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ON INTERPOLATION OF #-VARIATE STATIONARY
STOCHASTIC PROCESSES

HABIB SALEHI

Let Xt be a g-variate stationary stochastic process. Let
K be any set of έ-values and let Kr be the complement of K.
If seK' the problem of approximating X8 by linear combi-
nations of the Xt's with t e K and limit of such linear combi-
nations is considered. The best linear predictor and the mean
square error matrix are evaluated in the following cases: (1)
t takes on all real values, K consists of the integers (2) t is
interger-valued, K consists of the odd integers.

Let (Xfc)-*,, k an integer, be a #-variate weakly stationary stochastic
process (SP). Let K be any subset of the set of integers and K'
denote its complement in the set of all integers. Let ^Jtκ denote the
(closed) subspace spanned by Xkt keK.

PREDICTION PROBLEM. Let X8,seK\ Find X8 the projection of
Xs onto ^Jtκ and the error matrix (X8 — X8, X8 — X8)\

In this paper we propose to solve the prediction problem for two
cases:

(1) Xtf t real, is a g-variate stationary SP and K consists of the
set of all integers.

(2) Xk, k an integer, is a g-variate stationary SP and K consists
of the set of all odd integers.

For q = 1 these results have been previously obtained by A. M. Yaglom
{cf. [12, p. 176]}.

In § 2 we will review the notion of absolute continuity of a matrix-
valued signed measure with respect to another such measure {cf. [6]}
and state a few results concerning the Hellinger-square integrability of
matrix-valued measures. Our main result will be given in §3.

2* Matrix-valued measures* The problem of absolute continuity
of a matrix-valued measure with respect to another matrix-valued
measure was first posed by P. Masani in [4, p. 366]. Later J. B.
Robertson and M. Rosenberg {cf. [6]} dealt with this question and were
able to obtain a satisfactory solution to it. We will briefly review
some of these results. Let Ω be any set and ^ b e a σ-algebra of its
subsets. M is said to be a q x r matrix-valued signed measure on
(42, &) if for each B e ^ , M(B) is a q x r matrix, with finite complex

1 (...) denotes the inner product in the Hubert space %?<* containing the <f-variate
stochastic process Xk,k an integer.
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entries, and M(B) = jΓ,~=1 M(Bk), whenever Bly B21 is a sequence of
disjoint sets in gg whose union is B. A q x q matrix-valued signed
measure M is called a q x q matrix-valued measure if M(B) is a
nonnegative hermitian matrix for each S e ^ . Ψ is called a measurable
p x q matrix-valued function on (Ω, &) if for each ω eΩ, Ψ{ω) is a
p x q matrix and if the entries of Ψ are measurable functions on
(β, &). We say that &q x r matrix-valued signed measure is absolutely
continuous (a.c.) with respect to (w.r.t.) a σ-finite nonnegative real-
valued measure μ on (β, έ%f) if the entries of ikf, Miά

fs are a.c. w.r.t.
μ. We write (dM/dμ) = (dMi3 /dμ) for the Radon-Nikodym derivative

of ikf w.r.t. μ. The integral N(B) = ( ?Γdikf is defined by JNΓ(J5) =

S JB
Ψ(dMjdμ)dμ, where ikf is a.c. w.r.t. μ. It is easy to show that the

B

definition of N(B) is independent of the choice of μ.

DEFINITION 2.1. Let M and N be p x q and r x q matrix-valued
signed measures on (β, &) respectively, μ be any σ-finite nonnegative
real-valued measure on (β, &) such that ikf and N are a.c. w.r.t. μ.
We say that N is a.c. w.r.t. ikf if

V . Λ

a.e. μ ,

where for each matrix A, κ(A) = {a: Aa = 0}. It can be easily verified
that this definition is independent of μ.

The following theorem is proved in [6].

THEOREM 2.2. Let M and N be p x q and r x q matrix-valued
signed measures on (Ω, &). Then

(a) N is a.c. w.r.t. M if and only if there exists a measurable
r x p matrix-valued function ¥ on Ω such that for each B e <S$

N(B) - ( 3ΨdM

(b) Let Φ and Ψ be measurable r x p matrix-valued functions on

Ω. Then for each Be^Λ ΦdM = ί ΨdM if and only if ΦJ = ΨJ
JB jBf

a.e. μ, where J is the orthogonal projection matrix onto the range of
dM/dμ and μ is any σ-finite nonnegative real-valued measure on
(Ω, έ%f) w.r.t. which M is a.c.

If N is a.c. w.r.t. M, then by Theorem 2.2 (a) there exists a
measurable matrix-valued function Ψ such that for each ΰ e ^

N(B) = [ ΨdM.
JB
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Ψ is called the Radon-Nikodym derivative of N. w.r.t. M and we will
denote it by (dN/dM). We now review properties of Hellinger inte-
grability of matrix-valued measures {cf. [9]}.

DEFINITION 2.3. Let M and N be p x q and r x q be matrix-
valued measures on (Ω, &), F be a q x q matrix-valued measure on
(β, ^?). We say that (M, N) is Hellinger-integrable w.r.t. F if

I (dM/dμ)(dF/dμ)~(dN/dμ)*dμ2 exists for some cr-finite nonnegative
JΩ

real-valued measure on (Ω, &), where (dF/dμ)~ denotes the generalized
inverse of (dF/dμ) {cf. [5, p. 407]}. It is not hard to show that the
existence and the value of this integral when it exists is independent
of μ. We write

= ( (dM/dμ)(dF/dμ)~(dN/dμ)*dμ .

The following theorem is needed later.

THEOREM 2.4. Let (i) M and N be p x q and r x q matrix-
valued signed measures on (Ωy &), F be a q x q matrix-valued measure
on (Ω, &).

(ii) M or N, say M, be a.c. w.r.t. F. Then (M, N) is Hellinger

integrable w.r.t. F if and only if the Lebesgue integral \ (dM/dF)dN*
JΩ

exists. x In case these integrals exist, their values are equal.

Proof. Let μ be any σ-finite nonnegative real-valued measure on
(Ω, &) w.r.t. which M, N and F are a.c. Since M is a.c. w.r.t. F
then by Theorem 2.2 there exists a measurable p x q matrix-valued
function Ψ on Ω such that for each 5 e ^

(1) M{B) = \ ΨdF, ΨJ=¥ a.e. μ ,
JB

where / is the orthogonal projection matrix onto the range of dF/dμ.

If I dMdN*ldF exists, then from the following chain of equality it
JΩ r

follows that I (dM/dF)dN* exists and the two integrals are equal
JΩ

(2) = ( ψ(dF/dμ)(dF/dμ)-(dN/dμ)*dμ
JΩ

= ( W(dN/dμ)*dμ - ( (dM/dF)dN* ,
Jfl JO

2 denotes the adjoint operation.
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where the first equality is a consequence of Definition 2.3, the second is
a consequence of (1), the third one is a consequence of (dF/dμ)(dF/dμ)~ =
J and (1) and the last two are consequences of (1). Similarly if

[ (dM/dF)dN* exists from (2) it follows that [ dMdN*/dF exists and
Jo JΩ

these integrals are equal.

3* Interpolation of a stationary SP with continuous time
parameter* Let Xu t real, be a g-variate weakly stationary SP with
the spectral distribution q x q matrix-valued function F defined on
(— oo, oo). Suppose that the process has been observed at the time
points k = •••, —1,0,1, ••• and we wish to estimate Xt where t is
not an integer. First we state a lemma whose proof is immediate.

LEMMA 3.1. Let K be the set of all integers. Then
(a) for each λ€(0, 2π] the series

Σ [F(X + 2kπ) - F(2kπ)]
keK

converges and defines a q x q nonnegative hermitian matrix-valued
function G( ) on (0, 2τr].

(b) G( ) is monotone nondecreasing on (0, 2π] and

G(2π) ^ lim F(X) .

(c) For each λe(0, π] and each fixed real t the series

Σ e~2ikπt[F(X + 2kπ) - F(2kπ)]
keK

converges and defines a q x q matrix-valued function Gt( ) on (0, 2π].
(d) Gt is of bounded variation on (0, 2π] and the variation oj

Gt ^ G(2π).
(e) G and Gt define q x q matrix-valued measure and signed

measure on the Borel family of subsets of (0, π] respectively.
(f) Gt is a.c. w.r.t. G.z

We are now ready to state the main result of this notion. For
standard terminology and notation of g-variate stationary processes
used in Theorem 3.2 we refer to [4] and [8].

THEOREM 3.2. (i) Let Xt, t real, be a q-variate weakly stationary

Ϊ oo

e~itλE(dX)X0, the spectral

3 By "Gt is a.c. w.r.t. G" we mean that the q X q matrix-valued signed measure
Mt generated by Gt is absolutely continuous w.r.t. the q X q matrix-valued measure
M generated by G.
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distribution function F defined on (— °o, co).
(ii) Let K denote the set of all integers, ^//κ the (closed) subspace

spanned by Xt, t e K and for each tiK let Xt be the projection of Xt

onto ^/έκ. Then
(a) There exists a q x q matrix-valued function ΨteL2iF

4 such

that Xt = I Ψt(X)E(dX)X0, the function Ψt is periodic of period 2π.

(b) If G( ) and Gt( ) are the matrix-valued functions defined in
Lemma 3.1, then

ψt(χ) = e~ίu(dGt/dG)(X) a.e. F .

(c) The interpolation error matrix Σ t — (Xt ~~ Xt, Xt — Xt) is
given by

Σ, - 4-Γi1 ~ dGt/dG)dF(I - dGt/dG)* ,
2π Jo

where I is the identity matrix of order q x q.

Proof, (a) Let V denote the isomorphism mapping from L2tF

onto ^ the (closed) subspace spanned by the SP Xt {cf. [7, p. 297]}.
Since ^£κ £ ^£, there exists a Ψt eL2>F such that

( 1 ) Xt = Γ ΨtE(dX)Xo .
J-oβ

From the definition of F it follows that for each k e K

( 2 ) Ve-ίkλI = Xk .

Since for each k e K> e~ίkλ has period 2π and since Xt e Λί?κ, from (1)
and (2) it follows that Ψt(X) is periodic and has period 2ττ.

(b) By (a) we have

Xt = ί~ Ψt(X)E(dX)X0 .
J-oo

It then immediately follows that

( 3) Γ [«-*"/ - ^ ( λ ) ] ^ ) ^ - (Xt - Xu Xk) - 0
J

for each keK.
Since Ψt e L2>F, Ψt e Lg^ Π L2>Gt. Hence

= \e~ikλe-iχtdGt(X) -
J

4 LZ,F is an abbreviation for L2((~oo, <*>),&, F), {cf. [7, p. 295]}.
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The first term = Ψ erikλeriιtd{ Σ e~2ίnπt[F(X + 2nπ) - F(2nπ)])
JO \ne K J

= Σ [2πe"ikxe-itλd(e"2inπt[F(X + 2nττ) - F(2nπ)])
neK JO

r -<*( ί - i »>β-<:P-»«)β-M.1tί ( 2 |; jp( i U) _ F(2nπ)]
2nit

C2(n + l)π

= Σ e-ik"eit"d[F(μ) - F(2ίwr)]

_ f" β-<"e-«*1<2 JF
τ(λ) .

J-oo

Also since ^ ( λ ) is periodic of period 2τr,

[2πe~ikΨt(X)dG(X) = \2πe-ikΨt(λ)d\Σ F(X + 2nπ) - F(2nπ)\
Jo Jo Lwejs: J

= Σ Γe-ikΨt(X)d[F(X + 2nπ) - F(2nπ)]
neK Jo

e-ikΨt(X)d[F(X) - F(2nπ)]
2nπ

= \" e~m¥t(X)dF(X) .
J—oo

Hence

S 2π

e~m[e-ixtdGt(X) - Ψt(X)dG(X)]

[e-ixtI - Ψt(X)]e-mdF(X) .
J-oo

By (3) and (4) we get that

( 5) \2\-ikλe-iλtdGt(X) = \2πe-ίkΨt(X)dG(X) .
Jo Jo

Since by (5) the Fourier coefficients of the matrix-valued signed measures

M(B) = ( e-ίtλdGt(X) and N(B) = ί Ψt(X)dG(X), B is a Borel subset of
Js J#

(0, 2ττ], are the same, it follows that for each Borel subset B of (0, 2π]

M(B) = ( e-mdGt(X) = ( Ψt(X)dG{\) .

Now let μ be any σ-finite nonnegative real-valued measure on (Ω, £g)
w.r.t. G is a.c. Then automatically Gt is a.c. w.r.t. μ, because Gt

is a.c. w.r.t. G. Therefore we have

( 6 ) M(B) = ( e~itλ(dGt/dG)(X)dG(X) - ( Ψt(X)dG(X) .
JB JB

From (6) and Theorem 2.2 (b) it follows that
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( 7 ) e~itλ(dGt/dG)J = ΨtJ a.e. μ ,

where J is the orthogonal projection matrix onto the range of dG/dμ.
Since G is a.c. w.r.t. μ, F is also a.c. w.r.t. μ. Because Ψt e L2tF a
simple calculation shows that ΨtJeL2>F and that

(8) ΨtJ=Ψt a.e. μ.

But (dGt/dG)J = ΨtJ, therefore (dGt/dG)JeL2>F. This easily implies
that (dGt/dG) e L2tF and

( 9) (dGt/dG) J = (dGt/dG) a.e. μ .

From (7), (8) and (9) we have

e-itλ(dGt/dG) = Ψt a.e. μ

i.e.

e~iu(dGt/dG) = ^ a.e. JP .

(c) We have Xf = Γ e~itxE(d\)X, and

£ = ί~ e-itx(dGtldG)(X)E(dX)X0 .

Hence from the isometry theorem {cf. [7, p. 297]} we obtain

Σ, = (Xt - Xu X - 1,) = — ( V - dGt/dG)dF(I - dGtjdG)* .

2π Jo
As a special case of Theorem 3.2 we have the following result

concerning a g-variate stationary stochastic process with discrete time
parameter.

THEOREM 3.3. Let

( i ) Xk, k an integer, be a q-varίate weakly stationary SP with
e~ikλdE(\)XQ with spectral distri-

0

bution F defined on (0, 2π].
(ii) Let K be the set of all odd integers, ^ κ the (closed) subspace

spanned by Xk,keK and let for each keK, Xk denote the projection
of Xk onto ^ κ . Then

(a) there exists a q x q matrix-valued function ΨkeL2F such

that Xk = I ¥k(X)E(dX)X0. eiλΨk is periodic of period π.
Jo

(b) Ψk is given by
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ψk(χ) = e~i{k+1)πΨk(X - π) a.e. FifXe (π, 2π] .

(c) The interpolation error matrix Σk = (X — Xk, X — Xk) is
given by

7Γ)]

+ )dF(
7Γ Jo d[F(X) + F(X + 7Γ)]

where the first is a Lebesgue integral and the last one is a Hellinger
integral.

Proof. Since the proof of (a) is similar to that of Theorem 3.2
(a), we proceed to sketch the proof of parts (b) and (c). Let for each
real t

and Y(t) be a g-variate stationary stochastic process with correlation
function S(t). Note that for each integer n

(1) S(n/2) = R(n - 1) .

Using results (b) and (c) of Theorem 3.2 for the processes Y(t),
from (1), part (b) and the first equation for Σk easily follow. The
second equation for Σ f c *s obtained from Theorem 2.4, since dF(X + π)
is a.c. w.r.t. d[F(X) + F(X + π)].
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