l} \subset \bigcup_{j=1}^{r-1} I_{j}\right\}$. By the construction, $m_{0}\left(\mathbf{U}_{l \in E} J_{l}\right)=1 / 2$.

Let $L=\max \{l: l \in E\}$. Assume $r>n$. Then for $L<s \leqq P, J$ is in the right part of the scheme and hence
(3) $m_{0}\left(J_{s}\right) \leqq 10^{-6 r-3^{r}}<1 / 100 n L$, since $L \sim 10^{3 r}$. From this point on the proof is formally identical with that in [3], p. 60. This observation completes the proof.

4. Convergence of Cesàro sums.

Definition. The transformation on L_{1} functions f induced by T, denoted by T_{1}, is defined for $x_{0} \in(0,101 / 100]$ as

$$
T_{1} f(x)=f\left(T\left(x_{1}\right)\right) R\left(T, x_{0}, x_{1}\right)
$$

where $T\left(x_{1}\right)=x_{0}$ and $R\left(T, x_{0}, x_{1}\right)$ denotes the suitable Radon-Nikodym derivative of T defined almost everywhere which insures that

$$
\int_{0}^{101 / 100} T_{1} f(x) d x=\int_{0}^{101 / 100} f(x) d x
$$

T_{1} is well defined. It is clear how to define powers of T_{1}. This may be expressed as $T_{1}^{n} f\left(x_{0}\right)=f\left(T^{n}\left(x_{1}\right)\right) R\left(T^{n}, x_{0}, x_{1}\right)$, where $T^{n}\left(x_{1}\right)=x_{0}$ and $R\left(T^{n}, x_{0}, x_{1}\right)$ denotes the Radon-Nikodym derivative which insures that

$$
\int_{0}^{101 / 100} T_{1}^{n} f(x) d x=\int_{0}^{101 / 100} f(x) d x
$$

Note that $R\left(T^{n}, x_{0}, x_{1}\right)$ is easy to compute. If $T^{n}\left(x_{0}\right)=x_{1}$ and $x_{0} \in I_{l}$ and $x_{1} \in I_{m}$, where I_{l} and I_{m} are intervals defined together in the same step in the definition of T such that $m \neq l$, then

$$
\begin{equation*}
R\left(T^{n}, x_{0}, x_{1}\right)=m_{0}\left(I_{l}\right) / m_{0}\left(I_{m}\right)=\text { length }\left(I_{l}\right) / \text { length }\left(I_{m}\right) \tag{4}
\end{equation*}
$$

due to the piecewise affine character of T.
In order to show that for $f \in L_{1}$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} T_{1}^{k} f(x)=0 \text { a.e. } x \in I \tag{5}
\end{equation*}
$$

is suffices to show (5) only for $f=1$. This is so because if (5) holds for $f=1$, by the Chacon-Ornstein theorem [2], for any $g \in L_{1}$,

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} T_{1}^{k} g(x) / \sum_{k=1}^{n} T_{1}^{k} f(x) \text { exists a.e. } x \in I
$$

and hence

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} T_{1}^{k} g(x)=0 \text { a.e. } x \in I .
$$

Thus it suffices to prove the following.
Theorem. For $f=1$

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} T_{1}^{k} f(x)=0 \text { a.e. } x \in I .
$$

Proof. The proof is divided into two cases; (a) $x \in(0,1]$ and (b) $x \in(1,101 / 100]$.

Case (a). Recall that M_{n} is the number of subintervals on which T or its range was defined at step n. Note that the point $x=1$ is in the R_{n}-th interval at step n, where $R_{n}=M_{n}-\sum_{k=1}^{n} 10^{6 k}$.

Define $f_{n}(1)=1 / R_{n} \sum_{l=1}^{R_{n}} T_{1}^{l} f(1)$. Then $f_{n}(1)$ is clearly the Cesàro sum of highest index $\left(R_{n}\right)$ which can be defined at step n at the point $x=1$ among the sums $1 / p \sum_{l=1}^{p} T_{1}^{l} f(1)$. Also, for $x \in(0,1], R_{n}$ is the maximum index p such that $1 / p \sum_{l=1}^{p} T_{1}^{l} f(x)$ may be defined at step n.

Claim 1. $f_{n}(1) \leqq 10^{6 n} \times 0\left(10^{3 n}\right)$.
Proof. Proceeding by induction, we first obtain an upper bound for $f_{1}(1)$. The point $x=1$ is in interval $I_{M_{1}}-10^{6}$ which is of length $1 / 4 \times 10^{-3}$ and the intervals that map into I_{1} at step 1 by T or its positive powers are each of one of the following types:

Type 1. I_{1}, I_{2} each of length $1 / 4$, and hence each contributing 10^{3}
to the sum $\sum_{l=1}^{R_{n}} T_{1}^{l} f(1)$ by (4);
Type 2. I_{3}, \cdots, I_{106+2}, each of length $1 / 4 \times 10^{-8}$, and so by (4) each contributing 10^{-6} to the above sum;

Type 3. $\quad I_{10^{6}+3}, I_{10^{6}+4}, I_{2 \times_{10^{6}+5}}, I_{2 \times_{106+6}}, I_{3^{\times} 0^{6}+7}, I_{3^{\times}{ }_{10}{ }^{6}+8}, \cdots, I_{\left(10^{3}-1\right) 10^{6}+2\left(10^{3}-1\right)+1}$, $I_{\left.\left(10^{3}-1\right)^{\prime} 0^{6}+2^{1} 10^{3}-1\right)+2}$, each of length $1 / 4 \times 10^{-3}$, and hence each contributing 1 to the sum; and

Type 4. $\quad I_{10_{6+5}}, \cdots, I_{2 \times_{106}{ }^{6}+4}, I_{2 \times_{106+7}}, I_{3^{\times} 1^{6}+6}, \cdots, I_{\left(10^{3}-1\right) \times{ }_{10} 0^{6}\left(10^{3}-1\right)+3}, \cdots$, $I_{10^{3} \times\left(10^{6}\right)+2\left(10^{3}-1\right)+3}$, each of length $1 / 4 \times 10^{-11}$, and hence contributing 10^{-8} to the sum.

Multiplying the contribution of each type of interval by a number at least as large as the number of each such interval, adding these four terms, and dividing by a number smaller than the total number of summands R_{n} yields the following upper bound

$$
\begin{equation*}
f_{1}(1)<\frac{2 \times 10^{3}+10^{6} \times 10^{-5}+10^{6} \times 10^{3} \times 10^{-8}+2 \times 10^{3} \times 1}{10^{9}} \tag{6}
\end{equation*}
$$

or $f_{1}(1)<6 \times 10^{-6}$

Figure 1.
Consider the above diagram representing the four types of domain of definition on which T and its positive powers are defined at step n. The domain (a) is the set of left parts of $(0,1]$ together with the left parts of the subintervals of $(1,101 / 100]$ added to the domain before step n. Domain (b) is the set of left parts of the subinterval of ($1,101 / 100$] added to the domain of definition of T at step n. Domain (c) is the right part of the subinterval added to the domain of T at step n. Domain (d) is the right part of $(0,1]$ together with the right part of the subintervals of $(1,101 / 100]$ added to the domain before step n. The numbers on the diagram refer to the respective number of subintervals into which the left parts right parts, of $(0,1]$ and appropriate subintervals of $(1,101 / 100]$ are divided at the $n^{\text {th }}$ step.

Using an obvious notation,

$$
\begin{equation*}
R_{n} f_{n}(1)=\sum_{l=1}^{R_{n}} T_{1}^{l} f(1)=\sum_{\langle a\rangle}+\sum_{(b)}+\sum_{\langle\mathrm{c}\rangle}+\sum_{\langle\mathrm{d}\rangle} T_{1}^{l} f(1), \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
\sum_{(a)} T_{1}^{l} f(1)=f_{n-1}(1) R_{n-1} \times 10^{3 n} \tag{8}
\end{equation*}
$$

since the length ratio of left part intervals to the corresponding right part intervals is $10^{3 n}$;

$$
\begin{align*}
\sum_{\text {(b) }} T_{1}^{l} f(1) & =10^{-6^{n}} \times 2^{-n} \times \frac{1}{200} \times 2^{n} \times 10^{\Sigma_{j=1}^{n} 3^{3}} \times 10^{6^{n}} \tag{9}\\
& =\frac{1}{200} \times 10^{\Sigma_{j=1^{n}}{ }^{n}}
\end{align*}
$$

where $10^{-6^{n}} \times 2^{-n} \times 1 / 200$ is the length of a (b) interval, $2^{-n} \times 10^{-\Sigma_{j=1^{n}}{ }^{3}}$ is the length of the (d) interval containing the point 1 , and $10^{6^{n}}$ is the number of (b) intervals;

$$
\begin{align*}
\sum_{\text {(c) }} T_{1}^{l} f(1)= & \frac{1}{200} \times 2^{-n} \times 10^{-6 n} \times 10^{-3^{n}} \times\left[10^{\sum_{j=1^{3}}^{n}} \times 2^{n}\right] \tag{10}\\
& \times 10^{6^{n}} \times 10^{3^{n}}=\frac{1}{200} \times 10^{\Sigma_{j=1^{3}}^{n}},
\end{align*}
$$

since each subinterval of (c) has length ((100) $\left.\times 2^{n+1} \times 10^{6 n+3 n}\right)^{-1}$, the subinterval containing the point 1 has length $\left(10^{\Sigma_{j=1}^{n} 3^{j}} \times 2^{n}\right)^{-1}$ and there are a total of $10^{6^{n}+3^{n}}$ subintervals in (c);

$$
\begin{equation*}
\sum_{(d)} T_{1}^{l} f(1)<R_{n-1} f_{n-1}(1) \times 10^{3^{n}} \tag{11}
\end{equation*}
$$

since there are $10^{3 n}$ sets of intervals on which T and its positive powers were defined at the $n-1^{\text {st }}$ step in (d).

Clearly

$$
\begin{equation*}
R_{n}<10^{6 n+3^{n}} \tag{12}
\end{equation*}
$$

Hence from (6) - (12) inclusive,

$$
\begin{equation*}
f_{n}(1)<\frac{2 f_{n-1}(1) \times R_{n-1} \times 10^{3^{n}}+2 \times\left(\frac{1}{200}\right) \times 10^{\Sigma_{j=1^{3}}^{n}}}{10^{6^{n}+2^{n}}} \tag{13}
\end{equation*}
$$

By the induction hypothesis, $f_{n-1}(1)=10^{-6^{n-1}} \times 0\left(10^{3 n-1}\right)$.
Using this in (13), $f_{n}(1)<10^{-6^{n}} \times 0\left(10^{3 n}\right)$, completing the induction argument.

Now consider $x \in(0,1]$ such that in addition, x is in the right part of the scheme. In the diagram below, at step n, the second subinterval in the right part of the scheme which is also a subinterval of $(0,1]$ is denoted by Q. This interval is $I_{r_{0}}$, where $r_{0}=$ $M_{n-1}+10^{6^{n}}+1>10^{6^{n}}$. Let $x_{0} \in Q$.

Figure 2.
Claim. Suppose r is such that $M_{n}>r>M_{n-1}$, and $x \in(0,1]$ and also in the right part of the scheme at step n. Then under these conditions,

$$
\begin{equation*}
\max _{x, r} \frac{1}{r} \sum_{l=1}^{r} T_{1}^{l} f(x)=\frac{1}{r_{0}} \sum_{l=1}^{r_{n}} f\left(x_{0}\right) . \tag{14}
\end{equation*}
$$

This is clear since the largest Radon-Nikodym derivatives in the above Cesàro sum come about as a result of T and its positive powers taking points from the left part of the scheme to its right part.

Claim 2. At step n,

$$
\begin{equation*}
\frac{1}{r_{0}} \sum_{l=1}^{r_{0}} T_{1}^{l} f\left(x_{0}\right)<f_{n-1}(1) \tag{15}
\end{equation*}
$$

Proof. From the above diagram,

$$
\begin{equation*}
\sum_{l=1}^{r_{0}} T_{1}^{l} f\left(x_{0}\right)=\sum_{(\mathrm{a}\rangle}+\sum_{|\mathrm{b}\rangle}+\sum_{(\mathrm{c}\rangle} T_{\mathrm{l}}^{l} f\left(x_{\mathrm{c}}\right) \tag{16}
\end{equation*}
$$

where

$$
\begin{gather*}
\sum_{(a)} T_{1}^{l} f\left(x_{0}\right)=10^{3 n} \times M_{n-1} \times f_{n-1}(1), \tag{17}\\
\text { (18) } \quad \sum_{\text {(b) }} T_{1}^{l} f\left(x_{0}\right)=(200)^{-1} \times 2^{-n} \times 10^{-6^{n}} \times\left(10^{\Sigma_{j=1^{3}}^{n}} \times 2^{n}\right) \times 10^{6 n}<10^{n 3^{3 n}},
\end{gather*}
$$ and,

$$
\begin{equation*}
\sum_{(c)} T_{1}^{l} f\left(x_{0}\right)=M_{n-1} \times f_{n-1}(1) . \tag{19}
\end{equation*}
$$

Hence from (15) - (19),

$$
\begin{aligned}
\frac{1}{r_{0}} \sum_{l=1}^{r_{0}} T_{1}^{l} f\left(x_{0}\right) & <\frac{\left(10^{3 n}+1\right) \times M_{n-1} \times f_{n-1}(1)+10^{n 3^{n}}}{10^{6^{n}}} \\
& \sim \frac{\left(10^{3^{n}}\right) \times 10^{3^{n-1}+6^{n-1}} \times f_{n-1}(1)+10^{n 3^{n}}}{10^{6^{n}}}<f_{n-1}(1)
\end{aligned}
$$

This establishes the claim.

Now a.e. $x \in(0,1]$ is in the right part of the scheme for infinitely many steps n since at each step, every subinterval is divided into two equal subintervals, one of which becomes a member of the left part of the scheme, and the other, the right part. Further, higher powers of $T_{1}^{l} f(x)$ can only be defined at a given stage n if x is in the right part of the scheme. These remarks plus Claims 1 and 2 above establish that

$$
\lim _{r \rightarrow \infty} \frac{1}{r} \sum_{l=1}^{r} T_{1}^{l} f(1) \longrightarrow 0 \text { for a.e. } x \in(0,1]
$$

which is case (a).
For case (b), let $x \in(1,101 / 100]$. The procedure to be followed parallels that in case (a).

$$
\text { Define } f_{1 k}\left(1+(100)^{-1} \times \sum_{l=1}^{r} 2^{-j}\right)=\frac{1}{M_{r_{k}}} \sum_{l=1}^{M_{r_{k}}} T_{1}^{l} f\left(1+(100)^{-1} \times \sum_{j=1}^{r} 2^{-j}\right)
$$

where $k \geqq r+1$ and $M_{r_{k}}=M_{k}-\sum_{j=r+1}^{k} 10^{6 j}$. That is, $M_{r_{k}}$ is the highest power of T that may be defined at step k with domain on a part of the $r^{\text {th }}$ subinterval $\left(1+(100)^{-1} \times 2^{-r}, 1+(100)^{-1} \times 2^{-r+1}\right]$ which is taken from (1, 101/100].

Claim 3. $\quad f_{1 k}\left(1+(100)^{-1} \times \sum_{j=1}^{r} 2^{-j}\right)=10^{-8^{k}} \times 0\left(10^{3^{k-1}}\right)^{\rightarrow 0} \rightarrow 0$ for fixed r as $k \rightarrow \infty$.

Claim 4. Let

$$
\left.x \in\left(1+(100)^{-1} \times \sum_{j=1}^{r-1} 2^{-j}\right), 1+(100)^{-1} \times \sum_{j=1}^{r} 2^{-j}\right]
$$

Suppose that at step $k>r, x$ is in the right part of the scheme. Then for

$$
M>N_{k-1}, \frac{1}{M} \sum_{l=1}^{M} T_{1}^{l} f(x)<f_{1, k-1}\left(1+(00)^{-1} \times \sum_{j=1}^{r} 2^{-j}\right)
$$

The proof of Claim 3 follows as for Claim 1, and that for Claim 4 as for Claim 2. The proofs use the fact that $10^{6 n} \gg 10^{3 n}$ as n increases. The details are omitted.

Since a.e. $x \in(1,101 / 100]$ is in the right part of the scheme for infinitely many steps n, and since higher powers of $T_{1}^{l} f(x)$, for fixed x, are defined when x is in the right part of the scheme at some step, Claims 3 and 4 yield the result for case (b).

References

1. R. V. Chacon, A class of linear transformations, Proc. Amer. Math. Soc. 15 (1964), 560-564.
2. R. V. Chacon, and D. S. Ornstein, A general ergodic theorem, Illinois J. Math. (2) 4 (1960), 153-160.
3. K. Jacobs, Lectures on ergodic theory, Matematisk Institut, Aarhus University Vol. 1 (1963), 56-60.
4. D. S. Ornstein, On invariant measures, Bull. Amer. Math. Soc. (4) 66 (1960), 297300.

Received July 6, 1967.
University of California at Davis

