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GENERALIZED CONVEXITY CONES AND
THEIR DUALS

DAN AMIR AND ZVI ZIEGLER

The structure of the intersections and unions of generalized
convexity cones is analysed. The main results involve on the
one hand denseness properties of sums of two distinct gener-
alized convexity cones and on the other hand the availability
of a decomposition for measures of the cones dual to intersec-
tions of generalized convexity cones. As an application an
integration scheme which converges for all convex functions
is found.

The generalized convexity cones, which were introduced by Karlin
and Novikoff, find many applications in the systematic study of
inequalities, in the theory of approximation and interpolation and in
various branches of probability theory.

It is shown in § 1 that the sums and differences of two generalized
convexity cones are dense subsets of the Frechet space of continuous
functions on the open interval (α, b).

Passing to the dual cones in § 2, we show that any measure
belonging to the dual of the intersection of two (or, respectively,
three) consecutive generalized convexity cones can be decomposed into
the sum of two (respectively, three) measures belonging to the cor-
responding dual cones. For example, any measure belonging to the
dual cone of the cone of convex and monotone functions can be de-
composed into the sum of a measure belonging to the dual cone of
the cone of convex functions and a measure belonging to the dual
cone of the cone of monotone functions. It is also shown in this
section that a decomposition of this type is not generally available
for measures of the cone dual to the intersection of 4 consecutive
generalized convexity cones.

In § 3 we demonstrate the availability of a decomposition of a
particularly simple type for measures of compact support on (α, b)
belonging to the cone dual to the intersection of two consecutive
generalized convexity cones.

An application of the foregoing analysis, involving convergence
properties of integration schemes, is given in § 4.

Preliminaries* Let {̂ (£)}ί=o be an Extended Complete Tchebycheff
(ECT) system on the interval [α, b] (for definitions of the pertinent
concepts and for proofs of most of the statements in this section,
the reader is referred to [3]).
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For 0 ^ n ^ N, we denote by C(u0, , un) the convex cone of
functions defined on (α, b) which are convex with respect to {Ui}£
The notation C(u0, , u^) is used to denote the convex cone C+ of
nonnegative functions on (α, b).

It is shown in [3, pp. 378-379] that in studying generalized con-
vexity cones one may assume, with no loss of generality, that {Ui(t)}f=0

are of the form:

uo(t) = wQ(t)

UL(t) = WQ(t) \ '
(0.1) J J α

uN(t) = wo(t) I w^xd \ l w2(x2) . . I %~λ wn(xn)dxn dxι
\ Ja Ja Ja

where the functions Wi(t), i — 0,1, , N, are strictly positive on [α, b]
and wi(t)eCN"i [α, 6], i = 0,1, , N. The first order differential
operators

(0.2) DJ{t) - | - - ^ — /(ί) , i - 0,1, , N
at Wi(t)

are closely related to the cones; in fact, if a function f(t) is n + 1
times differentiate, then it belongs to C(u0, , un) if, and only if
A Λ - i DJ{t) ^ 0, a<t<b.

The cone C(u0, •••,%»), 0 ^ n ^ N, taken modulo the linear space
spanned by u0, •• ,u Λ , is spanned by a one—parameter family of ex-
treme rays. These are represented by the functions φn(t; x), a^x^b,
where φn(t; x) is identically 0 for a ^ t < x and has the form

i=o

(see [5], p. 566). The conjugate function φn(t; x) is defined as

for a < t < x

and 0 for x ^ t ^ b. By using the integral representation of φn(t) x)
(see [3], p. 387) and applying to it the operator Dn_J)n^ Do, it
can easily be verified that ( — l)nφn(t; x)eC(u0, •• ,wn_1).

Let M denote the space of Radon measures on [α, 6], i.e., the dual
space of the Banach space C[α, b] of continuous functions on [α, b]
with the sup norm. For a set K of functions defined on (α, 6),
let iΓ* = {μ : μeM, μ{f) ^0v feK} (μ(f) = oo is permitted). Z"*
is clearly a convex cone, called the dual cone of K. We shall denote
[C(u0, •••,%„)]* by C*(^o, « , ^ J . The study of the extreme rays of
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convexity cones and of their intersections leads to the following
characterization of dual cones ([5], p. 572):

Necessary and sufficient conditions for μ to belong to

( — 1 ^ m ^ n ^ N) are:

\ mdμ — 0 , ^ = 0, , m ,
Ja

(0.3) \ Uidμ ^ 0 , i = m + 1, ',n j

w(ί; x)dμ(t) ^ 0 , α ^ a; ^ 6 .
b

\ Ja

Another useful characterization can be obtained along the lines
described in ([2] and [6]). Define, for a measure μeM, the functions

(0.4)
(P*μ)(t) =

(P3μ)(t) - \ wj(x)Pj_1μ(x)dx , j = 1, 2, . . . , N .

We then have:
Necessary and sufficient conditions for μ to belong to

Γ n

nn

are:

(0.5) ^ 0 , j = m + 1, , n ,

w /φ) ^ 0 , α ^ a? ̂  6 .

We shall avail ourselves also of the differential operators Df,
i = 0,1, , N defined by

Z)*/(ί) =

Dΐf(t) =

wo(t) dt
1 df(t)

Wi(t) dt

(right hand derivative)

(0.6)

Note that if /(&) = /'(&)=... =/^(6) = 0, then ( - l ^ + ^ A * Dff = f.
We finally recall that a simple example of an ECT-system is

furnished by the system 1, t, t2, ••• on [0, 1]. This corresponds to



428 DAN AMIR AND ZVI ZIEGLER

{wQ Ξ= 1, w{ = i, i = 1, 2, •}. Convexity with respect to (1, ί, t2, , ίn)
is ordinary w + 1-st order convexity. The extreme rays in this case
are given by:

ί 0 , 0 ^ t < x
φJt: x) = i
Ψ ' \(t - x)n , x ^ t ^ l .

1* Sums of generalized convexity cones* Let C — C[a, b] denote
the Banach space of real-valued continuous functions on the closed
interval [α, 6], with the norm | | / | | = max{|/(ίc)|; a ^ x ^ b}. Let
further Co = C(a, b) denote the Frechet space of continuous functions
on the open interval (a, b) with the topology of uniform convergence
on compact subsets of (α, b). The corresponding dual spaces are,
respectively, the space M of Radon measures μ defined on [α, b] (these
are representable as functions of bounded variation on [a, b]) and its
subspace Mo of Radon measures on (a, b) with compact support—the

duality being μ(f) - ί fdμ (cf. [1]).

THEOREM 1. The sums C(u0, •••,%„) + C(u0, , um), for m>n^l,

and the differences C{u0, , un) — C(uQ, , um), for m, n ^ 1, are

dense {proper) subsets of Co.

Proof. W e r e c a l l first t h a t , f o r n ^ l , e v e r y f u n c t i o n of

C(u0, -—>un) i s c o n t i n u o u s i n (α, b) (cf. [ 3 ] ) . L e t C°(u0, •• , / ^ J

d e n o t e t h e p o l a r s e t of C(u0, •••,%„) i n Mo i . e . ,

C°(uQi , O - {μ : μ(f) ^ - 1 for all / e C(uQ, , un)} .

Since C(uo, ,un) is a cone, this set coincides with the set

{μ : μ(f) >̂ 0 for all fe C(u0, , un)}. Thus, we have

C°(uΰf , un) - Mo n C*(u0, . . , tt.) .

Furthermore, since C(u0, ---,un) and C(u0, -- ,um) are convex cones,

their sum is the convex hull of their union, so t h a t

[C(uQi • • . , < ) + C(uQy -. , 2 θ ] °

- [C(w0, , un) U C(^o, , um)]°

= c°(u0, . . . , π j n c ° ( ^ 0 , •• ,wm)
- Mo n c*(^ 0 , , un) n c * ( ^ 0 , . . . , uj .

In [6], Theorem 3, it was proved that, for m Φ n,

c*(u0,..., o n c*κ, .., u j = {0}.

Thus, (1.1) implies that [C(u0, , un) + C(u0, , um)]° = {0} and
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[C(u0, , un) + C(u0, , CJ]° ° = Co. As C(u0, •••,<> + C(u0, . . , um)
is convex, the left hand side of this last equation is the weak-closure
of C(uQ, , un) + C(uQ, , um), which is also the strong closure
by the Hahn-Banach theorem (cf. [l], 2.2.7). This proves that
C(uO1 * ,un) + C(u0, , um) is a dense subset of Co. It is a proper
subset; moreover, its complement is dense as well. This observation
follows from the fact that the functions of the convexity cones have
one sided limits (possibly oo) at 6, while the functions which do not
enjoy this property are obviously dense in Co.

The proof of Theorem 3 in [6] shows also that, for every m and
n, C*(u0, , un) Π [ —C*(u0, , um)] = {0}, so that the corresponding
result for C(u0, , un) — C(uOf , um) follows in an exactly ana-
logous way.

REMARKS, (a) As Co is metrizable, Theorem 1 implies that, for
every f eC0 and m > n ^ 1, there exist two sequences (gk) c C(u0 , un)
and (hk) c C(u0, , um), such that (gk + hk) converges to the given /
uniformly on each compact subset of (α, b).

(b) Similar results hold when m or n < 1.

(c) Analogous results hold when Co is replaced by C and C(u0, , un)

by CΠ C(u0, •• ,wn).

2* Sums of dual cones in M. We know that each dual cone
C*(u0, , un) is closed in the weak σ(M, C)—topology of M. In this
section we show that the sums of 2 or 3 consecutive dual cones are
σ(M, C)—closed, while the sum of 4 consecutive dual cones need not
be σ(M, C)—closed.

THEOREM 2. For each n, 0 <S n ^ N, we have

c*(^0, , V i ) + c*(^0, ••-,%„) = LC(^0, , un^) n C(w0, , wΛ)]*.

Proof. Since the inclusion relation

C*(tt0, , ̂ n-i) + C*(u0, , un) c [C(u0, . . . , un_,) n C(u0, . . . , wΛ)]*

is obviously true, we need prove only the converse inclusion.
We start by analyzing the case n = 0. Let a measure μ,

μ e [C+ n C(u0)]* be given. By (0.3) it satisfies

\b uo(t)dμ(t) ^ 0 Γ φo(t; x)dμ{t) ^ 0 , a < x < b .
J a j a

Define now the measure μ1 by
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where δa is the Dirac measure with unit mass at a. Then clearly
^ i ^ O , i.e., μi€(C+)*. Define now μi = μ — μί. Then we clearly
have

[ uo(t)dμ2(t) - \b uQ(t)dμ(t) - Γ u^dμ^t) = 0
Ja Ja Ja

and

φQ(t; x)dμ2(t) = I 0O(*; ®)<2ju(ί) ^ 0 , a <x <b .

a Ja

Hence, μ2eC*(u0), and the decomposition has been accomplished.
Assume now that n ^ 1. Let a measure μ,

μ e [C(u0, , un_λ) n C(^o, , % n )]*

be given. By (0.5) it satisfies

(2.1) Ptf(a) = 0, i - 0,1, , n - 1 ,

and

(2.2) Pnμ(%) ^ 0 , α ^ x ^ 6 .

If Pnμ(a) = 0, then we already have μeC*(u0, •••,%»); thus we
may assume that Pnμ(a) = A > 0. Define the function JP(£) by

F(t) - A - v(t)

where

= \ wn(a?n) I w lί J a J I 2 w^.2 \ P.μix,) \ dx, dxn .
Ja Ja Ja

Let s = inf {support μ}; then ^(£) = 0 for a ^ t ^ s, and v(ί) is strictly
increasing for s ^ t ^ b. Thus, i^(ί) = A for a ^ t ^ s, and i^(ί) is
a strictly decreasing function for s ^ t ^ δ. Making use of conditions
(2.1), we find

Pjμ(t) = - Γ wi(x)Pi^1μ(x)dx , i = 0,1, , n - 1
Jα

where P ^ ^ = μ. This relation implies that

Pnμ(t) - P ^ ( α )

= ( - l ) M ww(αw) I ^ ww-_1(a?n_1) I 2 wι(:c1)PQμ(xί)dxι - - - dxn
J a Jα J a

so that
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Pnμ(t) - F(t)

= Γ «>.(»„) Γ 2 w.ix^lPoμixd I + (-l)'Ptμ(xd]dXi '- dxn
J

is a nondecreasing nonnegative function, which is strictly positive and
strictly increasing for t > s. Since Pnμ(b) = 0, it follows that
JP(6) < 0. Since F(t) is a strictly decreasing function for s ^ £ ̂  6, we
may consider the inverse function F~\t) on [s, 6]. Let c, s < c < b be
defined by c = i ^ O ) , and introduce the function F+ίί) = max{F(ί), 0}.
This function coincides with F(t) on [<z, c] and is identically zero on
[c, 6]. Thus, we have

P./i(ί) ^ ^ ( ί )

with strict inequality holding for a neighbourhood of c. Thus, there
exist an r, c — s > r > 0, and an 17 > 0 such that

(2.3) P n μ ( t ) - F+(t) ^ η > 0 f o r c - r ^ t ^ c + r .

We introduce the smoothing kernels pε(t) defined by

(2.4) p.(t) =

0

where at is a normalizing factor, chosen so that

Γ p.(t)dt = 1 .
J-oo

Define now the function

f A — v , —oo < v ^ A

\ 0 A rg v < oo

and set

M - Γ /(ί)Λ(v - t)dt
j-00

where ε is chosen so small that 0 < ε < η, F(c + r) < — ε and
F(c - r) > ε.

It is easily seen that fλ{v) is a monotone decreasing function
since f(v) is such. Furthermore, since f(v) is piecewise linear, we
have

fλ(v) = A — v for v ^ A — ε f^v) = 0 for v ^ A + ε .

By the choice of ε and the fact that the application of pε(t) amounts
to an averaging operation, we find that
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Setting F&

(2.5)

f(υ)

0 = /iW()),

\F+(t) -

- f
we obtain

t) ύV for

for

all

all

a

v .

^ t ^

Furthermore, Fλ(t) ~ F(t) for [α, F^ε)], and 2^ Ξ 0 for [F~\-e)y b].
By virtue of the choice of e, and the fact that F(t) is monotone
decreasing, we have

(2.6) Ftf) = F+(ί) , for ί e [α, c - r] U [c + r, b] .

Note further that F^t) is monotone decreasing. Since fλ(v) is in-
finitely differentiate as a function of v, we deduce that Fx(t) has
continuous derivatives up to the w-th order, and an n + 1-st right
derivative (measure).

Construct the measure μι by

Using (0.7), we have

where for j = n the right hand side is understood as F19 These
relations in turn imply that

(2.7) P^Aa) = (~l)n-jD*+1 DlF(a) = 0 , j = 0, 1, n - 1

and that

(2.8) Pn-iμAx) --
wn{x) dx

which is nonnegative for a <̂  x S 6, by virtue of the monotonicity of
F,(x). Relations (2.7) and (2.8) imply, by (0.5), that μ1 e C*(u0, , un^).

Consider now the measure μ2 — μ — μγ. By virtue of (2.7) we
obtain, using the fact that Pnμγ(ά) — F^a) = A, that

(2.9) Pjμ2(a) = 0, j = 0,1, . . . ,w.

Furthermore, by using (2.3), (2.5) and (2.6), we deduce the nonnega-
tivity, for all a ^ x ^ 6, of

This, taken together with (2.9) and (0.5), shows that μ2 e C*(u0, •••,%„)
and the decomposition has been accomplished.

THEOREM 3. For every n, 0 ^ n ^ N — 1, we
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1 Γ 1 " I *

Σ C*(u0, , un+k) = Π C(u0, , un+k) .
A=~I L*=-i J

Proof. As in the proof of Theorem 2, we need prove only that

Σ c*(^o, , M Λ + Λ ) => Γ n C(u0, , wΛ+fc)
fc=-i LJfc=-i

since the other inclusion is obvious. Furthermore, using Theorem 2
we deduce that it suffices to prove that

(2.10)
c C*(u0, . . . , un^) + [C(uQ, , un) Π C(u0, . . . , un+1)]* .

We start with the case n = 0. Let a measure

be given. By (0.3), μ satisfies the conditions

Ui(t)dμ(t) ^ 0 , ί = 0, 1 ,

and

I φ^t; x)dμ(t) ^ 0 a < x < b .
J α

Define the measure μ1 by

where δα is the Dirac measure with unit mass at α. Then we clearly
see that μλe (C+)* while v = μ — μι satisfies

uQ(t)dv(t) = 0 ,
J α

and

S b Cb

φ^t; x)dv(t) — \ φλ(t; x)dμ(t) ^ 0 , a < x < δ
α Jα

so that, by (0.3), v e [C(uQ) Π C(u0, u j ]* and the decomposition has been
accomplished for this case.

[ 1 " I *

Π C(uQ, , un+k) be given.
k=-i J

By (0.3), it satisfies
fPdμ(a) = 0 i - 0 , 1 , . . . , ^ - 1

(2.ii) \Pnμ(o) ^ o ,
[Pn+1μ(x) ^ 0 , α ̂  x ^ 6 .
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If Pnμ(a) = 0, then the conditions (2.11) imply, by (0.3) that we
already have μ e [C(uQ, , un) Γ) C(u0, , un+ι)]*. Thus, we may as-
sume that Pnμ(a) — A > 0. Furthermore, since Pn+1μ{x) ^ 0 and

A-Pn+1μ(a) = ~
dx

0 ,

we deduce that Pn+1μ(a) — B > 0.
Since Pn+ίμ(x) and wn+1(t) are continuous, there exist a e and an

77 > 0 such that a < c — η < c + η <b and

(2.12)

Set

^—B for α ^ x ^

Ja

φ) = \ wn+1(t)dt, _
£ \X) —

IA(C - v(x))

I 0
Then F(x) has the following properties:

(2.13) P +i/Φ) ̂  ^ ( ^ , α

B(2.14)
n+iμ(x) - F(x) ^

c ^ x ^ b

(2.15) Dt " D*+ιF(a) = 0 , i = 0,1, , n ,

(2.16) -D*+1F(a) = A .

Define the function f(v) by

_ \A(C -v) - oo <v^C

( 0 C ^ v < oo

and let

f(v) = f(t)pε(v -

where pε(t) is the function defined in (2.4) and ε is chosen so that it
satisfies

(2.17) ε ^ wn+1(t)dt , ε ^ Γ wn+1(t)dt ,
J

< i- B .
4

The function f^v) is an infinitely differentiate, monotone non-
increasing and convex function of v. Moreover, we clearly have:
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(2.18)

f^v) = A(C — v) , v ^ C — ε ,

fi(v) = 0 , v^C + ε ,

I / , - f\£— B , C - ε ^ v ^ C + ε.

Construct now the function F^x) — fι(v(x)). Then, by using

(2.17) and (2.18), we find

(2.19)

,{x) = F(x)

F,(x) = F(x) = 0

a rg x ^ c — Ύ] ,

c + 7? ^ a; ^ 6 ,

Furthermore, since /i(t ) is a convex function of v, we have

(2.20)
L dv

^ 0 .

Construct now the measure μx by: μ1 = (-l)w+2i?o* Dt+iF^ We
have then P i Λ - ( - 1 ) ^ + I i ) ; + 1 . . D*+1FU j = 0,1, , n, and P^μ^F,.
Thus, by (2.15) and (2.19)

P . μ i ( α ) = (_i)n-y+i2>?+if . . . , D^F^a) = 0, j = 0, 1, . . . , n - 1

and, by (2.20)

iV-i/ΦO - D*D*Mx) ^ 0 .

These relations imply by (0.5) that / ^ e C * ^ , •• ,uw_ 1).
Define now v by v = μ - μlm Then, using (2.16), (2.14) and (2.19)

we have

7>(α) - P3μ(a) - P^{a) = 0 , i = 0,1, , n - 1

• Pnv(a) = Pnμ(a) - P^(a) = A + D*n+ιF{a) = 0 ,

Pn+1v(x) = Pn+1μ(x) - F,(x) ^ 0 .

These relations imply by (0.5) that v e [C(uQ, , un) Π C(u0, , un+1)]*
so that the decomposition has been accomplished and the theorem is
proved.

It is quite surprising, knowing Theorems 2 and 3, that the cor-
responding statement concerning four consecutive convexity cones is
false. This is demonstrated by the following example which shows
that

n C(i, x) n C(i, x, χ2) n

Φ C*(l) + C*(l, x) + C*(l, x, x2) + C*(l, a?, α;2,
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EXAMPLE. Let the measure μ be represented by the function

/(ί) = — 1 dμ, where
Ja

/400t

80

200ί

40

- 40 ,
- 200ί ,

- 120 ,

- 50ί ,

0

0.1 <
0.4 <

0.5 <

0.6 :

ί t <
s t <

a t <

s t <

elsewhere

0

0

0

0

. 2 ,

•5,

. 6 ,

. 8 ,

fit) =

It is immediately seen that

(2.21) [ f(t)dt = 1 , [ tf(t)dt = 0
JO JO

and a simple computation yields

(2.22) [tif(t)dt>0.
Jo

Consider the function Q(x) defined by

Q(x) = Γ (t - χ)2f(t)dt , 0 ̂  x ̂  1 .
JίC

Differentiation yields

Q'(x) = - 2 ί1 (ί - x)f(t)dt , Q"(x) = 2 j 1 f{t)dt .
Ja; Ja;

The second derivative Q"{x) has in (0,1) precisely two zeros, as can
be directly checked from the graph of f(t). Since Q'(x) vanishes for
0 and 1, it may have at most one zero inside (0,1). Finally, since
Q(0) > 0 by (2.22), and Q(l) = 0 while Q(x) is positive near 1, we
may deduce that Q(x) ̂ > 0 for all 0 ̂  x ̂  1. Using the fact that
{(t — x)\) are the extreme rays for C(l, x, x2), we deduce by (0.3) that
f(t) G [C+ Π C(l) Π C(l, x) Π C(l, α, x*)]*. Since /(I) - 0, this implies
that μ e [C(l) Π C(l, a?) Π C(l, α?, α;2) n C(l, α, α;2, a;8)]* (cf. [6]).

Suppose now that there exists a decomposition μ = μ1 + μ2 with
μx e C*(l), j«2 G [C(l, x) Π C(l, x, α;2) n C(l, a;, ̂ 2, a;3)]*, then there exists

i t

dμif

1 = 1, 2; Λ G (C+)*, / 2 G [C(l) Π C(l, a?) Π C(l, x, x2)]\
By (0.3), these functions have to satisfy

(2.23)
0
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In this case, however, the equalities

0 == [ tf(t)dt = [ tfyφdt + [tf2(t)dt
Jo Jo Jo

imply that

\ltUt)dt = 0 .
Jo

Since fλ{t) is nonnegative and continuous from the right, it follows
that ftf) = 0. On the other hand, we know that, by (2.21) and (2.23),

1 - [f(t)dt= (7i(ί)dί .
Jo Jo

Thus, we have arrived at a contradiction, which shows that the
assumption that there exists a decomposition is untenable.

3* Sums of dual cones in Mo. The existence of a decomposi-
tion of μ e Mo Π [C(u0, , un_ύ Π C(u0, , un)Y into a sum of a measure
μx e Mo Π C*(w0, , %»-i) and a measure μ2 e Mo Π C*(u0, , un) follows
from Theorem 2. For these cones, however, we have the stronger
result:

THEOREM 4. Let μbea measure of [C(u0, , un^) Π C(u0, , un)Y
such that inf {support (μ)} = s > α. Γ/^e^ ί/^erβ exists a decomposition
μ — μλ + μ29 μ1 e C*(^o, , ̂ n-i)> ^2 e C*(^o, , uw) where μt is either
0 or supported in any n + 1 prescribed distinct points in (α, s).

Proof. We may assume that

- A > 0

since otherwise μ 6 C*(u0, , t6n) and the decomposition is accomplished
by choosing μ1 = 0.

Let {#ί}?
+1 be an arbitrarily prescribed set of points such that

a < XL < < xw+1 < s. Consider the system of linear equations

» + l

Σ <*>άUi(xά) = 0 , ί = 0, 1, , n

tιΛ\

Σ
(3.1)

Since (^0, •••,%„) is a Tchebycheίf system, the corresponding de-
terminant does not vanish, and the system of equations has a unique
solution (au •••, αn + 1).
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71+1

Define μγ = Σ ufixp where δXj is the Dirac measure with unit

mass at xj9 By virtue of (3.1), we have

(3.2) [b u^dμ^t) = 0 , ί = 0,1, , w - 1 .

(3.3) ΫuΛtydμάt) = A> 0 .

From [6], Theorem B, we deduce that μ1 has at least n sign
changes. Since it is supported in at most n + 1 points, it follows
that it has exactly n sign changes. The same theorem allows us
to conclude that either μ1 or —μγ belong to C*(w0, •• ,uw_ 1). Since
un e C(u0, , ^ w _ 1 ) , relation (3.3) implies that μλ e C*(w0, , wΛ-i).

It remains to be shown that μ2 — μ — μx belongs to C*(u0, , un).
It is easy to deduce that

Γδ

(3.4) I Ui(t)dμ2(t) = 0 , i = 0,1, . . . , ti .

Thus, by (0.3), we have to show only that

(3.5) Γ φn(t; x)dμ2(t) ^ 0 , α < x < b .
Ja

Consider first the case x > xn+1. We have
1 φn(t; x)dμι(t) = 1 φn(t; x)dμι(t) = 0

so that

Γδ ίδn(ί; x)dμ2{t) - Γ ^.(ί; a?)d^(ί) g: 0 .

The inequality following by applying (0.3) to the measure μ.
Suppose next that x ^ xn+1. Since xn+1 < s, we have

φn(t; x)dμ(t) = [ φn(t; x)dμ{t)
Jx

= \b\un(t)+'iΣci(x)ui(t)]dμ(t)
JxL i=0 J

= Γ un(t)dμ(t) + Σ Ci(x) \" ut{t)dμ(t)
Jx ΐ=0 J x

= Γ un(t)dμ(t) + ΣCi(x)Γ u^Wμifi) = A .
J io J

Σ

The last equality following from (3.2)-(3.3).
Thus, for x ^ xn+1, (3.5) is equivalent to
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(3.6) Γ φn(t; x)dμί{t) ^ A .
Ja

Since

Γ [Φn(t; x) + (-l)nΦn(t; x)]dμi(t)
Ja

= \Ίun(t) + Σ diΦiitiUμtf) = A .
JαL ΐ=0 J

We further deduce that (3.6) is equivalent to

(3.7) [ (-irφn(t; x)dμ1(t) ̂  0
J

which follows from the fact that ( — l)nφn(t; x) e C(u0, , un_^ and
μ1eC*(u0, •• ,uΛ_i). This completes the proof of Theorem 4.

4* Application* In this section we derive a simple Riemann-
Stieltjes integration scheme which converges monotonely for all convex
functions. We start by restating a theorem of Fejer (see [4]):

Given 2 interlaced partitions, (Si)?=Q, (̂ )Γ=+o\ of the interval [0, 1]:
0 = tQ = So < ίi < s, < t2 < . . . < Si < ti+ί < si+1 < < tm < sm =
tm+1 = 1. Form the Riemann sums:

Sm(g) - Σ (Si - s,

Sm+1(g) = Σ (ί* - ίί-i)

Then necessary and sufficient conditions for

(4.1) Sm+ί(g) £ Sm(g)

t o hold for e v e r y i n c r e a s i n g a n d convex f u n c t i o n g on [0,1], a r e :

(4.2) Σ Qi(Pi ~ Pi+ι) ^ 0 (i = 0, , m - 1)
ΐ = 0

where pi = sm_; — tm_ίy qt = tm_i — s^^. (To derive this formula-
tion from the theorem as stated in [5], substitute: g(x) = / ( I — x),
m = n + 1, Si = 1 — xm_i, ti = 1 — ym^-i). Furthermore, it was shown
in [5] that no Riemann scheme of this type converges monotonely for
all monotone function or for all convex functions. In order to obtain
a scheme converging monotonely for all convex functions we shall
modify Fejer's scheme to a Riemann-Stieltjes scheme.

The inequality (4.1) means that, provided (4.2) is satisfied, the
m m + 1

measure μ defined by μ = Σ (si ~ Sί-i)^ — Σ (U — ^-i)^. belongs to

[C(l) Π C(l, x]*. We apply to μ the decomposition of Theorem 4:
Given 2 points u, v satisfying: 0 < u < v < tu we construct the meas-
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ure μx = A(δv - 3u)/(v - u), where A = \ tdμ(t) = Σ QiiPi ~ Pi+i) (cf.
J o * = o

[4.2]). Then, we have μ — ̂ 1€C*(l,ίc). This means that, for every
convex function g, we have:

Sn(g) ~^—g(v) ^ Sn+ι(g) - ^
V U

g() n+ι(g)
V — U V — U

Suppose now we have a sequence of consecutively interlaced partitions

Am = (τf)r=0 (m = 1, 2, •), such that:

-T ra + l /7-m ^ τ-m + 1 ^ ^-m ^ . . Λ ^

and X q?(p? - pT+1) ̂  0 (k = 0, , m - 1; m = 1, 2, • •) where pf =

zZ-i — r;ί}, gf = ^mii — ^S-i-i, and suppose also we have a sequence
(v{) satisfying: 0 < vm+1 < vm < τΓ+1 (m = 0,1, •) and

-A*/(v« - vm+1) = τ(constant) (m = 1,2, •) where Am ^^qfipT - P?+i).

Define:

Σ

Then the sequence χ w (gr) decreases monotonely for every convex function

S I
g(t)dt — Tflf(O), provided the partitions J m tend to

0

zero (in maximal diameter). A simple useful scheme satisfying our
requirements is: τt = i/m(i = 0, , m; m = 1, 2, •), i;m = l/2m. In
this scheme ^4m = l/2m(m + 1) and 7 — 1, hence for every function

m

g convex on [0, 1], the sums Σ g(i/τn)lm — g(l/2m) decrease mono-

tonely to [ g(t)dt - g(0) .
JO
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