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ON SUBGROUPS OF FIXED INDEX

GEORGE K. WHITE

If ke St~, where J%Γ is a subgroup of a group S/7

 y then
closure implies k2, k3, , e J%Γ. Nonempty subsets S c y
with the inverse property sm e S implies s, s2, , sm e S (m =
1, 2, •) will be called stellar sets. Let pa be a fixed prime
power. If a stellar set S of an abelian group £f intersects
every subgroup Sfc* of index pa in ,5/% and O^S, then the
cardinal | S | of S is bounded below by pa (Theorem 3), when
S^ satisfies a mild condition.

Hence for instance a subset S of euclidean w~space En intersecting
all sublattices of determinant pa of the fundamental lattice will have
at least pa elements, and more if no element is divisible by pa.

Henceforth Sf will always be an additive abelian group, so a
stellar set will be one with

( i ) 0 ^ S c y

mge S => g,2g, , mg e S(g e 6^, m = 1, 2, ) .

Examples of stellar sets are Sf itself, and its periodic part [5, p. 137];
and a star set [7] is a symmetric stellar set. There are stellar sets
of one element s, i.e., those s for which s — mg(m = 1, 2, •) implies
m = 1. Now let p be a fixed prime, and suppose S intersects every
subgroup J2Γ of S? of index p. Suppose also

(2) 0 £ S

(if OeS the intersection property is redundant). Then we can say
the following (in this paper we denote |A| = cardinal of A, mA =
{ma; α e i } , for any set A and integer m):

THEOREM 1. Let p be a fixed prime, 6^ an abelian group, and
S a stellar set with 0 £ S which intersects all subgroups ^%Γ of index
Sf \3Γ = p. Then

(3) | S | ^ P .

When S Π P-^ = 0 we have \S\ > p.

A similar result holds for ordinary sets T:

THEOREM 2. Suppose p is a fixed prime, 6^ is an abelian group
with more than one subgroup of index p, and T is any subset of
S^ with
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( 4 ) T Π pS^ = 0

which intersects all subgroups 5fc~ of index 6^ : 5ίΓ — p. Then

(5) | Γ | S = J > + 1 .

When £f is the fundamental lattice Λo [2, 4] in r-space Er of
all points with integral coordinates, Theorems 1 and 2 are immediate
using Rogers' proof of his Theorem 1 [7] on starsets, the small adjust-
ment needed being clear. He states his theorem with a slightly stronger
hypothesis equivalent to "S intersects all subgroups of index ^ p", and
for this more stringent requirement Cassels [3], replacing p by n, has
made elegant use of a generalization of Bertrand's postulate due to
Sylvester [9] and Schur [8] to show \S\ ^ n for n — 1, 2, and any
stellar set S of an abelian S^ with no periodic part. For n — pa a
prime power we shall extend this as follows:

THEOREM 3. Suppose that n = pa is fixed, £/* is an abelian group
containing no element of order pβ when 1 < pβ < pa, and that S is a
stellar set with 0 g S which intersects all subgroups 3ίΓ of index

= pa. Then

( 6 )

When S ' = 0, we have

Λll

\P

" 1

>

=

1 ,

1 .

Note the requirement "contains at least one subgroup of index pa"
is a natural one, but it is an unneeded restriction on S. Note also
that Theorem 1 is an immediate consequence of Theorem 3.

2 A lemma. We find it useful, for Rogers' case S? = Λo c E%
to restate Theorem 3 in altered form. We denote x = (x19 , xr) so
that

ΛQ = {x: all the xi are integers, i — 1, , r} ,

and Sf = ΛQ is isomorphic to a direct sum of r infinite cyclic groups.
When xeΛQ we define p\x to mean p | ^ , •• ,p|a?r, and

| | a;||p — {

Let T be any subset of ΛQ satisfying

(7) p«Λof)T=0

and a modified stellar condition
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(pβx e T implies x,2x9 , pβx e T
( ' ((1 ̂  β ^ a, pa fixed) ,

and consider congruences

( 9 ) Ί -x = kx, + + lrxr = 0(pa)(Te ΛQ, p\Ί) .

LEMMA. // TcΛ0 satisfies (7) and (8), r^>2 and the congru-
ence (9) has for each T a solution x e T, then T contains at least
pa + p"iin<α,2)-i distinct elements mod pa,

[p if a > 1 ,
(10) | Γ m o d p « | ^ p * + r .

(1 if a = 1 .

Proof. We consider two cases, (i) a = 1 or r ^ α, and (ii) r > α ̂  2.
For the first case, a simple counting argument will suffice. Define

(ii) fl«.«) = P

 P Λ

Then there are exactly

V p(«-l)(^-l)+α(r-/O __ βίγ a \

Λ = l

distinct congruences (9), representable by

I = (pm19 , i>mA_!, 1, lk+u - , ir) .

If ^ = 6^ mod pa then clearly ^ satisfies every congruence x does,
and hence we may construct a subset V of Γ which likewise satisfies
every congruence (9), and also

Ix e V, y e V, y = bx mod pa => ̂  = x ,

(XG V =>x satisfies some congruence (9) .

Any x eV may be expressed as

x = »

by (7), since VczT. A fixed xeV obeys (9) for at least one T and
in fact for precisely those I satisfying I x' = 0(pα~e); these cor-
respond to exactly pξθ(r — 1, α) congruences (consider, e.g., xr — (1,
0, « ,0)). Hence, counting over the θ(r,a) congruences (9), we get

(13) θ(r, a)£Σ p"*"pθ(r - 1, a) .
xeV

Now x e V obeys (8), since F c T . Hence to each x = x'pζ in V there
correspond p f elements
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(14) Γ(x) = {λx' : λ - l , . . , ί } f } c Γ (x e V) .

Moreover,

(15) x, φ x2 implies T(xλ) Π T(x2) = 0 (x1? x2 e V) ,

for otherwise λ ^ = λ2&2, λ { = λ p ^ ( p | λ ), wi thout loss of generality
0 = 0i - £i - (02 - ί2) ̂  0, and λ£c2 = λ ί p % , x2 = {X^X'^x, mod p%
^2 = Xi by (12). Thus by (13), (15),

( r ;> 2)

If α = 1 we have \T\^p + (p- l)(pr-1 - I)" 1 > p, so | T\ ^ j> + 1; if
r ^ α: > 1 then

I Γ| - p« ̂  vaΛP - l)(Pa~ι - I ) ' 1 > P - 1 ,

I Γ| — pa ^ p, and case (i) is verified.
For our second case r > a >̂ 2 we employ induction on r. Let

<r = j y define F c T as in case (i), and denote

(16) x = (xlf , ίc^i, Xj) = (x0, %) .

There are p ^ 1 + ••• +p + l^pa + p + l subgroups

H(af) = {λαr mod p : λ = 1, , p = 0}

(α' fixed, p | α r ) , any two of which intersect in a point x divisible
by p. So if F contains a primitive (p \ x) point from each subgroup,
we have | V\ ^ pa + p + 1 and our result follows. Hence we may
assume that V does not intersect some H{a'), where without loss of
generality α' = (0, •••, 0, 1); then V contains no point of type x —
MPVor 1) m ° d V when p ̂  λ, and hence by (8) no such point for any
λ = 1, 2, ,

(17) xe V=> x = p\y[, ys) . (p^yΌ, 0 ̂  β < a) .

Now define sets T(x) as in (14) and denote their union by W,

W= U{T(x):xeV} ,

so that V a W c S, and W is the (smallest) set generated by V which
satisfies the modified stellar condition (8). Denote

(18) Wo = ί^o: (̂ o, χd € W for some xd} .

Then by (17), (18), points xr

op
ξ(p^xΌ) of TΓ0 correspond to points

pζ(x'o, xd) of W and so clearly Wo satisfies (7) and (8). But V and
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hence W satisfies every congruence ΐ in (9); thus W and hence WQ

satisfies every I with l5 — 0 for some x0 = (xu , Xj^) e Wo such that

i A + . +ί i_1x i_1 = 0(pβ) (l19 , ^ p) = 1 .

Thus by our induction hypothesis (r — j — 1, α ^ 2) there are at least
pα + p such x0 e Wo, and

| S | S |TΓ| ^ I TF0| ^p* + p.

As our result is already established for r — a (case (i)), this com-
pletes the proof of the lemma.

3* Proof of Theorems 2 and 3. Consider the homomorphism η\

(19) Sf -JL-> i ^ = ^lva^

(cf. Cassels [3] for his case s — 1); for Theorem 2 we take a — 1.
We see easily that if Sf : J^" = pa then p α ^ c J ϊ^ and so there

is a one-to-one correspondence between all SΓ, S?~ of index pa in
S^, £^ respectively; and any subset F o f y intersects all such SίΓ
if and only if V intersects all such S%~ (index pa). If V has the
stellar set property this may, however, be lost under η. Since pa6? = 0
we have by a result of Prϋfer [1] that 6f is a direct sum of cyclic
groups d of orders pβi ^ pa; in fact, βi = oc since in all our 3 theo-
rems .ζ/7 has no element of order pβ(0 < β < α) and hence p^C; = 0
implies β{ ^ α:. Thus

(20) S? = Σ C^Cί = <β: p̂ β - 0» .
ίel

Note that all s e S have infinite period,

(21) ms φ 0 ( s e S , m = ± 1 , ± 2 , •••)

since otherwise | m | s = 0, s — (\m\ + l)se S so 0 — \m\s e S contrary
t o ( 2 ) . N o w s u p p o s e 0 e S . T h e n p a g e S s o g , 2 g , - - - , p a g e S , \ S \ ^ p a

since otherwise ig = ^^(i < j) and ^ G S has finite period. It remains
therefore to settle the matter when

(22) 0$S (i.e., S ί l p β y - 0) .

The cases | J| = 0, 1 in (20) correspond to groups £/* with no, exactly
one subgroup of index pa. In the latter event we have 0 e S, a case
already settled. If |/ | = 0 in Theorem 3 then Sf = pa^ and all stellar
sets S vacuously satisfy the intersection condition. No stellar set is
empty, so we have s e S , s — pasu sx = pas2, •••, and | S | = ©o since
otherwise s. = ss (i < j) and s,- e S has finite period, contrary to (21).
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The case 11\ S 1 does not occur for Theorem 2, since here £f has ^ 2
subgroups of index pa. Hence we may assume

(23) | / | ^ 2 .

From (23) it is immediate that 6f contains more than one subgroup
of index pa. We consider only Theorem 3 from now on; Theorem 2
will follow by the same reasoning (a — 1).

It remains, then, to verify Theorem 3 when (22), (23) hold. As-
sume now then

(24) | S | < o o ,

since if \S\ = °° we have nothing to prove. Then if we decompose
s = Σ«i ίn (20) we have s{ Φ 0 for some seS for only a finite number
of i e J, which we may include in a finite set ί = 1, , j (2 <; j ^ | / | ) .
Then

= y|0modpα (in i-space Ej) , (2 ^ i) ,

and we may represent any x e & uniquely by

x = x^ + x* = (χly . . . y χ. x*) modpa .

The following subgroups J%Γ have index 2>α in 5^ and hence are in-
tersected by S:

= {x: hx, + + IJXJ Ξ 0(pa)} (lίf , li9 p) = 1 ,

where (i, , p) = 1 for some i and l19 , ϊy are fixed for each ^Γ' (cf.
[3, preceding (10)]); we have plfk for at least one i and so for each
^ G T , Xi - - Σ ^ ί ^ A . Hence | J T 0 | - P ^ ^ ,

^:ST = S^o : ^Γo = p*ηpa{i-ι) = pa .

Elements s of S are of type s = (s^ , s,-; 0*); since S is a stellar
set the modified property (8) holds for T = S; also, 0 = (0, , 0, 0*) g S
and r = i ;> 2 by (22), (23). So we may apply the lemma tofind there
are at least pa + 2>

min(«»2>-1 distinct points (sL, •••, sy, 0*) in S; hence

I s i ^ ι s ι ̂ p a + r 1 1 ^ ' 2 1 " 1 ,

and our proof of Theorems 2, 3 is complete.

4. Remarks* 1. In our proof of Theorem 3 we utilize the
stellar property of S only through its consequence in S, a condition
of type (8) with T = S which would clearly follow from imposing
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condition (8) on S, along with S Φ 0. Hence we may make the
following extension:

THEOREM 4. Theorem 3 holds for S not a stellar set, if S
satisfies (8) ( Γ ^ S c y 7 , x e y ) , and Sφ 0 .

2. When S^ is not abelian, Theorems 1-4 need not hold; e.g.,
the direct sum £f — C°° 0 Aδ of the infinite cyclic group and alternat-
ing group of 60 elements has only one subgroup of index 3, 3Γ —
3C°° 0 A5, and 3ίΓ is intersected by the stellar set of one element,

S = {3 + cycle (123)} Φ Sg .

3. In the excluded case 0 e S the least stellar set containing 0
is the periodic part of Sf, and \S\ ^ p need not follow.

4. When Sf = Λ0(r ^ 2), the set of all (1, x2, 0, , 0), (pxl9 1, 0,
•• ,0)modpα is a stellar set of pα + pa~ι elements intersecting all
congruences (9) mod p \ So our bounds are best possible, for the
lemma, when a = 1, 2. (r ^ 2).

5. In Theorem 3 we must exclude elements of order pβ(β < a).
For consider ,e.g., Sf = C°°0 C(?>) (any α). Here the bound is pa + 1.

6. Let a :> 2, Sf be a stellar set in Euclidean n-space {x —
(a?!, , xM)} with fewer than pa + p elements, and no element pax.
Then there is a sublattice of the fundamental lattice of determinant
pn (see [2], p. 10) which is not intersected by S.

7. Our condition (A)"S intersects all subgroups of index n" is
equivalent to (B)" index d: d\n" though weaker than (C)"
index m:m < n". The latter remark follows from the example S =
{(4,1), (2,1), (2,0), (1,0)} in y = C M φC ( 2 ) (w = 4). For the former
prove first for d — njp and then iterate: if S^ : <3f = n/p (p\n) and
(A) holds then ^ίf Φ pcXf, there exist ^ Γ in ^f with ^f : ̂  = p
so £f : ̂ ^ = %, 21? Π S Φ 0.

8. Theorem 3 does not hold for all n = 1, 2, •••. Mr. George
M. Bergman of Cambridge, Mass, has kindly furnished me with a set
of counterexamples for £f = C~ 0 C°°, which includes a stellar set S
of 76 elements that intersects every subgroup of index 77.

9. Finally, we should like to acknowledge here some parallel
though independent work of Mr. Bergman who in unpublished cor-
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respondence proves a simpler version of Theorem 4, obtaining a slightly
lower bound (pa rather than pa + p, 1). His proof is in essence similar
to ours, except there is no induction step: a homomorphism η (19)
reduces the problem to Rogers' case £f = Ao, and a version of our
lemma is proved by arguments resembling ours for a = 1 or r >̂ a,
Mr. Bergman in effect considering congruences (9) with lx — 1 to ob-
tain his bound pa for (10) for all r, α:, without induction. We thank
Mr. Bergman for the material communicated; among other things it
helped remind us to include Theorem 4. We thank him also for wel-
come suggestions concerning our final draft.
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