L_{p} SPACES OVER FINITELY ADDITIVE MEASURES

Charles Fefferman

For a space (S, Σ, μ), μ a positive finitely additive set function on a field Σ of subsets of the set $S, L_{p}(S, \Sigma, \mu)$ is usually not complete. However, if we consider the completion $\dot{L}_{p}(S, \Sigma, \mu)$ of L_{p}, we may ask which of the properties of L_{p} known for the countably additive case, are true in general.

In this paper it is shown that for every (S, Σ, μ) there is a (countably additive) measure space ($S^{\prime}, \Sigma^{\prime}, \mu^{\prime}$) and a natural injection j from S into S^{\prime} which induces isometric isomorphisms j_{*} from $L_{p}(S, \Sigma, \mu)$ onto $L_{p}\left(S^{\prime}, \Sigma^{\prime}, \mu^{\prime}\right)$. j_{*} also preserves order, and other structures on L_{p}.

This result shows, roughly, that any theorem valid for L_{p} over a measure space, applies also to L_{p} over a finitely additive measure. Thus L_{p} and L_{q} are dual ($1<p<+\infty, 1 / p+1 / q=1$), L_{1} is weakly complete, and so forth.

Let S be a set, Σ a field of subsets of S, and μ a finitely additive extended real-valued set function on Σ. We call (S, Σ, μ) a triple. If μ is positive or bounded, we call (S, Σ, μ) a positive or bounded triple, respectively.

Let f be a μ-simple function on S. We define the L_{p}-norm of f, as usual, to be $\left(\int_{S}|f(s)|^{p} v(\mu, d s)\right)^{1 / p}(1 \leqq p<+\infty)$; and we define the $T M$-length of f to be arctan $\inf _{\alpha>0}[\alpha+v(\mu,\{s \in S \| f(s) \mid \geqq \alpha\})]$.

Definition. Let (S, Σ, μ) be a triple. The space $\dot{T} M(S, \Sigma, \mu)$ is defined to be the completion of the space of μ-simple functions under the $T M$-metric. Define multiplication of elements of $\dot{T} M(S, \Sigma, \mu)$, and an order relation on $\dot{T} M(S, \Sigma, \mu)$ by using Cauchy sequences of simple functions in the obvious way.

Let $\dot{L}_{p}(S, \Sigma, \mu)$ be the set of limits in $\dot{T} M(S, \Sigma, \mu)$ sequences of μ-simple functions which are Cauchy in the L_{p}-norm. There is an obvious norm induced on $\dot{L}_{p}(S, \Sigma, \mu)$ by the μ-simple functions on S.
$\dot{L}_{p}(S, \Sigma, \mu)$ is canonically isomorphic to the completion of $L_{p}(S, \Sigma, \mu)$, and thus to S. Leader's space $V_{p}(S, \Sigma, \mu)$. See [3], which includes equivalents of Theorems 2,3 , and 5 .

The purpose of this paper is to prove rhe following.
Theorem 1. Let (S, Σ, μ) be a positive triple. There is a positive measure space ($S^{\prime}, \Sigma^{\prime}, \mu^{\prime}$) and an order-preserving multiplicationpreserving isometric isomorphism i from $\dot{T} M(S, \Sigma, \mu)$ onto $T M\left(S^{\prime}, \Sigma^{\prime}, \mu^{\prime}\right)$ such that:
(1) If $f \in \dot{T} M(S, \Sigma, \mu)$ is a characteristic function (simple function), then $i(f) \in T M\left(S^{\prime}, \Sigma^{\prime}, \mu^{\prime}\right)$ is a characteristic function (simple function).
(2) i takes $\dot{L}_{p}(S, \Sigma, \mu)$ onto $L_{p}\left(S^{\prime}, \Sigma^{\prime}, \mu^{\prime}\right)$ preserving the L_{p}-norm, $1 \leqq p<+\infty$.
(3) If $f \in \dot{L}_{1}(S, \Sigma, \mu)$, then $\int_{S} f(s) \mu(d s)=\int_{S} i f(s) \mu^{\prime}(d s)$.

This leads us to the principle: Let P be any statement about $\dot{T} M(S, \Sigma, \mu)$ which can be formulated in terms of the following concepts:
(1) Multiplication, addition, scalar multiplication, order and length in $T M(S, \Sigma, \mu)$.
(2) The notion $f \in \dot{L}_{p}(S, \Sigma, \mu)$, and the norm on $\dot{L}_{p}(S, \Sigma, \mu)$, $1 \leqq p<+\infty$.
(3) The function $f \rightarrow \int_{S} f(s) \mu(d s)$, defined on $\dot{L}_{1}(S, \Sigma, \mu)$.

If P is true whenever $(S, \Sigma, \mu$) is a positive measure space, then P is true for any positive triple (S, Σ, μ). Consequences of this principle are listed below.

Theorem 2. Let (S, Σ, μ) be a positive triple. The dual of $\dot{L}_{p}(S, \Sigma, \mu)$ is canonically isomorphic to $\dot{L}_{q}(S, \Sigma, \mu)$ by the duality

$$
\langle f, g\rangle=\int_{S}(f \cdot g)(s) \mu(d s)\left(f \in \dot{L}_{p}, g \in \dot{L}_{q}\right)
$$

wherever $1<p<+\infty, 1 / p+1 / q=1$.
Corollary 1. $\dot{L}_{p}(S, \Sigma, \mu)$ is reflexive, $1<p<+\infty$.
Corollary 2. $\dot{L}_{p}(S, \Sigma, \mu)$ is weakly complete, $1<p<+\infty$.
Corollary 3. A bounded subset of $\dot{L}_{p}(S, \Sigma, \mu)$ is weakly sequentially compact.

Theorem 3. $\dot{L}_{1}(S, \Sigma, \mu)$ is weakly complete.
Theorem 4. Let (S, Σ, μ) and ($\left.S^{\prime}, \Sigma^{\prime}, \mu^{\prime}\right)$ be positive triples, let L_{0} be the space of all complex-valued μ-integrable simple functions on S, and let T be a linear map from L_{0} to $\dot{T} M\left(S^{\prime}, \Sigma^{\prime}, \mu^{\prime}\right)$.

If for a given pair (p, q), T has an extension to a bounded linear mapping of $\dot{L}_{p}(S, \Sigma, \mu)$ into $\dot{L}_{q}\left(S^{\prime}, \Sigma^{\prime}, \mu^{\prime}\right)$, let $|T|_{p, q}$ denote the norm of this extension; if no such extension exists, let $|T|_{p, q}=+\infty$. Then $\log |T|_{1 / a, 1 / b}$ is a convex function of (a, b) in the rectangle $0<a, b \leqq 1$.

Theorem 4 generalizes the Riesz Convexity Theorem.
Theorem 5. Assume that (S, Σ, μ) is a bounded triple. Let $\left(f_{n}\right)$
be a sequence in $\dot{L}_{p}(S, \Sigma, \mu)$ converging weakly to $f \in \dot{L}_{p}(S, \Sigma, \mu)$. Then (f_{n}) converges strongly to f if and only if $\left(f_{n}\right)$ converges to f in $\dot{T} M(S, \Sigma, \mu)$.

Corollary 1. Let (S, Σ, μ) be a bounded triple. If $\left(f_{n}\right)$ is a sequence in $L_{p}(S, \Sigma, \mu)$, converging wealy to $f \in L_{p}(S, \Sigma, \mu)$, then f is the strong limit of $\left(f_{n}\right)$ if and only if $\left(f_{n}\right)$ converges in measure to f.

Theorems 2, 3, and 5 are obvious from the above principle. The usual proof (see [2]) of the Riesz Convexity Theorem uses countable additivity only through use of the result that L_{q} is dual to L_{p}. Since we know Theorem 2, the proof of the Riesz Convexity Theorem may be easily adapted to the finitely additive case.

So in order to establish Theorems 2 through 5, we need only prove Theorem 1.
2. Proof of Theorem 1. Let B_{0} be the set of characteristic functions of sets of Σ, and let B be the closure of B_{0} in $\dot{T} M(S, \Sigma, \mu)$. B is a closed subset of $\dot{T} M(S, \Sigma, \mu)$ and so is a complete metric space. The function $\bigcup_{0}: B_{0} \times B_{0} \rightarrow B$ defined by $\bigcup_{0}\left(x_{E}, x_{F}\right)=x_{E \cup F} \in B_{0} \subseteq B$ is easily seen to be uniformly continuous on $B_{0} \times B_{0}$ and therefore U_{0} extends to a uniformly continuous $\mathrm{U}: B \times B \rightarrow B$. If $F, G \in B$ abbreviate $\cup(F, G)$ by $F \cup G$. Similarly, the function N_{0} : $B_{0} \rightarrow B$ defined by $N_{0}\left(x_{E}\right)=x_{S-E} \in B_{0} \subseteq B$ is uniformly continuous on B_{0} and therefore N_{0} extends to a uniformly continuous $N: B \rightarrow B$. If $F \in B$, abbreviate $N(F)$ by $\sim F$. Define $F \cap G$ to be $\sim(\sim F \cup \sim G), F, G \in B$. Observe that $\cap: B \times B \rightarrow B$ is a composite of uniformly continuous functions and so is uniformly continuous. Define a function μ_{1}, on B as follows: For $F \in B$, there is a sequence $\left\{x_{E_{n}}\right\} E_{n} \in \Sigma$, converging to F in $\dot{T} M(S, \Sigma, \mu)$. Let $\mu_{1}(F)=\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)$. It is easily verified that μ_{1} is well-defined and continuous, from B to the positive reals and $+\infty$, the latter given its usual topology.

Lemma 1. (B, \cup, \cap, \sim) is a Boolean algebra, and μ_{1} is positive and finitely additive on B. If $F \in B$ and $\mu_{1}(F)=0$, then $F=\varnothing$, the null element of the Boolean algebra.

Proof. The set

$$
R=\{(F, G, H) \in B \times B \times B!((F \cup G) \cup H)=(F \cup(G \cup H))\}
$$

is closed in $B \times B \times B$ since U is continuous. On the other hand, it is clear from the definitions of U_{0} and U that $B_{0} \times B_{0} \times B_{0} \subseteq R$. Since B_{0} is dense in $B, R=B \times B \times B$ and therefore $F \cup(G \cup H)=$ $(F \cup G) \cup H$ when $F, G, H \in B$. The other laws of Boolean algebra are
verified similarly. The function

$$
r(F, G)=\left[\arctan \mu_{1}(F \cup G)\right]-\left[\arctan \left(\mu_{1}(F-G)+\mu_{1}(G)\right)\right]
$$

taking $B \times B$ to the reals is obviously continuous. Moreover, $r(F, G)=0$ when $F, G \in B_{0}$. Since B_{0} is dense in B, r is identically zero. So μ_{1} is finitely additive on B.

Finally, suppose that $\mu_{1}(F)=0$. This means that F is the limit in $\dot{T} M(S, \Sigma, \mu)$ of a sequence $\left\{x_{E_{i}}\right\}, E_{i} \in \Sigma$, with $\lim _{i \rightarrow \infty} \mu\left(E_{i}\right)=0$. But then $\left\{x_{E_{i}}\right\}$ converges to zero in measure, i.e. in $\dot{T} M(S, \Sigma, \mu)$. Therefore, $F=0$, which acts as \varnothing in (B, \cup, \cap, \sim).

To simplify notation, identify a set $E \in \Sigma$ with its characteristic function $x_{E} \in B_{l}$.

Lemma 2. Let $G_{1}, G_{2}, \cdots \in B$, and suppose that $G_{i} \cap G_{j}=\varnothing$, $i \neq j$. Then there is a double sequence $\left\{E_{i}^{n}\right\}, E_{i}^{n} \in \Sigma$, such that
(1) $\lim _{n \rightarrow \infty} E_{i}^{n}=G_{i}$ in B, for each i.
(2) $E_{i}^{n} \cap E_{j}^{n}=\varnothing(i \neq j)$.
(3) If $m \geqq n \geqq j$, then $\mu_{1}\left(E_{j}^{n} \Delta E_{j}^{m}\right)<1 / n \cdot 2^{n}$ where Δ denotes the symmetric difference.

Proof. Since $G_{i} \in B$, we can find a sequence $\left\{A_{i}^{k}\right\}, A_{i}^{k} \in \Sigma$, such that $\lim _{k \rightarrow \infty} A_{i}^{k}=G_{i}$ in B. Let $R_{i}^{k}=A_{i}^{k}-\bigcup_{j<i} A_{j}^{k}$. Obviously $R_{i}^{k} \cap R_{j}^{k}=\varnothing$ $(i \neq j)$. By continuity of - and \cup,

$$
\lim _{k \rightarrow \infty} R_{i}^{k}=\lim _{k \rightarrow \infty} A_{i}^{k}-\bigcup_{j<i} \lim _{k \rightarrow \infty} A_{j}^{k}=G_{i}-\bigcup_{j<i} G_{j}=G_{i}
$$

Pick a subsequence $\left\{R_{i}^{k}\right\}$ of R_{i}^{k} inductively, as follows: For each n and j we can pick a $k_{n j}$ so large that for $k, k^{\prime} \geqq k_{n j}, \mu_{1}\left(R_{j}^{k} \Delta R_{j}^{k^{\prime}}\right)<1 / n \cdot 2^{n}$ (this follows from $\lim _{k \rightarrow \infty} R_{j}^{k}=G_{j}$.) For fixed n, take k_{n} to be any integer which is simultaneously greater than k_{n-1}, and greater than $k_{n j}, j \leqq n$.

For $m \geqq n \geqq j, k_{m} \geqq k_{n}$ and $j \leqq n$ so that by definition of k_{n} and $k_{n j}, \mu_{1}\left(R_{j}^{k_{n}} \Delta R_{j}^{k_{m}}\right)<1 / n \cdot 2^{n}$. Therefore, letting $E_{i}^{n}=R_{i}^{k_{n}}$, we have verified conclusion (3). Since $\lim _{k \rightarrow \infty} R_{i}^{k}=G_{i}$, conclusion (1) follows from the fact that $\left(E_{i}^{n}\right)$ is a subsequence of $\left(R_{i}^{k}\right)$. Since $R_{i}^{k} \cap R_{j}^{k}=\varnothing(i \neq j)$ holds for all k, it holds for $k=k_{n}$. So $E_{i}^{n} \cap E_{j}^{n}=\varnothing(i \neq j)$, verifying conclusion (2).

Lemma 3. Let $G_{1}, G_{2}, \cdots \in B$ and suppose that $G_{i} \cap G_{j}=\varnothing(i \neq j)$. Assume $\sum_{i=1}^{\infty} \mu_{1}\left(G_{i}\right)<+\infty$. Then there is a $G \in B$ such that $G_{i} \subseteq G$ and $\mu_{1}(G)=\sum_{i=1}^{\infty} \mu_{1}\left(G_{i}\right)$.

Proof. Pick a double sequence $\left\{E_{i}^{n}\right\}$ as in Lemma 2. Observe
that by (1) and (3) of Lemma 2, $\mu_{1}\left(E_{j}^{n} \Delta G_{j}\right) \leqq 1 / n \cdot 2^{n}(j \leqq n)$. Let $A^{n}=\bigcup_{j=1}^{n} E_{j}^{n} . \quad$ By (2) of Lemma 2, $A^{n}=\sum_{j=1}^{n} x_{E_{j}} . \quad$ So

$$
\begin{aligned}
\mu_{1}\left(A^{n+1} \Delta A^{n}\right)= & \int_{S}\left|\left(\sum_{j=1}^{n+1} x_{E_{j}^{n+1}}(s)\right)-\left(\sum_{j=1}^{n} x_{E_{j}^{n}}(s)\right)\right| \mu_{1}(d s) \\
\leqq & \sum_{j=1}^{n} \int_{S}\left|x_{E_{j}^{n+1}}(s)-x_{E_{j}^{n}}(s)\right| \mu_{1}(d s)+\int_{S} x_{E_{n+1}^{n+1}}(s) \mu_{1}(d s) \\
= & \sum_{j=1}^{n} \mu_{1}\left(E_{j}^{n+1} \Delta E_{j}^{n}\right)+\mu_{1}\left(E_{n+1}^{n+1}\right) \leqq\left(\sum_{j=1}^{n} \frac{1}{n \cdot 2^{n}}\right)+\mu_{1}\left(E_{n+1}^{n+1}\right) \\
\leqq & \sum_{j=1}^{n} \frac{1}{n \cdot 2^{n}}+\mu_{1}\left(G_{n+1}\right)+\frac{1}{(n+1) \cdot 2^{(n+1)}}<\frac{2}{2^{n}} \\
& +\mu_{1}\left(G_{n+1}\right) .
\end{aligned}
$$

Since the series $\sum_{n=1}^{\infty}\left(2 / 2^{n}+\mu_{1}\left(G_{n+1}\right)\right)$ converges, $\left\{A^{n}\right\}$ is Cauchy in measure. Let $G=\lim _{n \rightarrow \infty} A^{n}, G \in B$. Now

$$
\mu_{1}\left(G_{i}-G\right)=\lim _{n \rightarrow \infty} \mu_{1}\left(E_{i}^{n}-A^{n}\right)=0
$$

since $E_{i}^{n} \subseteq A^{n}$ for $n>i$. So by Lemma $1, G-G_{i}=\varnothing$, and therefore $G_{i} \subseteq G$. It remains to show that $\mu_{1}(G)=\sum_{i=1}^{\infty} \mu_{1}\left(G_{i}\right)$. By virtue of $G_{i} \subseteq G$, we have $\sum_{i=1}^{n} \mu_{1}\left(G_{i}\right)=\mu_{1}\left(\bigcup_{i=1}^{n} G_{i}\right) \leqq \mu_{1}(G)$. Since n is arbitrary, $\sum_{i=1}^{\infty} \mu_{1}\left(G_{i}\right) \leqq \mu_{1}(G)$. On the other hand,

$$
\begin{aligned}
\mu_{1}(G)=\lim _{n \rightarrow \infty} \mu_{1}\left(A^{n}\right) & =\lim _{n \rightarrow \infty} \sum_{j=1}^{n} \mu_{1}\left(E_{j}^{n}\right) \\
& \leqq \lim _{n \rightarrow \infty}\left(\sum_{j=1}^{n}\left(\mu_{1}\left(G_{j}\right)+\frac{1}{n \cdot 2^{n}}\right)\right) \\
& =\lim _{n \rightarrow \infty}\left(\sum_{i=1}^{n} \mu_{1}(G)+\frac{1}{2^{n}}\right)=\sum_{i=1}^{\infty} \mu_{1}\left(G_{j}\right) .
\end{aligned}
$$

By the Stone Representation Theorem, there is a set S^{\prime} and a field Σ_{0}^{\prime} of subsets of S^{\prime} such that Σ_{0}^{\prime} is isomorphic as a Boolean algebra with B. Let $j: B \rightarrow \Sigma_{0}^{\prime}$ denote the isomorphism. j induces a positive finitely additive set function μ_{0}^{\prime} on Σ_{0}^{\prime} defined in the obvious way using j and μ_{1}. Lemmas 1 through 3 carry over from $\left(B, \mu_{1}\right)$ to ($S^{\prime}, \Sigma_{0}^{\prime}, \mu_{0}^{\prime}$) by virtue of the isomorphism. Σ_{0}^{\prime} need not be a sigma-field. However,

Lemma 4. μ_{0}^{\prime} is countably additive on Σ_{0}^{\prime}.
Proof. Let $A_{1}, A_{2}, \cdots \in \Sigma_{0}^{\prime}$ be pairwise disjoint, and let $A=\bigcup_{i=1}^{\infty} A_{i}$, $A \in \Sigma_{0}^{\prime}$. We must show that $\mu_{0}^{\prime}(A)=\sum_{i=1}^{\infty} \mu_{0}^{\prime}\left(A_{i}\right)$.

From the fact that μ_{0}^{\prime} is posititive and finitely additive, we have immediately that $\sum_{i=1}^{\infty} \mu_{0}^{\prime}\left(A_{i}\right) \leqq \mu_{0}^{\prime}(A)$. In case $\sum_{i=1}^{\infty} \mu_{0}^{\prime}\left(A_{i}\right)=+\infty$, we are already finished. We may therefore suppose that $\sum_{i=1}^{\infty} \mu_{0}^{\prime}\left(A_{i}\right)<+\infty$. Since Lemma 3 carries over to ($S^{\prime}, \Sigma^{\prime}, \mu_{0}^{\prime}$), there is a set $A^{\prime} \in \Sigma_{0}^{\prime}$ such
that $A_{i} \subseteq A^{\prime}$ and $\mu_{0}^{\prime}\left(A^{\prime}\right)=\sum_{i=1}^{\infty} \mu_{0}^{\prime}\left(A_{i}\right)$. From $A_{i} \subseteq A^{\prime}$ we conclude that $A \subset A^{\prime}$, and therefore $\mu_{0}^{\prime}(A) \leqq \mu_{0}^{\prime}\left(A^{\prime}\right)=\sum_{i=1}^{\infty} \mu_{0}^{\prime}\left(A_{i}\right)$.

Since μ_{0}^{\prime} is countably additive on Σ_{0}^{\prime}, we can extend μ_{0}^{\prime} to a positive measure μ^{\prime} on Σ^{\prime}, the sigma field generated by Σ_{0}^{\prime}.

We shall show that ($S^{\prime}, \Sigma^{\prime}, \mu^{\prime}$) is the measure space asserted to exist in the statement of Theorem 1. Thus, for instance, $\dot{L}_{p}(S, \Sigma, \mu)$ is isomorphic to $L_{p}\left(S^{\prime}, \Sigma^{\prime}, \mu^{\prime}\right)$.

Since $B \subseteq \dot{T} M(S, \Sigma, \mu)$ is total, we can extend $j: B \rightarrow \Sigma_{0}^{\prime}$ to $i: \dot{T} M(S, \Sigma, \mu) \rightarrow T M\left(S^{\prime}, \Sigma^{\prime}, \mu^{\prime}\right)$ by extending first to μ-simple functions, setting $i_{0}\left(\sum_{i=1}^{n} \alpha_{i E_{i}}\right)=\sum_{i=1}^{n} \alpha_{i} x_{j}\left(E_{i}\right)$, and then extending i_{0} from the space of simple functions to $\dot{T} M(S, \Sigma, \mu$) (in which the μ-simple functions are dense). One must, of course, show that i_{0} is well-defined, but that is easy.

From the definition of i, it is immediate that i is an order preserving multiplication-preserving isometric isomorphism into, taking characteristic functions $(f \in B)$ to characteristic functions $\left(x_{j(f)}\right)$.

For $A \in \Sigma_{0}^{\prime}, \chi_{A}=i\left(j^{-1}(A)\right)$, so that $\chi_{A} \in \operatorname{im} i$. Since $\left\{\chi_{A} \mid A \in \Sigma_{0}^{\prime}\right\}$ is total in $T M\left(S^{\prime}, \Sigma^{\prime}, \mu^{\prime}\right), i$ is onto.

If $G \in B$ and $\mu_{1}(G)<+\infty$ then $G \in \dot{L}_{p}(S, \Sigma, \mu)$, and $|G|=\mu_{1}(G)$ where the norm is taken in \dot{L}_{p}. Therefore, i_{0}^{-1} takes μ_{0}^{\prime}-integrable simple functions to elements of $\dot{L}_{p}(S, \Sigma, \mu)$ and preserves the L_{p}-norm. Therefore i^{-1} takes $L_{p}\left(S^{\prime}, \Sigma_{0}^{\prime}, \mu_{0}^{\prime}\right)$ into $\dot{L}_{p}(S, \Sigma, \mu)$ preserving norms. But $L_{p}\left(S^{\prime}, \Sigma_{0}^{\prime}, \mu_{0}^{\prime}\right)=L_{p}\left(S^{\prime}, \Sigma^{\prime}, \mu^{\prime}\right)$, so i^{-1} takes $L_{p}\left(S^{\prime}, \Sigma^{\prime}, \mu^{\prime}\right)$ isometrically into $\dot{L}_{p}(S, \Sigma, \mu)$.

If $E \in \Sigma$ and $\mu(E)<+\infty$, then $\mu_{0}^{\prime}(j(E))<+\infty$ so that $x_{j(E)} \in$ $L_{p}\left(S^{\prime}, \Sigma^{\prime}, \mu^{\prime}\right)$. Since $\chi_{A}=i^{-1}\left(x_{j(E)}\right)$, we have $\chi_{A} \in \operatorname{im} i^{-1}$. On the other hand, $\left\{\chi_{A} \mid \mu(E)<+\infty\right\}$ is total in $\dot{L}_{p}(S, \Sigma, \mu)$. So i^{-1} is onto. This verifies (2) in the statement of the theorem.

By what we have already shown,

$$
K=\left\{f \in \dot{L}_{1}(S, \Sigma, \mu) \mid \int_{S} f(s) \mu(d s)=\int_{S^{\prime}}(i f)\left(s^{\prime}\right) \mu^{\prime}\left(d s^{\prime}\right)\right\}
$$

is a closed subspace of $\dot{L}_{1}(S, \Sigma, \mu)$. But clearly, every μ-simple function on S is in K. Therefore $K=\dot{L}_{1}(S, \Sigma, \mu)$. This verifies (3) in the statement of the theorem.

Theorem 1 could also have been proved with the assumption that μ is bounded, replacing the assumption that μ is positive. In order to effect the change, we repeat the above proof, replacing μ by its total variation u. μ as well as u can obviously be extended from Σ to B. Minor changes then convert the proof for μ positive, to a proof for μ bounded.

References

1. S. Bochner, and R. S. Phillips, Additive set functions and vector lattices, Ann. of Math. 42 (1941), 316-324.
2. Dunford and Schwartz, Linear Operators, Part I, Interscience, 1958.
3. S. Leader, The theory of L^{p} spaces over finitely additive set functions, Ann. of Math 58 (1953), 528-543.

Received September 16, 1966.

