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Lp SPACES OVER FINITELY ADDITIVE MEASURES

CHARLES FEFFERMAN

For a space (S, Σ, μ), μ a positive finitely additive set func-
tion on a field Σ of subsets of the set S, Z#P(S, -£, /*) is usually
not complete. However, if we consider the completion
LP(S, Σ, μ) of LPf we may ask which of the properties of Lp

known for the countably additive case, are true in general.
In this paper it is shown that for every (S, Σ, μ) there is

a (countably additive) measure space (S', Σf, μ') and a natural
injection j from S into Sr which induces isometric isomorphisms
y* from LP(S, Σ, μ) onto LP(S', Σf, //). j * also preserves order,
and other structures on Lp.

This result shows, roughly, that any theorem valid for Lp

over a measure space, applies also to Lp over a finitely additive
measure. Thus Lp and Lq are dual (1 < p < + oo, Ijp + Ijq — 1),
Li is weakly complete, and so forth.

Let S be a set, Σ a field of subsets of S, and μ a finitely additive
extended real-valued set function on Σ. We call (S, 2\ μ) a triple. If
μ is positive or bounded, we call (S, Σ, μ) a positive or bounded triple,
respectively.

Let / be a /̂ -simple function on S. We define the L^-norm of /,

G \l/ί>

I f(s) \p v(μ, ds)J (1 ̂  p < + oo); and we define the

Γilf-length of / to be arctan infα>0[α: + v(μ, {seS\\ f(s) \ ̂  a})].

DEFINITION. Let (S, Σy μ) be a triple. The space TM(S, Σ, μ) is
defined to be the completion of the space of ^-simple functions under
the TΛf-metric. Define multiplication of elements of TM(S, Σ, μ), and
an order relation on TM(S, Σ, μ) by using Cauchy sequences of simple
functions in the obvious way.

Let LP(S, Σ, μ) be the set of limits in TM(S, Σ, μ) sequences of
^-simple functions which are Cauchy in the L^-norm. There is an
obvious norm induced on LP(S, Σ, μ) by the ^-simple functions on S.

LP(S, Σ, μ) is canonically isomorphic to the completion of LP(S, Σ, μ),
and thus to S. Leader's space VP(S, Σ, μ). See [3], which includes
equivalents of Theorems 2, 3, and 5.

The purpose of this paper is to prove rhe following.

THEOREM 1. Let (S, Σ, μ) be a positive triple. There is a posi-
tive measure space (S\ Σ', μf) and an order-preserving multiplication-
preserving isometric isomorphism i from TM{S,Σ,μ) onto TM(S\Σ\μ')
such that:
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(1) If fe TM(S,Σ, μ) is a characteristic function (simple func-
tion), then i(f) e TM(S', Σ', μ') is a characteristic function (simple
function).

(2) i takes LP(S, Σ, μ) onto LP(S', Σ', μ') preserving the Lp-norm,

1 ^ P < +°° .

(3) If feUS,Σ,μ), then \ f(s)μ(ds) = [ if(s)μ'(ds).

This leads us to the principle: Let P be any statement about
TM(S, Σ, μ) which can be formulated in terms of the following concepts:

(1) Multiplication, addition, scalar multiplication, order and length
in TM(S,Σ,μ).

(2) The notion feLp(S,Σ,μ), and the norm on Lp(S,Σ,μ),

1 ^ P < +°° .

(3) The function /-» ί f(s)μ(ds), defined on L^S, Σ, μ).

If P is true whenever (S, Σ, μ) is a positive measure space, then P is

true for any positive triple (S, Σ, μ). Consequences of this principle

are listed below.

THEOREM 2. Let (S, Σ, μ) be a positive triple. The dual of
LP(S, Σ, μ) is canonically isomorphic to Lq(S, Σ, μ) by the duality

</, 9> = \ (f-g)(s)μ(ds) (f eLp,ge Lq) ,

wherever 1 < p < + °°, 1/p -f- 1/q = 1.

COROLLARY 1. LP(S, Σ, μ) is reflexive, 1 < p < + oo.

COROLLARY 2. LP(S, Σf μ) is weakly complete, 1 < p < + oo.

COROLLARY 3. A bounded subset of LP(S, Σ, μ) is weakly se-
quentially compact.

THEOREM 3. L^S, Σ, μ) is weakly complete.

THEOREM 4. Let (S, Σ, μ) and (S'y Σ', μ') be positive triples, let
LQ be the space of all complex-valued μ-integrable simple functions
on S, and let T be a linear map from Lo to TM(Sf, Σ', μ').

If for a given pair (p, q), T has an extension to a bounded linear
mapping of Lp(S,Σ,μ) into Lq(S', Σf, μ'), let \ T\p>q denote the norm
of this extension; if no such extension exists, let | T\PyQ = + oo. Then
log I T|1/α,1/& is a convex function of (a, b) in the rectangle 0 < a, b ̂  1.

Theorem 4 generalizes the Riesz Convexity Theorem.

THEOREM 5. Assume that (S, Σ, μ) is a bounded triple. Let (fn)
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be a sequence in LP(S, Σ, μ) converging weakly to feLp(S, Σ, μ). Then
(fn) converges strongly to f if and only if (fn) converges to f in
TM(S, Σ, μ).

COROLLARY 1. Let (S, Σ, μ) be a bounded triple. If (fn) is a
sequence in LP(S, Σ, μ), converging wealy to fe LP(S, Σ, μ), then f is
the strong limit of (fn) if and only if (fn) converges in measure to f.

Theorems 2, 3, and 5 are obvious from the above principle. The
usual proof (see [2]) of the Riesz Convexity Theorem uses countable
additivity only through use of the result that Lq is dual to Lp. Since
we know Theorem 2, the proof of the Riesz Convexity Theorem may
be easily adapted to the finitely additive case.

So in order to establish Theorems 2 through 5, we need only prove
Theorem 1.

2* Proof of Theorem 1* Let Bo be the set of characteristic
functions of sets of Σ, and let B be the closure of Bo in TM(S, Σ, μ).
B is a closed subset of TM(S, Σ, μ) and so is a complete metric space.
The function \JQ: Bo x Bo--+B defined by \JQ(xE, xF) = xE[JFeB0^B is
easily seen to be uniformly continuous on Bo x Bo and therefore (Jo
extends to a uniformly continuous \J: B x B -+B. If F, GeB abbrevi-
ate \J(F,G) by F{JG. Similarly, the function NQ:B0-+B defined by
NQ(xE) — XS_E 6 J50 S JB is uniformly continuous on Bo and therefore NQ

extends to a uniformly continuous N:B-+B. If FeB, abbreviate
N(F) by ~F. Define Ff] G to be ~ ( ~ J F U ~G), F,Ge B. Observe
that Π B x B-+B is a composite of uniformly continuous functions and
so is uniformly continuous. Define a function μl9 on B as follows: For
FeB, there is a sequence {xEJEn e Σ, converging to F in TM(S, Σ, μ).
Let μ^F) = lim^*, μ(En). It is easily verified that μx is well-defined
and continuous, from B to the positive reals and + oo, the latter given
its usual topology.

LEMMA 1. (B, U> Π> ~) is a Boolean algebra, and μί is positive
and finitely additive on B. If FeB and μ^F) — 0, then F — 0 ,
the null element of the Boolean algebra.

Proof. The set

R^ {(F,G,H)eB x B x Bl((F U G) U H) = (FΌ(GΌH))}

is closed in B x B x B since \J is continuous. On the other hand,
it is clear from the definitions of Uo and U that Bo x Bo x B0QR.
Since Bo is dense inJ5, R = B x B x B and therefore F U (G U H) =
(F\JG)\JH when F,G, HeB. The other laws of Boolean algebra are
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verified similarly. The function

r(F, G) = [arctan μ,(F U G)] - [arctan (μ,(F - G) +

taking B x B to the reals is obviously continuous. Moreover, r(F, G) = 0
when F,Ge Bo. Since Bo is dense in J5, r is identically zero. So μ,
is finitely additive on B.

Finally, suppose that μ^F) = 0. This means that F is the limit
in TM(S, Σ, μ) of a sequence {xE.}, Et e J?, with l i m ^ //(i^) = 0. But
then {xE.} converges to zero in measure, i.e. in TM(S, Σ, μ). There-
fore, F = 0, which acts as 0 in (B, \J, f|, ~ ) .

To simplify notation, identify a set JB'G^' with its characteristic
function xEeBb.

LEMMA 2. Le£ Gi, G2, e B, and suppose that GiΓiG3 = 0 ,
i Φ j . Then there is a double sequence {E*}y E? e Σ, such that

(1) lim^oo E? = Gi in B, for each i.
(2) E? n E; = 0 (%Φ j).
(3) If m^n^ j, then μ^EfAEf) < ljn-2n where A denotes the

symmetric difference.

Proof. Since Gi e JB, we can find a sequence {A\}, A* eΣ, such
that l i m ^ A \ = Gi in B. Let R\ = A\ - \J5<iA). Obviously RtΠJB? = 0
(i ^ i ) . By continuity of — and \J,

\imRki - lim A? - U Mm A} = G, - U G> = ^ .

Pick a subsequence {JRH of jBf inductively, as follows: For each n
and j we can pick a ά% i so large that for k, k' ^ fcn/, μJJR)AR)') < 1/^ 2Λ

(this follows from Mm^^R) = Gj.) For fixed n, take fc% to be any
integer which is simultaneously greater than few-1, and greater than
knj,j ^ ^ .

For m^ n ^ j , km^ kn and j ^ n so that by definition of kn and
fe»i, μiiR^AR^) < l/n 2n. Therefore, letting E? = JBJ , we have verified
conclusion (3). Since limJfc_ββiϊ* = Gi9 conclusion (1) follows from the
fact that (E?) is a subsequence of (R\). Since Rk

{ Π JSJ = 0 (i ^ i)
holds for all k, it holds for k = kn. So £V* Π # * = 0 (i ^ i), verify-
ing conclusion (2).

LEMMA 3. Let Gly G2, e JB α^d suppose that Gi n Gy = 0 (i
Assume ΣT=i ftiiGi) < + °°. TfeβTt ί/ierβ is α GeB such that GiQG
and μλ(G) - ΣΓ=i j"i(<τί).

Proof. Pick a double sequence {E*} as in Lemma 2. Observe
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that by (1) and (3) of Lemma 2, μ^E JGj) ^ l/n 2* (j ^ n). Let
An = \JU EJ. By (2) of Lemma 2, An = Σ;=i %Ej. So

^ Σ \ I35̂ *4-1(3) - xEn(s) I μx(ds) + I a ^ n + j ί s ^

= Σ μί(EriΔEj) + μάE ϊl) ^ (±

Since the series Σ»=i (2/2" + j"i(Gn+1)) converges, {
measure. Let G = limM_«, Are, G&B. Now

jUi(G4 - G) = Mm μάE? - A*) = 0 ,

is Cauchy in

since EtSAn for w > i. So by Lemma 1, G — Gi — 0 , and therefore
GiξΞ=G. It remains to show that μ^G) = ΣΓ= 1 j"i(Gr<). By virtue of
<?< S G, we have Σ?=i i"^^) = ft(U?=i G<) ̂  ^i(G). Since n is arbitrary,
ΣΓ=i ^(Gi) ^ ^(G). On the other hand,

μγ{G) = lim A ( A ) = lim Σ μάE?)
j l

= lim
n-*oo

μί(G) + -±) = Σ
2 / i

By the Stone Representation Theorem, there is a set Sf and a field
Σ'o of subsets of S' such that Σr

Q is isomorphic as a Boolean algebra with
B. Let i : B~+Σ'o denote the isomorphism, j induces a positive finitely
additive set function μ[ on Σ'o defined in the obvious way using j and
μx. Lemmas 1 through 3 carry over from (B, μx) to (Sf, Σ'o, μ'o) by
virtue of the isomorphism. Σ'o need not be a sigma-field. However,

LEMMA 4. μ'o is countably additive on Σ'Q.

Proof. Let Au A2, e Σ'Q be pairwise disjoint, and let A = \JT=ίAit

AeΣ'o. We must show that μ'0(A) = ΣΓ=ii"ί(Ai).
From the fact that μ'o is posititive and finitely additive, we have

immediately that ΣΓ=i μί(Ai) ^ μΌ(A). In case ΣΓ=i^ό(^) = +oo, W e
are already finished. We may therefore suppose that ΣΓ=i μΌ{Ai) < + ^.
Since Lemma 3 carries over to (S',Σ',μ'o), there is a set A'eΣΌ such
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that AiQ A' and μ'0(A') = ΣΓ=i ΛίCA<). From A^A! we conclude that
Acz A', and therefore μ'Q(A) ̂  μ'Q(A') = ΣΓ

Since μ'o is countably additive on Σ'o, we can extend //J to a posi-
tive measure μf on 2", the sigma field generated by 2J.

We shall show that (S', 2", μ') is the measure space asserted to
exist in the statement of Theorem 1. Thus, for instance, LP(S, Σ, μ)
is isomorphic to LP(S'9 2', μ').

Since B^TM(S,Σ,μ) is total, we can extend j:B-+Σ'o to
i: TM(S, Σ, μ) --> TM(S', 2', //') by extending first to //-simple functions,
setting io(Σ?=i aiE.) = Σ?=i a&j(Ei), a n ( * then extending i0 from the
space of simple functions to TM(S1 2, μ) (in which the //-simple func-
tions are dense). One must, of course, show that i0 is well-defined,
but that is easy.

From the definition of i, it is immediate that i is an order preserv-
ing multiplication-preserving isometric isomorphism into, taking charac-
teristic functions (feB) to characteristic functions (# i ( / )).

For A e Σ'Qί χA = i{r\A)), so that χA e im i. Since {χA \ A e Σ'Q} is
total in TAf(S', 2', μ'), i is onto.

If GeB and ft(G) < +°o then GeLp(S,Σ,μ), and \G\ = ^(G)
where the norm is taken in Lp. Therefore, î r1 takes //J-integrable
simple functions to elements of LP(S, 2, μ) and preserves the L^-norm.
Therefore ΐ"1 takes ^ ( S ' , Σ'o, μ'o) into Lp(/S, 2, μ) preserving norms.
But Lp(S',Σ'o,μ'o) = Lp(S',Σ',μ'), so i~ι takes Lp(S',Σ',μ') isometrically
into LP(S, 2, μ).

If EeΣ and ^(ΐ/) < +oo, then μ[(j{E)) < + o o so that xj{E) e
LP(S', 2', μ'). Since χΛ = i~ι(Xj(E)), we have χΛ e im i~ι. On the other
hand, {χΔ\ μ(E) < +00} is total in Lp(S,Σ,μ). So i~ι is onto. This
verifies (2) in the statement of the theorem.

By what we have already shown,

K = {/G 4(S, 2, μ) I \af(8)μ(d8) -

is a closed subspace of A(S, 2, μ). But clearly, every //-simple func-
tion on S is in K. Therefore K = L^S, 2, μ). This verifies (3) in the
statement of the theorem.

Theorem 1 could also have been proved with the assumption that
μ is bounded, replacing the assumption that μ is positive. In order
to effect the change, we repeat the above proof, replacing μ by its
total variation u. //as well as u can obviously be extended from 2
to B. Minor changes then convert the proof for μ positive, to a proof
for μ bounded.
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